
IEEE TRANSACTION ON COMPUTERS 1

Localized Routing Approach to Bypass Holes
in Wireless Sensor Networks

A. Mostefaoui, M. Melkemi and A. Boukerche

Abstract—Geographic greedy forwarding (GF) technique has been widely used by many algorithms for routing in sensor
networks because of its high efficiency resulting from its local and memoryless nature. Hence, it ensures scalability which is
a fundamental requirement for protocol applicability to large-scale sensor networks with limited resources. Nevertheless, GF
suffers from a serious drawback when packets, based on geographic distance, cannot be delivered; i.e., the so called ”local
minimum phenomenon”. This problem has been tackled in previous research works to guarantee packet delivery by routing
around the boundaries of the hole but at an excessive consumption of control overheads. In this paper, we propose a novel
approach that exploits GF technique and guarantees at the same time packet delivery (handles the local minimum situations).
Our approach is of a local nature that does not retain memories and performs better than the state-of-the-art approaches in terms
of its ability to guarantee packet delivery and to derive efficient routing paths. We provide in this paper proof of its correctness
(packet delivery guaranty) while showing, through simulations, its performance effectiveness in terms of reducing path lengths,
average end-to-end delays and overall energy consumption.

Index Terms—Geographic greedy routing, local minimum problem, hole traversal, distributed algorithms.

F

1 INTRODUCTION

O PTIMIZING communications in Wireless Sensor
Networks (WSNs), which are known to be the

most energy consuming components [1], leads natu-
rally to designing efficient localized multihop routing
protocols capable of delivering packets originating
from a source node and sent to the destination node
with the lowest overhead possible. By localized, we
mean that the decision to select the next hop per-
formed by each node within the routing path, is based
only on local knowledge (i.e., 1 hop neighbor informa-
tion). To this end, GF strategy [2], as a simple, efficient
and scalable approach fulfills this requirement. In
this approach, every node is supposed to be aware
of its geographical location, by means of a location
service [3] or by deriving it from the localization
phase [4], [5], initiated just after deployment. Hence,
a source node, knowing the location of the destina-
tion node, sends the packet to its 1-hop neighbor
which is the closest node to the destination among
all neighbors. Knowing the destination location from
the received message, every node in the path repeats
this process until the message reaches the destination

• A. Mostefaoui is with FEMTO-ST Institute at Franche Comte Uni-
versity
1 Rue Engel Gros, Belfort 90000, France.
E-mail: Ahmed.Mostefaoui@univ-fcomte.fr

• M. Melkemi is with LMIA laboratory at Haute Alsace University,
4 rue des freres Lumiere, 68093, Mulhouse,
E-mail: mahmoud.melkemi@uha.fr

• A. Boukerche holds the Canada Research Chair at the University of
Ottawa,
800 King Edward Avenue Ottawa, Ontario, Canada, K1N 6N5
E-mail: boukerch@site.uottawa.ca

node.
It has been shown that geographic routing protocols

are not only efficient in the average case; they are
also optimal for worst-case localized routing protocols
with the hop-counts of the resulting paths bounded
by O(d2), where d is the distance between the source
and destination [6].

This simple process does not induce any additional
communication overhead since it requires that every
node knows only its 1-hop neighbors. However, it
suffers from a serious drawback called local minimum
phenomenon [7]. This ”case” occurs when the packet
cannot be delivered to the next hop, when the current
node is the closest one to the destination. Figure 1
shows the local minimum phenomenon, where node
Nlocal, receiving the packet from node N4 (originated
from Ns) could not deliver it in the direction of Nd.

Many related routing algorithms were developed
in the literature to solve or at least to reduce the
local minimum problem [8], [9], [10]. These works
fall under two categories: (a) graph based approaches
and (b) non-graph-based approaches (see Section 7
for more details). Though these approaches resolve
the local minimum problem, they require the entire
network graph or parts of it to be locally stored for
graph based approaches which leads thus to poor
scalability. However, the non-graph-based approaches
derive either long routing paths or make use of ex-
pensive techniques in terms of energy consumption
(flooding for instance) to meet the requirement for no
memory.

To illustrate, we consider the two most efficient
approaches without memory, namely, Boundhole [11]
and GAR (Greedy Anti-Void Routing) [12]. The be-

IEEE TRANSACTION ON COMPUTERS 2

1

N2

N9

Ns

N3

N4

N5

Ne

N6
N7

localN
N 8

N15

N14

N13
N12

N11

N10

Nd

GAR Rolling Ball

Curved Stick

GAR

Curved Stick (CS)

Boundhole

Boundhole Restricted Flooding Area

Boundhole Sweeping Line

N

d(Nlocal,Nd)

Fig. 1. Examples of constructing routing paths when
local minima situation is met.

havior of these two protocols is illustrated into Fig-
ure 1. At each step, Boundhole approach uses a
sweeping line to select the next hop. By doing so,
it presents a great risk of succumbing to looping.
This situation, also reported by the authors, comes
from the fact that Boundhole could not, by con-
struction, handle intersection situations. For instance,
in our example, Ne could communicate with N10

while neither N8 nor N9 could communicate with
N10. That is why when node N8 gets the packet,
it selects node N9 as the next hop rather than
selecting node Ne, creating hence a false bound-
ary. By repeating this process on all visited nodes
(i.e., nodes: Nlocal, N8, N9, N2, N1, N3, N5, Nlocal), the
packet returns to node Nlocal which is considered as
the initiator node of Boundhole process.

Hence, in spite of the existence of a path, Boundhole
is not able to deliver the message. This is particularly
problematic for critical event surveillance applications
for instance. To overcome the false boundary detection
problem, the authors proposed a ”brute force” tech-
nique which consists in flooding the network until
the message gets out of the false boundary. In addition
to its inherent huge overhead, flooding can also be ini-
tiated even when a path does not exist. In other terms,
Boundhole is not able to decide when a path exists
or not. As a consequence, flooding is used each time

the message gets back to the initiator. Obviously, this
proposed solution may generate a considerable rout-
ing overhead leading thus to a dramatic degradation
in the overall network performance, and in particular
on end-to-end delays and energy consumption.

GAR protocol has been specially designed to
alleviate this situation. It operates differently by
making use of a rolling-ball instead of a sweeping
line. Similarly to Boundhole approach, GAR uses
GF until a packet reaches a node that is a stuck
node; i.e., the local minimum situation is met. From
this node, GAR uses a rolling ball, with a range
equal to half of the communication range of the
nodes (R/2). This rolling ball (dashed red circle in
Figure 1) is hinged at the current node and moves
counterclockwise. The first node hit by the rolling
ball among the neighbors of the current node is
selected as the next hop. The rolling ball is then
hinged at this node and this process is repeated
while the distance between the current node and the
destination node is greater than the distance between
the node which is stuck and the destination node.
For instance, in the example of Figure 1, when the
packet, originated from node Ns, arrives at node
Nlocal, the next hop selected by GAR protocol is
N6. The rolling ball is then hinged at node N6 and
moves again selecting node N7 as the next hop and
so on until it arrives at node N13 which is closer to
node Nd than Nlocal. From this node, GF is used.
The generated routing path is then the following:
{Ns, N4, Nlocal, N6, N7, N8, Ne, N10, N11, N12, N13, Nd}.

Even though GAR protocol resolves the false
boundary detection problem, as shown in Figure 1,
between nodes N8 and N9 by selecting node Ne, it
visits however, by construction, unnecessary nodes
like N6, N7 and N12. The generated paths are then
longer which will impact negatively the overall net-
work performance in terms of routing efficiency (end-
to-end delays for instance) and energy consumption.

Our contribution in this paper is to propose a novel
approach, named Curved Stick (CS) that prevents,
by construction, the false boundary detection prob-
lem observed previously within Boundhole approach,
while deriving more efficient routing paths than GAR
protocol. We outline the basic idea behind our ap-
proach in Figure 1. Unlike Boundhole approach, we
used a curved stick instead of a sweeping line to
select the next hop. For instance, in Figure 1, node
Nlocal will select node N8 as its next hop, avoiding
hence the selection of unnecessary nodes as is the case
within GAR protocol. Similarly, node N8 will select
node Ne as its next hope rather than selecting N9

as was the case in Boundhole approach. By doing
so, CS ensures that it will not succumb to loop-
ing (avoiding the false boundary detection problem)
while it limits highly the number of visited nodes. The
generated routing path with CS is then the following:
{Ns, N4, Nlocal, N8, Ne, N10, N11, N13, Nd}.

IEEE TRANSACTION ON COMPUTERS 3

We provide, in this paper, proof of the correctness of
our proposed approach and show through simulation
its effectiveness compared to the state-of-the-art ap-
proaches; we demonstrate that our approach derives
shorter routing paths, reduces the average end-to-
end delays observed between communicating nodes
and decreases the overall energy consumption of the
network.

The rest of the paper is organized as follows: Sec-
tion 2 provides details about the used network model
and outlines the problem of interest. The proposed CS
approach is detailed in Section 3. Section 4 presents
proof of the correctness of CS whilst Section 5 details
its implementation. In Section 6, we present the results
for simulations we have conducted in order to eval-
uate the proposed approach and to compare its per-
formance to the state-of-the-art approaches. Section 7
provides a literature overview of works that have
addressed routing through holes in sensor networks.
Finally, Section 8 concludes this paper.

2 NETWORK MODEL AND PROBLEM STATE-
MENT

We consider a geographic wireless network in which
all nodes are homogeneous and static with R as
their communication range. The network can then be
represented by a Unit Disc Graph G(N,E), where
N = {N1, N2, . . . , Nn} is a finite set of sensor nodes
and E = {Ei,j | d(Ni, Nj) ≤ R} is a finite set of
links. Note that d(Ni, Nj) stands for the Euclidean
distance between nodes Ni and Nj . The locations
(x, y) of the set N are known (each node is aware
of its location by means of a positioning system like
GPS or as a result of the localization process [4], [5]).
We also note for every node Ni, its neighbors set
V (Ni) = {Nj | Ei,j ∈ E}; i.e., nodes are also aware
of their neighboring nodes with the corresponding
locations. We further assume that the location of the
destination node is known by the source node. Thus,
intermediate nodes can only know the location of the
destination node by receiving the packet from the
source node.

Under these assumptions, when two nodes want
to communicate (and ask for a routing path), GF
approach could be performed by each intermediate
node based only on local information until the packet
reaches the destination node or falls into the local
minimum problem as mentioned before. When the
local minimum situation is met (i.e., the packet is
on the boundary of a hole) CS approach is used to
get the packet out of the hole by traversing hole
boundary nodes. Hence, the main issue is how to de-
sign a boundary traversal algorithm that ensures true
boundary detection while at the same time deriving
efficient communication paths in terms of the number
of hops?

Before diving into the details of our proposal, we
first introduce some definitions and clearly state the

false boundary detection problem.
Definition 1: (Hole)

We define a hole as a cyclic sequence of nodes: H =
{Ni, Ni+1, ..., Ni+j , Ni} so that the closed region bounded
by this non self-intersecting polygonal sequence is empty
of any node.

For instance, in our stated example, the sequence
S1 = {Nlocal, N6, N7, N8, Ne, N9, N2, Ns, N4, Nlocal} is
considered as a hole, whereas the sequence S2 =
{Nlocal, N6, N7, N8, N9, N2, Ns, N4, Nlocal} is not; this
is because node Ne is located inside the polygon S2.

Definition 2: (Boundary Node)
We define a node as a boundary node if it is located on the
boundary of the network or of a hole inside the network.

Now we introduce the communication intersection
situation which is behind the false boundary detection
problem in Boundhole approach.

Problem 1: (Communication Intersection Problem)
A Communication intersection situation occurs when a link
Ea,b exists between two boundary nodes Na and Nb which
is ”crossed” by another link Ec,d where Nd is not visible
neither to Na nor to Nb.

Figure 2 illustrates the false boundary detection
problem.

Nd

Nb Na
Nc

Fig. 2. Communication intersection problem.

Our objective here is to develop an approach that
handles by construction the intersection problem
while it guarantees at the same time packet delivery
and generates efficient routing paths.

3 PROPOSED CS APPROACH

The main idea behind our proposed approach is to
characterize well nodes responsible for intersection
situations when hole/network boundaries are tra-
versed so that these nodes will be directly selected by
the previous hop node. Of course, the localized nature
of the proposed approach must hold; i.e., no extra-
information other than the information mentioned be-
fore is needed. This means that each node knows only
its immediate neighbors and their locations and based
on this it will select the next hop. To this end, we have
not made use of a sweeping line which generates,
as mentioned before, the intersection situation; but,
we used a curved stick that selects nodes behind
intersection situations as shown in Figure 1 (node Ne
is selected instead of node N9).

IEEE TRANSACTION ON COMPUTERS 4

3.1 Curved Stick Form

The concerns that follow immediately are: the need to
determine the optimum form of this curved stick in
order to select, on one hand, nodes only responsible
for intersection situations; and, on the other hand,
the question of whether or not this curved stick
will ”miss” intersection cases. In other terms, there
is a need to determine how to reduce path lengths
while preventing intersection situations. We begin by
introducing the following definitions.

Definition 3: (Potential-Exit-Gate Node)
We say a node Nc is a Potential-Exit-Gate (PEG) node in
the direction ∠NaNcNb if there exists a location X ∈ R2 in
the transmission range of Nc and outside the transmission
ranges of Na and Nb which are boundary nodes.

For instance, in Figure 3, node Nc is considered as
a PEG. The locations X are represented by the grey
region in Figure 3(a).

Definition 4: (Exit-Gate Node)
We say a node Nc is an Exit-Gate (EG) in the direction
∠NaNcNb if there exists a node Nd in the transmission
range of Nc and outside the transmission ranges of Na
and Nb.

(b)

aNc

Nb

Nd

Nc

Nb Na

(a)

N

Fig. 3. (a) Nc is a PEG, if the grey region is empty of
nodes; (b) Nc is an exit-gate.

Ideally we are looking for a distributed approach
that allows nodes to make distinctions between PEG
and EG nodes and to select only the latter as next
hops. Unfortunately this cannot be possible without
providing nodes with extra-information, such as 2-
hop neighbors for instance. However, constructing 2-
hop tables at each node is an energy consuming pro-
cess and more importantly is not adequately scalable.
For this reason, no extra-information is considered
in our proposed approach. Rather, we will not make
distinctions between PEG and EG nodes. We note that
EG nodes are a sub-set of PEG nodes; i.e., each EG
node is also a PEG node.

Hence, our objective is to characterize PEG nodes
and to select them when performing next hop selec-
tion, without missing any one, otherwise intersection
problems occur. Later on, we will use the notation of
Figure 4.

Property 1: (Angle Characterization of a PEG
Node)
Let Nc be a node in the left side of the line oriented from Na
to Nb. Node Nc is a PEG if and only if ∠NaNcNb > θ0

where θ0 > π/2 and

sin θ0 =
d(Na, Nb)

2R
. (1)

Proof: Let us refer to Figure 4. Consider a point
N0 such that the discs of radii R, centered at Na, Nb
and N0, intersect at the same location X0. Therefore,
we have:

d(X0, Nb) = d(X0, Na) = d(X0, N0) = R (2)

We first show that ∠NaN0Nb = θ0: we observe that
γ = (π − 2α) + (π − 2β) = 2π − 2(α + β) = 2π −
2∠NaN0Nb. Then sin γ

2 = sin(∠NaN0Nb), where α =
∠X0NbN0 = ∠X0N0Nb, β = ∠X0NcNa = ∠X0NaNc
and γ = ∠NaX0Nb.

On the other hand, as the triangle NaNbX0 is isosce-
les then

sin
γ

2
=
d(Na, Nb)/2

R
= sin θ0 (3)

We obtain sin(∠NaN0Nb) = sin θ0. As ∠NaN0Nb >
π/2, therefore ∠NaN0Nb = θ0.

Now, let us prove the first implication. If Nc is
a PEG node then the communication range of Nc
contains the point X0; therefore, Nc is necessarily in
the disc centered at X0 (the dotted blue disc); thus
∠NaNcNb > ∠NaN0Nb = θ0.

Conversely, if the angle ∠NaNcNb > θ0 = ∠NaN0Nb
then Nc is in the disc centered at X0. Consequently,
the communication range of Nc contains the point X0;
hence, Nc is a PEG.

X

b
N a

N cN 0

RRR

α

γ

α
β

β

0

N

Fig. 4. Characterization of a PEG node Nc.

This property could be used by the current node
(which has to select its next hop) as a criterion to
reduce the number of candidates for the next hop
(i.e., specifically PEG nodes). This is not the case
for instance, for GAR approach in which the use of
a rolling ball of R/2 radius is not relevant since it
considers non PEG nodes. This important drawback
of GAR approach is illustrated in Figure 5 where the
rolling ball passes through many nodes that are not
PEG nodes leading therefore to unnecessarily longer

IEEE TRANSACTION ON COMPUTERS 5

routing paths. The derived path using GAR approach
is Na, N1, N2, . . . , Nb whereas the use of Property 1
ensures that none of these nodes are PEG nodes and
then avoids selecting them.

N b

N a

N 10 N 4

N 1

N 3

N 2
N 6 N 5N 9

N 8
N 7

Fig. 5. The solid circles are examples of GAR; where
the generated path is {Na, N1, ..., N10, Nb}.

Property 2: (Region Characterization of PEG
nodes)
All PEG nodes are located in the left side of the segment
[Na, Nb] and inside the disc of radius R passing by nodes
Na and Nb.

Proof: When ∠NaNcNb = θ0, the node Nc is on
the boundary of the disc D of radius R and passing
by Na and Nb (it is the disc centered at point X0, as
shown in Figure 4). Therefore, all the nodes Nc that
are located in the left side of the segment [Na, Nb] and
inside the disc D form an angle ∠NaNcNb > θ0. On
the other hand, Property 1 establishes that a PEG
node Nc is characterized by ∠NaNcNb > θ0. Hence,
the statement of this property is valid.

The interest in Property 2 comes from the fact that it
precisely defines the location region of all PEG nodes
with regards to the current hop node. Therefore, it
is sufficient for this node to just ”sweep” this region
when looking to a PEG node to select. If this region
is empty, this means that there is no node that could
rise to an intersection situation; however, if there is
at least one PEG, the sweeping process will certainly
select it. The important issue then becomes how the
current hop node could sweep exactly this region?

Our answer is to use a Curved Stick (see Figure 6)
which has the form of an arc with a radius of R and which
is hinged at the current node. Hence, we ensure that
only this region is visited and more importantly that
if there is a PEG node, it is selected first avoiding
therefore the intersection situations.

Definition 5: (Curved Stick)
We define the Curved Stick, hinged at node Na and noted
CS(Na, Nb) (see Figure 6), as the arc of radius R and
passing by the two points Na and Nb.

Theorem 1:
CS approach resolves the false boundary detection problem.

Proof: We use the notation of Figure 2. Assume
there exists a node Nc which is a PEG node in the
direction ∠NaNcNb and that this node has not been

Curved Stick

aNb N

Fig. 6. The grey region is the PEG locations.

selected by CS. This means that the next hop of node
Na is Nb. However, from the description of CS, the
region delimited by the segment [Na, Nb] and the arc
of the circle of radius R which has its center in the
direction ∠NaNcNb and passes by Na and Nb is empty
of nodes. Consequently Nc is located outside this
region. This means that the set {X ∈ R2 | d(X,Nc) ≤
R and d(X,Na) > R and d(X,Nb) > R} is empty,
which contradicts the assumption that Nc exists.

3.2 CS Routing Algorithm
Having proved that the proposed CS resolves the
false boundary detection problem, we provide details
below on the proposed CS routing algorithm. Three
phases characterize our proposal: (a) engaging phase,
(b) CS boundary traversal phase and (c) termination
phase.

3.2.1 Engaging phase
Like other approaches, CS algorithm is of a greedy
nature: the message between two communicating
nodes is geographically forwarded hop by hop until
it reaches the destination node or falls into the local
minimum situation problem. When the message gets
stuck (i.e., it cannot be delivered) the current hop
node, called the initiator node (Ninit), starts applying
CS boundary traversal rule.

3.2.2 CS Boundary Traversal Rule
To apply CS boundary traversal rule, each visited
node needs the location of the initiator as an input
from the previously visited hop node. The node in
question first computes the two distances e.g., its own
distance to destination and the one from the initiator
to destination. If it is closer to the destination than
the initiator, this means that the message will get
out of the local minimum problem. In this case, the
current node starts applying GF policy. Otherwise, the
message is still on the boundary of a hole and CS
rule has to be applied. To this end, the current node
determines its Starting Point (SP) (see below), from
which point the curved stick is swept until a node
is hit. The latter is then selected as the next hop and
notified by the current node.

Definition 6: (Starting Point)
We define the Starting Point of node Ni+1, noted SPi+1,
as the intersection point between the two circles of range

IEEE TRANSACTION ON COMPUTERS 6

R, centered at Ni and Ni+1 and following the direction
∠Ni−1NiNi+1 where Ni−1 is the previous CS hop of node
Ni and Ni+1 is the next CS hop of Ni.

The Starting Point is used to prevent the generation
of link intersections, as illustrated in Figure 7, and to
then guarantee the progress at each step. However,
for the initiator node that does not have a previous
CS hop (the message comes from a previous GF hop),
its corresponding starting point, noted as ISPinit, is
considered as the intersection point between the circle
of range R, (centered at this node) and the segment
between Ninit and the destination (see Figure 7).
Note that we differentiate between SPinit which cor-
responds to the starting point of node Ninit when the
message comes from a previous CS hop (node Ncs in
Figure 7) and ISPinit when the message comes from a
previous GF hop (node Ng in Figure 7). This difference
is essential for the termination of the algorithm as
explained below.

Nc

Nb
Na Ng

Ncs

Ninit
SPc

SPb

ISP init

SPinit
SPa

Nd

Fig. 7. CS Rule

3.2.3 Termination Phase
For the termination of the algorithm, there are only
two possible cases:

1) In the first case, the message is received by the
destination. This means that there is at least one
routing path between the source node and the
destination node.

2) In the second case, the message travels the whole
boundary using CS rule and returns back to the
initiator node. In this case, the initiator sweeps
the curved stick from its SPinit to its ISPinit. If a
node is hit, this node is determined as the next
hop and then CS process continues; otherwise
the initiator node cannot apply CS rule and it
deduces that there it does not exist any route
from the source node to the destination node
(see the demonstration in the next section). In

this case, the initiator node informs the source
node that the message could not be delivered.

Algorihm 1 summarizes the proposed routing algo-
rithm.

Algorithm 1 CS routing algorithm.
Require: Receive message M from the previous hop

1: if (M.Initiator.ID = null) then
2: // GF policy is used
3: select the next hop based on GF;
4: if (Local minimum problem occurs) then
5: set M.initiator.ID to MyID
6: select the next hop based on CS rule
7: end if
8: else
9: if M.Initiator.ID 6= MyID then

10: compute: d(Ncurrent, Ndest) and d(Ninit, Ndest)
11: if d(Ncurrent, Ndest) < d(Ninit, Ndest) then
12: // the message is out of the hole
13: set M.initiator.ID to null
14: select the next hop based on GF
15: else
16: select the next hope based on CS rule
17: end if
18: else
19: // the message traveled the whole boundary and

returns to the initiator
20: sweep the curved stick from SPinit to ISPinit

21: if a node is hit then
22: select the next hop based on CS rule
23: else
24: inform the source node that the message could

not be delivered
25: end if
26: end if
27: end if
28: send the message

3.3 Hop Count Reduction
In the previously provided description of CS routing
algorithm, we have considered only one direction of
sweeping for the curved stick (e.g., counterclockwise).
Nevertheless, exploring the other sweeping direction
(clockwise) could be in some cases more effective
in terms of hop count reduction, as illustrated in
Figure 8. For instance, the path derived by counter-
clockwise sweeping at node Nlocal1 is longer (11 hops)
than the other two paths (9 and 10 hops) derived by
adopting a clockwise sweeping direction. To include
this optimization in our approach, we have adopted
the following rule: each time the message falls into the
local minimum problem, the initiator node ”clones”
it into two messages; the initiator node includes in
each message the hop count and starts applying CS
rule, one in each direction; i.e., the initiator node
selects one next hop in counterclockwise direction
and the other in the clockwise direction. In Figure
8, for example, two local minimum situations are
encountered when routing from node Ns to node Nd.
At the first stuck node Nlocal1 , the two next hops

IEEE TRANSACTION ON COMPUTERS 7

are selected: N10 in the clockwise direction and N2

in the counterclockwise direction. Similarly, at node
Nlocal2 , where the local minimum phenomenon occurs
again, two nodes are selected as next hops with their
associated sweeping sense (N16 and N14). Finally,
when the destination node receives all possible paths,
it selects the shortest one in terms of hop count and
sends back the information through this path to the
source node. In our example, the selected path is:
{Ns,N1, Nlocal1 ,N10,N11,N12,Nlocal2 ,N14,N15, Nd}.

N

N
s

N
local 1

N
local 2

d

Fig. 8. Hop count reduction.

4 PROOF OF CORRECTNESS

In this section, the correctness of CS approach is
proven. In order to guarantee packet delivery, we first
prove that CS approach generates a finite sequence
of links which means that the algorithm terminates.
From this point, we secondly prove that CS is able
to find at least one path connecting the source node
to the destination node where such path exists. Con-
versely, if any path between the two communicating
nodes does not exist, CS is able to detect and to notify
the source node.

Property 3: (Link Intersection)
Two links generated by CS scheme do not intersect.

Proof: Assume that two links Ei,j and Ek,l gener-
ated by CS approach intersect. In this case, one node,
lets say Nk, could neither communicate with Ni nor
with Nj ; otherwise it would have been hit previously
by the curved stick when Ni or Nj performed CS
approach. This case is the situation studied before in

Figure 2 and from which we have proven (see Theo-
rem 1) that CS approach resolves by generating two
links that do not intersect; i.e., Ei,j could not intersect
with Ek,l which contradicts the initial assumption.

Property 4: (Consecutive Angles)
The angle between two consecutive links in CS sequence
∠Ni−2Ni−1Ni is greater than or equal to π/3.

Proof: We have to consider two cases illustrated
in Figure 9:

• Case (a): node Ni is visible to node Ni−2; i.e., Ni
is within the communication range of Ni−2. In
this situation, illustrated in Figure 9(a), the angle
∠Ni−2Ni−1Ni is greater than θ0 (see Property 1)
which in turn is greater than π/3.

• Case (b): node Ni is not visible to node Ni−2.
Here, the smallest angle associated with the pos-
sible location of node Ni is the intersection point
between the communication zones of Ni−2 and
Ni−1 (see Figure 9(b)). Hence, the distance be-
tween the three nodes is equal, which means that
the smallest value of ∠Ni−2Ni−1Ni is π/3.

(b)

N N i−2
N i−2N i−1

iN

N i−1

SP
i

SP
i−1

SP
i−1

(a)

i

Fig. 9. Two possible locations of the next CS hop.

Theorem 2:
CS scheme terminates and generates a finite sequence of
links.

Proof: CS algorithm terminates if any node
will not appear in the sequence infinitely. In
fact, each node can only appear in the sequence
at most 6 times. Consider the sequence S =
{N0N1 · · ·NiNi+1 · · ·NjNj+1} (i < j). Assume that
Ni = Nj , that is the message gets back to Ni which it
has already visited. CS scheme ensures that the angle
∠Ni−1NiNi+1 is smaller than the angle ∠Ni−1NiNj ,
as illustrated in Figure 10 (the grey area swept by
the curved stick is empty of nodes). Also node Nj+2

does not belong to the grey area, consequently the
angle ∠Ni−1NiNi+1 does not overlap with the angle
∠NjNiNj+2. Two illustrations of the possible locations
of Nj+2 are shown in Figure 10: one on the right side
and the other on the left side of the line directed
from Nj to Ni. Since the two angles ∠Ni−1NiNi+1

and ∠NjNiNj+2 do not overlap and are at least equal
to π/3, as shown in Property 4, Ni can then appear at
most 6 times in the sequence.

IEEE TRANSACTION ON COMPUTERS 8

i

N i+1 N j+1

N j−1

N j+1

N i−1 N i−2
N

Fig. 10. Related to proof of Theorem 2

Theorem 3:
Given a source node Ns and a destination node Nd, if
there exists at least one path between Ns and Nd then
CS algorithm guarantees packet delivery.

Proof: Because of the greedy nature of CS al-
gorithm, if there does not exist any local minimum
between Ns and Nd, then the packet is guaranteed
to be delivered. Now, consider the case where GF
algorithm meets a stuck node Nlocal which satisfies
d(Nlocal, Nd) < d(Nk, Nd) for all Nk ∈ V (Nlocal) where
V (Nlocal) is the set of Nlocal neighbors. Node Nlocal
then starts CS boundary traversal rule. Assume that
the generated sequence of links is: Nlocal . . . Nend. As
proven before, Theorem 2 ensures that this is a finite
sequence. Now there are only two cases to consider:

• Case 1: Nlocal 6= Nend. By construction, this means
that d(Nlocal, Nd) > d(Nend, Nd). Hence GF could
be used again to reach Nd.

• Case 2: Nlocal = Nend. In this case, the curved
stick draws a closed curve which divides the
plane into two simply connected regions Z and
its complementary Z̄ (see Figure 11). The region
Z contains Nlocal and Z̄ contains node Nd. In
addition, all the nodes connected to Nlocal are in
Z. Consequently Z contains Ns. Also, since the
area swept by the curved stick (the grey area in
Figure 11) is empty, there is no connection then
between nodes belonging to the region Z and
between those located outside Z. Therefore, there
is no path connecting Ns to Nd.

5 CS APPROACH IMPLEMENTATION

While it is not difficult to explain the continuous
sweeping of the curved stick, additional efforts must
be done to develop a concrete and efficient method to
implement this mechanism. In this section, we pro-
vide details on our implementation of CS approach,
in particular we formally prove its correctness. Fur-
thermore, we study its complexity and show that it
easily fits the requirements of limited devices such as
sensor nodes.

As explained in previous sections, CS approach re-
lies on GF mechanism until a local minimum situation

Z

Nd

Ns

N
local

Greedy link

CS link

Region Z

Z boundary

Fig. 11. CS approach sweeps the bounded region Z
when there is no path connecting Ns to Nd

is encountered. The greedy algorithm implementation
is straightforward and requires only one hop neighbor
tables already available at each node, as stated earlier.
We then shall here skip details about GF implemen-
tation.

We recall that CS boundary traversal algorithm is
triggered once the local minimum situation is met, as
shown in Section 3.2 (cf. phase 2). We consider node
Ninit as CS boundary traversal initiator, e.g., local
minimum node (see Figure 7 for illustration). Fur-
thermore, we consider for the rest of this section that
the current boundary traversal orientation is coun-
terclockwise1. Hence, node Ninit starts CS sweeping
from position ISPinit until a node, (e.g., node Na), is
hit. This means that Na is considered as the next hop
and it has to repeat the same procedure (CS sweeping)
again, and so on. Before diving in implementation
details, we first introduce the following observations
and definitions.

Observation 1:
For each node Ni, involved in CS process, the region delim-
ited by segment [Ni, SPi] and Curved Stick CS(Ni, SPi)
is empty of nodes.

This observation remains valid for all nodes on the
boundary traversal, including the initiator node. In
fact this region was already swept by the previous hop
and hence is empty of nodes, as shown in Figure 7.
For the particular case of node Ninit, which has no
previous CS hop, this remains true because it is a local
minimum node and therefore this region, as defined
previously, is empty of nodes. The basic idea behind
this observation is to state that when a node starts CS
sweeping from this position, it has not ”forgot” any

1. The generalization to clockwise orientation is straightforward.

IEEE TRANSACTION ON COMPUTERS 9

node behind it (ensuring hence boundary traversal).
From this position, each node sweeps the curved stick
until a neighbor is hit. This position will be used
later on as a reference for the comparison of angles
presented below.

To explain how the current node selects only one
neighbor as the next hop, we introduce an order
relation between all its neighbors, defined by the
sweeping of the curved stick. Starting from SPi, an
entire rotation of the curved stick ensures that all
neighbors will be hit in an order related to their
localization in the current node communication range.

Definition 7: (Hit Order)
For any node Ni, we define Hit Order relation, noted ≺,
over the set V (Ni) (set of Ni neighbors) as the order in
which neighbors are hit by the curved stick starting from
SPi.

For instance in Figure 12, we have determined the
following hit order: N1 ≺ N2 ≺ N3 ≺ N4 ≺ Np. Hence,
our objective is to find a method that is able to select
the first element, subject of our interest, from this set.
To achieve this, we have used what we call Projection
Point.

Definition 8: (Projection Point)
For every neighbor Nj of the current node Ni, we define
its corresponding Projection Point, noted Pj , as the point
located on the circle of radius R and centered at point Ni
so that Curved Stick CS(Ni, Pj) contains node Nj .

Figure 12 illustrates an example of node Ni neigh-
bors with their corresponding projection points.

Observation 2:
Several neighbors could have the same projection point.

This could happen when two or more nodes are
located on the same curved stick as is the case for
nodes N4 and N5 of Figure 12.

i

SP
i

4
N

5
N

P
4

P
5

1
N

c
1

c
2

P1P
2

c
i

P
3 2N

N3

N
N

p

Fig. 12. Projection Point Illustration.

We now present how we have implemented CS
approach. The main steps are summed up in Algo-
rithm 2.

The next subsections deal with the correctness proof
of our implementation as well as its time computation
complexity.

Algorithm 2 CS next hop selection.
Require: Previous CS hop Np, current hop Ni

1: Compute the corresponding SPi.
2: Order all the neighbors, Nj ∈ V (Ni), according to their

increasing angles ∠SPiNiNj using counterclockwise di-
rection.

3: Select the neighbor, Nf , corresponding node to the
smallest angle. In the case where there are more than
one corresponding to the smallest angle, select then the
node which is farthest away.

4: Compute the projection point Pf of node Nf .
5: For every neighbor Nj belonging to the circle Cf and

located on the left side of the directed line [Ni, Pf],
compute its corresponding projection point, Pj . Recall
that Cf is the circle of radius R passing by nodes Ni

and Nf and the position Pf .
6: Select the projection point Ps corresponding to the

smallest angle ∠SPiNiPs among the angles ∠SPiNiPj

using counterclockwise direction. Ps is the projection
point of the next hop. In the case where there are more
than one node having Ps as their projection point, select
the node which is the farthest away.

5.1 Proof of Correctness of Algorithm 2
To prove the correctness of our implementation us-
ing projection points, we have to prove first that it
preserves the order relation Hit Order defined previ-
ously. In other terms, we have to prove the following
property:

Property 5: (Order Preservation)
∀ Nx, Ny ∈ V (Ni), we have: Nx ≺ Ny if and only if
∠SPiNiPx ≤ ∠SPiNiPy

Proof: We prove the first implication; i.e.,
• Nx ≺ Ny ⇒ ∠SPiNiPx ≤ ∠SPiNiPy
We denote by Ck the circle passing by nodes Ni,

Nk and the position Pk and centered at position ck.
In the same way, we denote Ci as the circle containing
CS(Ni, SPi) and centered at position ci (See Figure 12
for illustration). Here, we have to consider two cases:
the case where Px 6= Py and the case where Px = Py .
In the first case we have: Nx ≺ Ny ⇒ Ny /∈ Cx as Nx
was hit first. Consequently, we have:

∠ciNicx < ∠ciNicy (4)

On the other hand, if cx is located before SPi, we
have:

∠ciNicx + ∠cxNiSPi = ∠cxNiSPi + ∠SPiNiPx = π/3
(5)

Otherwise, if cx is located after SPi, we have:

∠ciNicx − ∠SPiNicx = ∠SPiNiPx − ∠SPiNicx = π/3
(6)

which results in: ∠ciNicx = ∠SPiNiPx. Similarly,
we can derive that: ∠ciNicy = ∠SPiNiPy . Finally, we
obtain:

∠SPiNiPx < ∠SPiNiPy (7)

IEEE TRANSACTION ON COMPUTERS 10

In the second case, where Px = Py , we have
∠SPiNiPx = ∠SPiNiPy which ends the proof of the
first implication.

We now prove the second implication; i.e.,
• ∠SPiNiPx ≤ ∠SPiNiPy ⇒ Nx ≺ Ny .
Inversely, ∠SPiNiPx ≤ ∠SPiNiPy ⇒

∠SPiNicx ≤ ∠SPiNicy , which leads to Nx ≺ Ny .

Theorem 4:
Algorithm 2 returns the first neighbor hit by CS sweeping.

Proof: Assume that Algorithm 2 returns node Nx
which is not hit first by CS sweeping. We denote
Ny as the node which is hit first. This means that
Ny ≺ Nx. Algorithm 2 returns Nx which implies that
∀Nj ∈ V (Ni), ∠SPiNiPx ≤ ∠SPiNiPj , and in par-
ticular ∠SPiNiPx ≤ ∠SPiNiPy . However, Property 5
states that: ∠SPiNiPx ≤ ∠SPiNiPy ⇒ Nx ≺ Ny
which contradicts the initial assumption.

5.2 Projection Point Computation and Time-
Complexity Analysis
Step 1 implementation in Algorithm 2 (e.g., Starting
Point) consists first in finding the two intersection
points between two circles centered in the previous
hop and in the current hop with the same radius R.
After, by using angle comparison, the starting point
is selected among the two points; i.e., the smallest
angle starting from the previous node if the current
orientation is counterclockwise or otherwise from the
greatest angle. Similarly, the computation of projec-
tion points (Step 4 and 5) consists also in computing
the intersection of circles and in using angle compar-
ison to select the correct points.

We note that the starting point (Step 1) and the
projection point Pf (Step 4) are computed in constant
time (they need only a calculation of the intersection
between two discs). Step 2 and Step 3 perform sorting
of n angles and select Nf which corresponds to the
smallest one (e.g. N2 in Figure 12). Thus, the required
time is O(n log n), where n stands for the number of
the current node neighbors. Sorting the angles allows
us to avoid scanning all the neighbors in order to
identify, in Step 5, the nodes belonging to the narrow
grey area illustrated in Figure 12. Indeed, these nodes
are present in the top of the sorted list. In the worst
case which occurs when all the neighbors are in the
grey region, Step 5 costs at most O(n).

Furthermore, when the nodes are randomly dis-
tributed, we observe that only a very small subset
(computed in Step 5) of the current node neighbors
are concerned with projection point computation. For
instance, in the example of Figure 12, only N1 and N2

are candidates for projection point computation, the
rest of the nodes are ignored. Finally, Step 6 computes
the smallest projection point among those computed
in Step 5; hence the required time to find this point
does not exceed O(n) in the worst case.

With the exception of Step 2 accomplished in
O(n log n) time, all the other steps are accomplished
either in at most O(n) (e.g., Steps 5 and 6) or in
O(1) (e.g., Steps 1, 3 and 4). The time complexity of
Algorithm 2 is then O(n log n).

6 PERFORMANCE EVALUATION

The performance of our proposed routing approach
is evaluated and compared to other existing localized
protocols, namely Boundhole approach [11] and GAR
approach [12], through simulations using CASTALIA
simulator [13]. This simulator has the interesting fea-
ture of being based on realistic wireless channel and
radio models in addition to capturing realistic sensor
node behavior.

We have implemented the three protocols and con-
ducted several series of simulations under several set-
tings. Three main comparison metrics have been stud-
ied: (a) the length of generated routing paths between
communicating pairs of nodes (i.e., hop counts), (b)
the average End-to-End delay (i.e., the time elapsed
for successfully delivering a data packet) between two
communicating nodes and (c) the energy consumption
for the entire network.

6.1 Simulation Scenarios and Settings

Our simulation scenarios were constructed as follow:
we firstly randomly placed artificial holes in the
network area in order to emulate practical obstacles
or dead-zones (nodes that have run out of energy).
The height of those holes was varied in order to
increase the occurrence of minimum local problem
situations. Once the holes were placed, we generated
several networks with randomly placed nodes within
the network area; however, no nodes were placed
in the holes. All nodes are considered as having
the same communication range. In our scenarios, we
have varied this parameter in order to simulate dense
networks when the communication range is large and
sparse networks when the communication range is
low. It has to be noted that small holes other than
the artificial ones might occur in regions where node
density is low.

For each scenario (i.e., same parameters), we gen-
erated 30 networks to repeat the simulation. For each
simulation, we selected source nodes as those nodes
that are localized on the left side of the network area
(e.g., their x coordinates are below a ”Source Limit”).
Similarly, we selected destination nodes as those that
are localized on the right side of the network area
(e.g., their x coordinates are beyond a ”Destination
Limit”). After this, we generated all communication
pairs composed of those source nodes and destination
nodes. The objective behind this is to increase the rises
in local minimum problem situations as frequently
as possible in order to compare the three protocols.

IEEE TRANSACTION ON COMPUTERS 11

Among all these communicating pairs, we have se-
lected only those that fall into a local minimum prob-
lem situation, since the three considered protocols are
of greedy nature and hence have the same behavior
when there is no local minimum problem situation.
This means that in the absence of local minimum
problem situations, the three approaches derive the
same routing paths.

To measure the average end-to-end packet delivery
delay and energy consumption, we have generated
for every two communicating pairs a constant bit rate
traffic of 256Kb/s using a data packet of 512 Bytes
for the duration of 180 seconds. The CASTALIA radio
model used is CC2420 [13] with a transmission power
level set to -10dBm.

Unless explicitly mentioned in the text, we used
the parameters reported into Table 1. It has to be
noted that we used the same parameters as those used
in [12].

Parameter Value(s)

Network Area (m2) 1000 x 800
Number of nodes 500 nodes
Transmission range (m) 50, 100 and 150
Number of holes 3
Holes width (m) 300
Holes height (m) 100, 200, 300, 400 and 500
Source limit (m) 100
Destination limit (m) 900

TABLE 1
Simulation parameters

Figure 13 plots the number of local minimum com-
municating pairs with regards to the height of the
holes. As expected, the number of local minimum
pairs increases with the increase of hole height. Sim-
ilarly, the number of local minimum cases is greater
in sparse networks (e.g., communication range equals
to 50m) than in dense networks (e.g., communication
range equals to 150m for instance). This is due to
the fact that in dense networks each node has many
neighbors and consequently many routing possibil-
ities. As illustrated in the figure, we also note that
in dense networks, small artificial holes (with height
equal to 100m) generate very few local minimum
problem situations (18 situations over 1978 communi-
cating pairs when the communication range is equal
to 100m).

Furthermore, we have observed that not all consid-
ered communicating pairs lead to valid routing paths;
i.e., some of them could not deliver data because no
valid routing path exists (network partition). In these
configurations, while GAR and CS could, by construc-
tion, detect this network partition (i.e., destination
node is not reachable any more) and then inform the
source node, Boundhole was not able to detect this

Fig. 13. Local minimum number evolution.

without the use of flooding (in this case, flooding of
the entire network is required). This defect of Bound-
hole was so dramatic that we have excluded those
configurations in the remainder of our simulations in
order to get a clear view on the behavior of Boundhole
without the occurrence of network partitions.

6.2 Simulation Results

We have considered three kinds of network topolo-
gies: sparse networks (communication range equals
to 50m), medium networks (communication range
equals to 100m) and dense networks (communication
range equals to 150m).

6.2.1 Sparse Networks
In Figure 14, we plotted the average routing path
length generated by the three approaches in the func-
tion of hole height when the communication range is
set to 50m. As expected and confirmed in the figure,
generated routing path lengths increase with the in-
crease in the height of holes and this remains true for
the three compared approaches. We also noted that
GAR and CS approaches outperform Boundhole ap-
proach because we have observed that the latter failed
in intersection situations, as reported previously, more
frequently in sparse networks than in dense networks.
Hence this situation leads Boundhole approach to
generate longer routing paths. Similarly, CS approach
experienced better performance, compared to GAR
approach, because the latter visits unnecessary nodes
as explained in previous sections. Consequently, we
have observed a mean improvement of about 3 hops.

Figures 15 and 16 present the results for average
End-to-End delays and average energy consumption
respectively. The same observation concerning the
impact of hole height remains valid; i.e, performances
are better in networks with small holes than in
those with big ones. As shown in the figures (e.g.,
15 and 16), CS protocol outperforms the two other
approaches because it derives better routing paths.

IEEE TRANSACTION ON COMPUTERS 12

Fig. 14. Routing Paths Lengths.

We have noted however that even GAR protocol
behaves on average better than Boundhole; in some
particular cases, when intersection situations are not
encountered, Boundhole gives better results than GAR
because it does not visit unnecessary nodes. But in
general its performance decreases dramatically for the
rest of the simulation series when at least one such
situation is met because of its very costly recovery
mechanism.

Fig. 15. Average End to End Delays.

6.2.2 Medium and Dense Networks
We have conducted the same simulation series, by
using two other values for the communication range,
100m and 150m, to better capture different network
densities. The results are plotted into Figures 17, 18
and 19. It has to be noted that the lengths of the gen-
erated routing paths are, to a certain extent, ”inversely
proportional” to the communication range. In fact, the
greater the communication range is, the smaller the
lengths of routing paths are.

Again, we have noticed that CS approach outper-
forms GAR approach. The mean improvement ranges

Fig. 16. Average Energy Consumption.

from 1 to 3 hops, depending on the hole heights. We
observed that important improvement was reached
when the networks are more constrained; i.e., when
large holes are present, as reported by the figures.

We also observed that in some cases, Boundhole
approach outperforms GAR approach. We then con-
ducted a detailed analysis of the obtained results
for these scenarios and we have found that the
intersection situations, responsible for the bad per-
formance of Boundhole, are less frequent in dense
networks than in sparse ones. That is why figures
show a roughly comparable performance between CS
approach and Boundhole approach when the hole
height is moderate. The situation changes when the
holes are important. Furthermore, we have noticed for
Boundhole protocol that its recovering cost incurred
from intersection situations is very expensive in terms
of average End-to-End delays and energy consump-
tion due primarily to the partial flooding technique
adopted, as explained in Section 1.

Fig. 17. Routing Paths Lengths.

IEEE TRANSACTION ON COMPUTERS 13

Fig. 18. Average End to End Delays.

Fig. 19. Average Energy consumption.

7 RELATED WORK

Over the recent years, many geographic routing pro-
tocols have been proposed to address the routing hole
problem occurring in MANETs [10] in general and in
WSNs in particular [14], [15], [16], [17]. Most of these
began with GF and recovered from local minimum
problems through different strategies. Based on these
strategies, previously completed work falls into two
categories: (a) graph-based strategies and (b) non
graph-based strategies.
Graph-based strategies: in these approaches, such as
GPSR [18], GOAFR [19], GOAFR+ [6], Compass Rout-
ing II [20], etc., recovery from local minimum scenar-
ios are performed by routing along the boundary of
holes, according to a local planar graph. The right-hand
rule is then adopted which states that when arriving
to node Nx from node Ny , the next link traversed
is the next link located sequentially counterclockwise
and hinged at Nx from link E(Nx, Ny). This rule
requires, however, that all links are non-crossing. For
this reason, planarization techniques such as Gabriel
Graph (GG) [21], the Relative Neighborhood Graph

(RNG) [22], etc., are usually used to derive a planar
graph from the Unit Disk Graph of the underlying
network. A planar graph represents the same con-
nectivity as the original network with non-crossing
links. While those techniques have a high success rate,
they introduce however an extra-overhead; this is due
mainly to the maintenance of a local planar graph at
each node [23]. Moreover, though all nodes maintain
the planar graph all the time, this information is used
only by a sub-set of nodes; i.e., those facing local
minimum situations.
Non graph-based strategies: in these approaches, the
basic idea is to first localize nodes on hole boundaries
and to then derive a detour path so to avoid routing
in the direction of holes. In [24], Jia et al. presented
HAIR (Hole Avoiding In advance Routing) protocol to
bypass holes in advance. HAIR operates as follows:
during the first step, nodes recognize themselves as
nodes facing holes (i.e., local minimum nodes). They
then, during the second step, direct their neighbors to
mark them as hole nodes. Routing is then performed
on non-hole nodes when possible. This process is
then repeated, leading thus to larger hole perimeters.
Taking advantage of earlier knowledge about hole
positions, HAIR achieves shorter routing paths, and
thus reduces energy consumption. However it suffers
from a serious drawback: great energy depletion of
nodes along the detour paths. Moreover the holes
become larger, requiring new detour paths and so
on. GEAR (Geographic and Energy Aware Routing)
protocol [25] also works in two phases; in phase 1,
energy aware next hop selection is performed when
routing a packet toward the region of interest; in
phase 2 flooding or recursive geographical forwarding
is used to disseminate the packet inside the region.
In [26], a probabilistic approach, named INF (Inter-
mediate Node Forwarding), is proposed for non Unit
Disk Graph networks (i.e., non-uniform radio ranges).
To overcome local minimum scenarios, Negative Ac-
knowledgment packets (NAKs) have been proposed
to provide feedback to the source node. Based on
these NAKs, the sender selects randomly intermediate
nodes that do not drop packets. Either flooding or
incorporating the NAKs in GF process will increase
these protocol overheads and consequently affect neg-
atively their performances.

8 CONCLUSION

In this paper, we presented a novel geographic routing
approach that efficiently resolves the local minimum
problem compared to the state-of-the-art approaches.
Our approach is localized without retaining memory;
i.e., no extra-information other than the localization
of nodes is needed and no information is maintained
by nodes (contrary to graph-based approaches for
instance). This makes our approach scalable and well
suited for large distributed WSNs. We provided for-
mal proof of its correctness (free of looping and data

IEEE TRANSACTION ON COMPUTERS 14

delivery guaranteed) and presented an optimized
method for its implementation; taking into account
the limited capabilities of sensor nodes.

The simulation evaluation and comparison that we
have conducted shows clearly the effectiveness of
our approach in terms of deriving shorter paths and
thus reducing the average end-to-end delays as well
as the overall energy consumption of the network
in comparison to the state-of-the-art approaches. We
have noted that the improvements are more noticeable
in constrained networks; i.e., networks with many
holes.

In the near future, we plan to extend our work to 3D
networks where GF remains very efficient (hop count
bounded by d3, where d is the distance between the
source node and the destination node) and still suffers
from the local minimum problem.

REFERENCES
[1] A. Boukerche, Algorithms and Protocols for Wireless Sensor Net-

works, Wiley Series on Parallel and Distributed Computing,
October, 2008.

[2] R. Jain, A. Puri, and R. Sengupta, ”Geographical Routing Using
Partial Information for Wireless Ad Hoc Networks,” IEEE
Personal Comm. Magazine, vol. 8, no. 1, pp. 48-57, 2001.

[3] J. Li, J. Jannotti, D. S. J DeCouto, D. Karger, and R. Morris, ”A
scalable location service for geographic ad-hoc routing,” Proc.
of 6th Annu. International Conference on Mobile Computing and
Networking,, pp.120-130, 2000.

[4] J. Bahi, A. Makhoul and A. Mostefaoui, ”Localization and
Coverage for High Density Sensor Networks,” Computer Com-
munications, vol. 31, no. 4, pp. 770-781, 2008.

[5] A. Savvides and M. B. Strivastava, ”Distributed Fine-grained
localization in ad-hoc networks”, IEEE Transactions on Mobile
Computing, 2003.

[6] F. Kuhn, R. Wattenhofer, and A. Zollinger. ”Worst-Case Opti-
mal and Average-Case Efficient Geometric Ad-Hoc Routing,”
Proc. of the 4th ACM international symposium on Mobile ad hoc
networking & computing (MobiHoc03), pp. 267-278, 2003.

[7] A. Boukerche, B. Turgut, N. Aydin, M.Z. Ahmad, L. Bölöni and
D. Turgu ”Routing Protocols in Ad Hoc Networks: a Survey,”
Computer Networks, vol. 55, no. 13, pp 3032-3080, 2011.

[8] N. Ahmed, S.S. Kanhere, S. Jha, ”The Holes Problem in Wireless
Sensor Networks: A Survey,” Mobile Computing and Communi-
cations Review, vol. 9, no. 2, pp 4-18, 2005.

[9] L. Zou, M. Lu, and Z. Xiong, ”A Distributed Algorithm for
the Dead End Problem of Location Based Routing in Sensor
Networks,” IEEE Trans. Vehicular Technology, vol. 54, no. 4, pp.
1509-1522, 2005.

[10] W.J. Liu and K.T. Feng, ”Largest Forwarding Region Routing
Protocol for Mobile Ad Hoc Networks,” Proc. IEEE Global
Comm. Conf. (GLOBECOM 06), pp. 1-5, 2006.

[11] Q. Fang, J. Gao, and L. Guibas, ”Locating and Bypassing
Routing Holes in Sensor Networks,” Proc. 23d AnnualJoint Conf.
of the IEEE Comp. and Comm. Soc. (INFOCOM 04), vol. 4, pp.
2458-2468, 2004.

[12] Wen-Jiunn Liu, Kai-Ten Feng, ”Greedy Routing with Anti-Void
Traversal for Wireless Sensor Networks”, IEEE Trans. on Mobile
Computing, vol. 8, no. 7, pp. 910-922, 2009.

[13] http://castalia.research.nicta.com.au/
[14] N. Arad and Y. Shavitt, ”Minimizing Recovery State in Geo-

graphic Ad-Hoc Routing,” IEEE trans. on Mobile Computing, vol.
8, no. 2, pp. 203 - 217, 2009.

[15] C. Liu and J. Wu. ”Destination-region-based local minimum
aware geometric routing.” Proc. of the 4th IEEE International
Conference on Mobile Ad Hoc and Sensor Systems (MASS 2007),
pp. 1-9, 2007.

[16] R. Abe, S. Honiden ”Adaptive geographic routing in wireless
sensor networks” Proceedings of the 13th ACM international con-
ference on Modeling, analysis, and simulation of wireless and mobile
systems (MSWIM 2010), pp. 91-100, 2010.

[17] C.-H. Chou, K.-F. Ssu, H. C. Jiau, W.-T. Wang, C. Wang, ”A
Dead-End Free Topology Maintenance Protocol for Geographic
Forwarding in Wireless Sensor Networks,” IEEE Transactions on
Computers, vol. 60, no. 11, pp. 1610-1621, 2011.

[18] B. Karp and H.T. Kung, ”GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks,” Proc. of 6th ACM intern. conf.
on Mobile computing and networking (MobiCom’00), pp. 243-254,
2000.

[19] F. Kuhn, R. Wattenhofer, and A. Zollinger, ”An algorithmic ap-
proach to geographic routing in ad hoc and sensor networks,”
IEEE/ACM Transactions on Networking, vol. 16, no. 1, pp. 51-62,
2008.

[20] E. Kranakis, H. Singh, and J. Urrutia, ”Compass Routing
on Geometric Networks,” Proc. Canadian Conf. Computational
Geometry (CCCG 99), pp. 51-54, 1999.

[21] K.R. Gabriel and R.R. Sokal, ”A New Statistical Approach to
Geographic Variation Analysis,” Systematic Zoology, vol. 18, no.
3, pp. 259-278, 1969.

[22] G.T. Toussaint, ”The Relative Neighborhood Graph of a Finite
Planar Set,” Pattern Recognition, vol. 12, no. 4, pp. 261-268, 1980.

[23] Nadeem Ahmed , Salil S. Kanhere , Sanjay Jha, ”The holes
problem in wireless sensor networks: a survey”, ACM SIGMO-
BILE Mobile Computing and Communications Review, vol.9, no.2,
pp. 4-18, 2005.

[24] W. Jia, T. Wang, G. Wang, M. Guo, ”Hole Avoiding in Advance
Routing in Wireless Sensor Networks”, in Proc. of Wireless
Communications and Networking Conference (WCNC), pp. 3519 -
3523, 2007.

[25] Y. Yu, D. Estrin, and R. Govindan, ”Geographical and Energy-
Aware Routing: A Recursive Data Dissemination Protocol for
Wireless Sensor Networks,” UCLA Computer Science Department
Technical Report, UCLA-CSD TR-01-0023, May 2001.

[26] Douglas S. J. De Couto and Robert Morris, ”Location proxies
and intermediate node forwarding for practical geographic
forwarding.” Technical Report MIT-LCS-TR-824, MIT Laboratory
for Computer Science, June 2001.

Ahmed Mostefaoui is currently an associate
professor at the University of Franche Comte,
France, since 2000. He received the M.S.
and Ph.D. degrees in computer science from
Ecole Normale Suprieure de Lyon (France)
in 1996 and 2000, respectively. His research
interests are in distributed algorithms in wire-
less ad-hoc and sensor networks empha-
sizing both practical and theoretical issues,
multimedia systems and networking, in par-
ticular, distributed architectures.

Mahmoud Melkemi received his PhD in
applied mathematics from the University of
Grenoble, France in 1992. From 1993 to
2004, he worked as an Associate Profes-
sor in the Claude Bernard University, Lyon,
France. He joined the Haute Alsace Univer-
sity, Mulhouse, France, in 2005 as a Pro-
fessor. His main research interests are in
the fields of pattern recognition, computer
graphics and computational geometry with
applications in ad hoc and sensor networks.

Azzedine Boukerche is a Full Professor
and holds a Canada Research Chair po-
sition in distributed simulation and wireless
and mobile networking at the University of
Ottawa. He is the Founding Director of PAR-
ADISE Research Laboratory at Ottawa U.
His current research interests include sen-
sor networks, mobile ad hoc networks, mo-
bile computing, wireless multimedia and dis-
tributed computing. Dr. Boukerche has pub-
lished more than 460 papers in these areas.

