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Abstract: A problem that has received a lot of interest in wireless sensor networks (WSN) is lifetime optimization.
Indeed, in WSN each sensor node is battery powered and it is not convenient to recharge or replace the
batteries in many cases, especially in remote and hostile environments. In this paper, we introduce an efficient
energy-aware algorithm to enhance the lifetime of WSN by i) organizing/clustering the sensor nodes into
disjoint cover sets where each cover set is capable of monitoring all the targets of the region of interest and ii)
scheduling these cover sets successively/periodically. This study differs from previous works for the following
reasons: i) it achieves near optimal solutions compared to the optimal ones obtained by the exact method and
ii) unlike existing algorithms that construct gradually cover sets one after the other, our algorithm builds the
different sets in parallel. Indeed, at each step of the clustering process, the algorithm attempts to add to each
cover set a sensor capable of monitoring the most critical target (a critical target is defined to be the one
covered by the smallest set of sensors). The choice of a sensor to be placed/clustered in each cover set is based
on solving a linear assignment problem. The proposed algorithm provides a lower bound Kmin of the optimal
number of disjoint cover sets Kopt . Intuitively, the upper bound Kmax of the optimal value is given by the size
of the smallest set of sensors covering a target. We deduce Kopt by performing a binary search procedure. At
each step of the binary search process, we check if there exists a partition of the sensors in K cover sets by
solving an integer programming problem. Simulation results show the efficiency of our algorithm.

1 INTRODUCTION

Recent years have witnessed significant advances in
wireless sensor networks which emerge as one of
the most promising technologies for the 21st cen-
tury (Akyildiz et al., 2002). In fact, they present huge
potential in several domains ranging from health care
applications to military applications. A sensor net-
work is composed of a large number of tiny sensing
devices deployed in a region of interest. Each de-
vice has processing and wireless communication ca-
pabilities, which enable to sense its environment, to
compute, to store information and to deliver report
messages to a base station. One of the main design
challenges in Wireless Sensor Networks (WSN) is to
prolong the system lifetime, while achieving accept-
able quality of service for applications. Indeed, sen-
sor nodes have limited resources in terms of memory,
energy and computational powers.

Since sensor nodes have limited battery life and
without being able to replace batteries, especially in
remote and hostile environments, it is desirable that a

WSN should be deployed with high density and thus
redundancy can be exploited to increase the lifetime
of the network. In such a high density network, if all
sensor nodes were to be activated at the same time,
the lifetime would be reduced. Consequently, future
software may need to adapt appropriately to achieve
acceptable quality of service for applications. In this
paper we concentrate on the target coverage problem,
with the objective of maximizing the network lifetime
by using an adaptive scheduling. We assume that sen-
sors are randomly deployed for monitoring a set of
targets with known locations and we also assume the
sensors have location determination capabilities. We
propose energy-aware centralized approach that se-
lects mutually exclusive sets of sensor nodes, where
the members of each of those sets together completely
cover the monitored targets. The intervals of activity
are the same for all sets, and only one of the sets is
active at any time to provide continuous service while
the remaining sets are scheduled to sleep. The ob-
jective, is to maximize the number of cover sets to
increase the system’s service life. Scheduling and



grouping sensors into disjoint sets is done by the base
station, which informs every sensor of the time inter-
vals to be activated.

The major contribution of this paper is the de-
sign of a new near optimal algorithm for lifetime op-
timization in WSN. Unlike existing approaches that
construct gradually cover sets one after the other, the
proposed algorithm builds the different sets in paral-
lel. Indeed, at each step of the clustering process, the
algorithm attempts to add to each cover set a sensor
capable of monitoring the most critical target. The
choice of sensor to be placed/clustered in each cover
set is based on solving a linear assignment problem in
polynomial time using the Hungarian algorithm. Our
approach provides a lower bound Kmin of the optimal
number of disjoint cover sets Kopt . Intuitively, the up-
per bound Kmax of the optimal value is given by the
size of the smallest set of sensors covering a target.
We deduce Kopt by performing a binary search be-
tween Kmin and Kmax. At each step of the search pro-
cess we check if there exists a partition of the sensors
in K cover sets by solving an integer programming
problem.

The remainder of the paper is organized as fol-
lows. Section 2 reviews the related work in the field.
Section 3 is devoted to the description of the target
coverage problem and explains the basics of our al-
gorithm illustrated by an example. Then we express
the time complexity of the algorithm. We also present
how to compute the optimal number of disjoint cover
sets by solving integer programming problems suc-
cessively. Section 4 shows the simulation results, that
fully demonstrate the usefulness of the proposed al-
gorithm. Finally, we give concluding remarks in Sec-
tion 5.

2 RELATED WORK

Various approaches, including centralized, distributed
and localized algorithms, have been proposed to ex-
tend the network lifetime. For instance, in order to
hide the occurrence of faults, or the sudden unavail-
ability of sensor nodes, some distributed algorithms
have been developed in (Gallais et al., 2006; Tian and
Georganas, 2002; Ye et al., 2003; Zhang and Hou,
2005; Heinzelman et al., 2002). The scheduling in-
formation is disseminated throughout the network and
only sensors in the active state are responsible for
monitoring all targets, while all other nodes are in a
low-energy sleep mode. The nodes decide coopera-
tively which of them will remain in sleep mode for a
certain period of time.

In this paper we focus on centralized algorithms

because distributed algorithms are outside the scope
of our work. Note that centralized coverage algo-
rithms have the advantage of requiring very low pro-
cessing power from the sensor nodes which have
usually limited processing capabilities. Moreover, a
recent study conducted in (Padmavathy and Chitra,
2010) concludes that there is a threshold in terms of
network size to switch from a localized to a central-
ized algorithm. Indeed the exchange of messages in
large networks may consume a considerable amount
of energy in a localized approach compared to a cen-
tralized one.

Power efficient centralized schemes differ accord-
ing to several criteria (Cardei and Wu, 2006), such as
the coverage objective (target coverage or area cover-
age), the node deployment method (random or deter-
ministic) and the heterogeneity of sensor nodes (com-
mon sensing range, common battery lifetime). The
major approach is to divide/organize the sensors into
a suitable number of set covers where each set com-
pletely covers an interest region and to activate these
set covers successively.

First algorithms proposed in the literature consider
that the cover sets are disjoint: a sensor node ap-
pears in exactly one of the generated cover sets. For
instance Slijepcevic and Potkonjak (Slijepcevic and
Potkonjak, 2001) propose an algorithm which allo-
cates sensor nodes in mutually independent sets to
monitor an area divided into several fields. Their al-
gorithm constructs a cover set by including in pri-
ority the sensor nodes which cover critical fields,
that is to say fields that are covered by the small-
est number of sensors. The time complexity of their
heuristic is O(n2) where n is the number of sen-
sors. (Cardei et al., 2002) present a graph color-
ing technique to achieve energy savings by organizing
the sensor nodes into a maximum number of disjoint
dominating sets which are activated successively. The
dominating sets do not guarantee the coverage of the
whole region of interest. Abrams et al.(Abrams et al.,
2004) design three approximation algorithms for a
variation of the set k-cover problem, where the ob-
jective is to partition the sensors into covers such that
the number of covers that include an area, summed
over all areas, is maximized. Their work builds upon
previous work in (Slijepcevic and Potkonjak, 2001)
and the generated cover sets do not provide complete
coverage of the monitoring zone.

In (Cardei and Du, 2005), the authors propose a
heuristic to compute the disjoint set covers (DSC).
In order to compute the maximum number of cov-
ers, they first transform DSC into a maximum-flow
problem , which is then formulated as a mixed inte-
ger programming problem (MIP). Based on the solu-



tion of the MIP, they design a heuristic to compute
the final number of covers. The results show a slight
performance improvement in terms of the number
of produced DSC in comparison to (Slijepcevic and
Potkonjak, 2001) but it incurs higher execution time
due to the complexity of the mixed integer program-
ming resolution. Zorbas et al. (Zorbas et al., 2007)
present B{GOP}, a centralized coverage algorithm
introducing sensor candidate categorisation depend-
ing on their coverage status and the notion of critical
target to call targets that are associated with a small
number of sensors. The total running time of their
heuristic is 0(mn2) where n is the number of sensors,
and m the number of targets. Compared to algorithm’s
results of Slijepcevic and Potkonjak (Slijepcevic and
Potkonjak, 2001), their heuristic produces more cover
sets with a slight growth rate in execution time.

In the case of non-disjoint algorithms (Chaudhary
and Pujari, 2011), sensors may participate in more
than one cover set. In some cases this may prolong
the lifetime of the network in comparison to the dis-
joint cover set algorithms but designing algorithms for
non-disjoint cover sets generally incurs a higher order
of complexity. Moreover in case of a sensor’s fail-
ure, non-disjoint scheduling policies are less resilient
and less reliable because a sensor may be involved
in more than one cover sets. For instance, Cardei
et al. (Cardei et al., 2005) present a linear program-
ming (LP) solution and a greedy approach to extend
the sensor network lifetime by organizing the sen-
sors into a maximal number of non-disjoint cover sets.
Simulation results show that by allowing sensors to
participate in multiple sets, the network lifetime in-
creases compared with related work (Cardei and Du,
2005). In (Berman and Calinescu, 2004), the au-
thors have formulated the lifetime problem and sug-
gested another (LP) technique to solve this problem.
A centralized provably near optimal solution based
on the Garg-Könemann algorithm (Garg and Koen-
emann, 1998) is also proposed.

3 ALGORITHMS DESCRIPTION

We try to produce an adaptive scheduling which al-
lows sensors to operate alternatively so as to prolong
the network lifetime. For convenience, the notations
and assumptions are described first.

3.1 Notations and assumptions

• m : the number of targets

• n : the number of sensors

• K : maximal number of cover sets

• i : index of target (i = 1..m)

• j : index of sensor ( j = 1..n)

• k : index of cover set (k = 1..K)

• T0 : initial set of targets

• S0 : initial set of sensors

• T : set of targets which are not covered by at least
one cover set

• S : set of available sensors

• S0(i) : set of sensors which cover the target i

• T0( j) : set of targets covered by sensor j

• Ck : cover set of index k

• T (Ck) : set of targets covered by the cover set k

• NS(i) : set of available sensors which cover the
target i

• NC(i) : set of cover sets which do not cover the
target i

• |.| : cardinality of the set

We assume that the lifetimes of sensors are identi-
cal. Lifetime of a sensor is time duration when the
sensor is in the active state all the time. In order to
achieve lifetime extension, sensors must be divided
into a number of subsets, called cover sets, where
each cover set is capable of monitoring all the targets.
Sensors belonging to a scheduled cover set are in ac-
tive mode, while the others are in sleep mode. If the
cover sets are disjoint, then each sensor is allowed to
participate only in one cover set. The maximal num-
ber of possible disjoint cover sets is given by :

Kmax = min
i=1..m

|S0(i)| (1)

since each cover set must cover all targets and each
sensor can only be part of one cover set.

3.2 Near optimal algorithm

The main idea of the algorithm is to build simultane-
ously the cover sets by adding gradually the sensors
capable of monitoring the most critical target. At each
iteration of the algorithm we compute the critical rate
(let call it R(i)) of a target i as follows :

R(i) =
|NS(i)|
|NC(i)|

(2)

Some targets may have the same critical rate. In
this case, the choice of the most critical target is made
randomly among these targets. When the most critical
target has been identified, sensors monitoring this tar-
get have to be distributed in each cover set which does



Algorithm 1 Near optimal algorithm

Require: An initial set of targets T0 and an initial set
of sensors S0

Ensure: A set of cover sets C1, ..,CK1
1: {INITIALIZATION}
2: for all cover sets k = 1..Kmax do
3: Ck← /0

4: T (Ck)← /0

5: end for
6: S← S0
7: T ← T0
8: for all targets i = 1..m do
9: NC(i)←{C1, ..,CKmax}

10: NS(i)← S0(i)
11: end for
12: {While there exists a target which is not covered

by a cover set and the set of available sensors is
not empty}

13: while T 6= /0 and S 6= /0 do
14: for all targets i ∈ T do
15: Compute R(i) = |NS(i)|

|NC(i)|
16: end for
17: {Choose the most critical target}
18: i∗ = mini∈T R(i)
19: for all j ∈ NS(i∗) do
20: Compute p jk = |T0( j) ∩ {T0 \ T (Ck)}| for

each cover set Ck ∈ NC(i∗)
21: end for
22: Solve the linear assignment problem to assign

one sensor j ∈ NS(i∗) in each cover set k ∈
NC(i∗) with costs p jk

23: Update Ck,T (Ck) ∀k = 1..Kmax
24: Update T,S and NS(i),NC(i) ∀i ∈ T
25: end while
26: K1← Kmax
27: if T is not empty then
28: for all i ∈ T do
29: Delete the cover sets Ck ∈ NC(i)
30: K1← K1−1
31: end for
32: end if

not already cover this target. This distribution can be
made randomly or made soundly in order to cover a
maximum number of targets in each cover set. That
is why we give a cost p jk for the possible assignment
of the sensor j to a cover set Ck which represents the
additional number of targets that the cover set Ck is
able to monitor if the sensor j is added. We face a lin-
ear assignment problem where it is required to assign
exactly one sensor to each cover set in such a way that
the total cost of the assignment is maximized. In our
case, the number of sensors to be assigned can be dif-

ferent to the number of cover sets. If the number of
sensors is greater than the number of cover sets, we
artificially add a new cover set and null costs between
all sensors and this additional cover set to be reduced
to a classical linear assignment problem. In contrast,
if the number of sensors is less than the number of
cover sets, we add a dummy sensor and null costs be-
tween this dummy sensor and the cover sets. During
the process, if we face this second case, this means
that some cover sets may not cover all the targets in
the region of interest.

3.3 Example

To illustrate our algorithm we provide a simple ex-
ample with only 20 sensors and 10 targets. Table 1
presents the sensors which are able to monitor each
target.

Table 1: Collection of sensors to monitor a target

Target i Sensors in S0(i)
t1 s1,s3,s4,s5
t2 s6,s8,s13,s14,s20
t3 s2,s5,s9,s10,s12
t4 s1,s6,s7,s8,s13,s15
t5 s4,s17,s18,s19,s20
t6 s2,s5,s11,s14,s16
t7 s8,s9,s10,s17,s18
t8 s6,s7,s10,s14,s20
t9 s1,s2,s3,s4,s5
t10 s2,s4,s8,s12,s14,s17,s19

Here, the maximum number of possible generated
cover sets is equal to K = 4. The most critical target
is target 1. We assign randomly a sensor j ∈ S0(1) to
each cover set (k = 1..4) as reported in table 2.

Table 2: Sensors and covered targets in each cover set

k Ck T (Ck)
1 s1 {t1, t4, t9}
2 s3 {t1, t9}
3 s4 {t1, t5, t9, t10}
4 s5 {t1, t3, t6, t9}

We update T ← T0 \ {t1, t9}, S ← S0 \
{s1,s3,s4,s5}. Then we obtain new sets NS(i)
and NC(i) for each target i (see table 3). We compute
critical rates of targets which are reported in table 4.
The most critical targets are t2, t7 and t8 as shown in

table 4. We choose randomly target t7. We have to
assign a sensor j ∈ NS(7) = {s8,s9,s10,s17,s18} to
each cover set k ∈ NC(7) = {C1,C2,C3,C4}.



Table 3: Available sensors for the target and cover sets not
monitoring the target

Target NS(i) NC(i)
i ∈ T
t2 s6,s8,s13,s14,s20 {C1,C2,C3,C4}
t3 s2,s9,s10,s12 {C1,C2,C3}
t4 s6,s7,s8,s13,s15 {C2,C3,C4}
t5 s17,s18,s19,s20 {C1,C2,C4}
t6 s2,s11,s14,s16 {C1,C2,C3}
t7 s8,s9,s10,s17,s18 {C1,C2,C3,C4}
t8 s6,s7,s10,s14,s20 {C1,C2,C3,C4}
t10 s2,s8,s12,s14,s17,s19 {C1,C2,C4}

Table 4: Critical rate of each non covered target

Target i ∈ T R(i)
t2 5/4
t3 4/3
t4 5/3
t5 4/3
t6 4/3
t7 5/4
t8 5/4
t10 6/3

We compute p jk = |T0( j)∩{T0 \T (Ck)}| for each
sensor j ∈ NS(7) and for each k ∈ NC(7). p jk repre-
sents the additional number of targets that the cover
set Ck is able to monitor if the sensor j is added to Ck.
Linear assignment costs are given in table 5.

Table 5: Linear assignment costs

C1 C2 C3 C4
s8 3 4 3 4
s9 2 2 2 1
s10 3 3 3 2
s17 3 3 1 3
s18 1 1 1 1

An optimal solution for the linear assignment
problem is to add the sensors s10,s8,s9,s17 respec-
tively to the cover sets C1,C2,C3,C4. Note that there
are multiple optimal solutions for this assignment
problem. An other solution is s17 in C1, s10 in C2,
s9 in C3, and s8 in C4. We update T ← T \ {t7},
S← S\{s10,s8,s9,s17} and we start the process again
with new sets given in tables 6 and 7.

Table 6: Sensors and covered targets in each cover set

k Ck T (Ck)
1 {s1,s10} {t1, t3, t4, t8, t9}
2 {s3,s8} {t1, t2, t4, t7, t9, t10}
3 {s4,s9} {t1, t3, t5, t7, t9, t10}
4 {s5,s17} {t1, t3, t5, t6, t7, t9, t10}

Table 7: Available sensors for the target, cover sets not mon-
itoring the target, and critical rates

Target NS(i) NC(i) R(i)
i ∈ T
t2 s6,s13,s14,s20 {C1,C3,C4} 4/3
t3 s2,s12 {C2} 2/1
t4 s6,s7,s13,s15 {C3,C4} 4/2
t5 s18,s19,s20 {C1,C2} 3/2
t6 s2,s11,s14,s16 {C1,C2,C3} 4/3
t8 s6,s7,s14,s20 {C2,C3,C4} 4/3
t10 s2,s12,s14,s19 {C1} 4/1

The most critical targets are t2, t6 and t8. We
choose randomly target t2. We have to assign a sen-
sor j ∈ NS(2) = {s6,s13,s14,s20} to each cover set
k∈NC(2)= {C1,C3,C4}with linear assignment costs
given in table 8.

Table 8: Linear assignment costs

C1 C3 C4
s6 1 3 3
s13 1 2 2
s14 3 3 2
s20 2 2 2

An optimal solution for the linear assignment
problem is to add the sensors s14,s13,s6 respectively
to the cover sets C1,C3,C4. We update T ← T \
{t2, t4, t10}, S ← S \ {s14,s13,s6} and we start again
with sets reported in tables 9 and 10.

Table 9: Sensors and covered targets in each cover set

k Ck T (Ck)
1 {s1,s10,s14} {t1, t2, t3, t4, t6, t8, t9, t10}
2 {s3,s8} {t1, t2, t4, t7, t9, t10}
3 {s4,s9,s13} {t1, t2, t3, t4, t5, t7, t9, t10}
4 {s5,s17,s6} {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}

The most critical target is t8. We have to assign
a sensor j ∈ NS(8) = {s7,s20} to each cover set k ∈
NC(2) = {C2,C3}. Costs are given in table 11.



Table 10: Available sensors for the target, cover sets not
monitoring the target, and critical rates

Target NS(i) NC(i) R(i)
i ∈ T
t3 s2,s12 {C2} 2/1
t5 s18,s19,s20 {C1,C2} 3/2
t6 s2,s11,s16 {C2,C3} 3/2
t8 s7,s20 {C2,C3} 2/2

Table 11: Linear assignment costs

C2 C3
s7 1 1
s20 2 1

We assign sensor s7 to the cover set C3 and the sen-
sor s20 to the cover set C2. Statements (line 23 and 24
of the algorithm 1) allow us to obtain new sets given
in tables 12 and 13. This leads to a new invocation of
the loop.

Table 12: Available sensors for the target and cover sets not
monitoring the target

k Ck T (Ck)
1 {s1,s10,s14} {t1, t2, t3, t4, t6, t8, t9, t10}
2 {s3,s8,s20} {t1, t2, t4, t5, t7, t8, t9, t10}
3 {s4,s9,s13,s7} {t1, t2, t3, t4, t5, t7, t8, t9, t10}
4 {s5,s17,s6} {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}

Table 13: Available sensors for the target, cover sets not
monitoring the target, and critical rates

Target NS(i) NC(i) R(i)
i ∈ T
t3 s2,s12 {C2} 2/1
t5 s18,s19 {C1} 2/1
t6 s2,s11,s16 {C2,C3} 3/2

The most critical target is t6 (see column 3 of ta-
ble 13). We have to assign a sensor j ∈ NS(6) =
{s2,s11,s16} to each cover set k ∈ NC(8) = {C2,C3}.
The assignment costs p jk are given in table 14.

We assign sensor s2 to the cover set C2 and the
sensor s11 to the cover set C3 and we obtain the cover
sets Ck,(k = 1..Kmax) given in table 15.

Now only target t5 is not covered in the cover set
C1. We have the choice between s18 or s19 to complete
the cover set C1.

Table 14: Linear assignment costs

C2 C3
s2 2 1
s11 1 1
s16 1 1

Table 15: Sensors and covered targets in each cover set

k Ck T (Ck)
1 {s1,s10,s14} {t1, t2, t3, t4, t6, t8, t9, t10}
2 {s3,s8,s20,s2} {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}
3 {s4,s9,s13,s7,s11} {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}
4 {s5,s17,s6} {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}

3.4 Algorithm’s analysis

We express the time complexity of our algorithm 1
by using the following notations :

v = max(|S|, |T |) = max(n,m) (3)
and :

Smax = max
i=1..m

|S0(i)| (4)

The time complexity of our algorithm is at most

O
(

v(|T |+KmaxSmax +S3
max +Kmax + |T |)

)
(5)

Proof. The main computational cost of the algorithm
is spent in the while loop (lines 13 to 25). This loop
is executed v = max(|S|, |T |) times. The inner loop
(lines 14 to 16) cost at most O(|T |) since the criti-
calness of all the targets in T need to be computed
at each iteration. Line 18 takes O(|T |) for finding
the most critical target. The inner loop (lines 19 to
21) costs |NS(i∗)| × |NC(i∗)|, i∗ ∈ T , since the cost
p jk of each target j ∈ |NS(i∗)| needs to be computed
on each cover set k ∈ NC(i∗). However, we can
bound both |NS(i∗)| and |NC(i∗)| by Smax and Kmax
respectively. Thus, the cost of this loop is at most
O(SmaxKmax). Finally, the line statement 22 is equiv-
alent to a linear assignment problem, which can be
found in polynomial time, for instance using the Hun-
garian method (Harold W. Kuhn, 1955). Thereby,
the linear assignment problem of line 22 takes at
most O

(
S3

max), since we can bound both |NS(i∗)| and
|NC(i∗)| by Smax. Updating steps (lines 23 and 24) re-
quire O(Kmax + |T |) iterations. Thus, summing up for
the whole v loops/iterations, the algorithm’s cost is at
most

O
(

v(|T |+KmaxSmax +S3
max +Kmax + |T |)

)
Since Kmax ≤ Smax ≤ |S| ≤ v, and |T | ≤ v, we can de-
rive the upper bound O

(
v4
)
.



3.5 Randomized algorithm

Here, we give only a simple proposal of the algorithm
which constructs in parallel the elementary cover sets
as sketched in algorithm 2. Our goal is not to give the
best implementation, but only a possible implementa-
tion in order to compare the lower bounds to the ones
obtained by algorithm 1.

Unlike algorithm 1, the randomized algorithm
chooses randomly a non covered target and tries to
assign a sensor covering this target to each cover set
if necessary. We use the same structure of algorithm
1. This choice is made to demonstrate the relevance
of the selection/assignment policy of algorithm 1.

Algorithm 2 Randomized algorithm

Require: An initial set of targets T0 and an initial set
of sensors S0

Ensure: A set of cover sets C1, ..,CK2
1: {INITIALIZATION}
2: for all cover sets k = 1..Kmax do
3: Ck← /0

4: T (Ck)← /0

5: end for
6: S← S0
7: T ← T0
8: for all targets i = 1..m do
9: NC(i)←{C1, ..,CKmax}

10: NS(i)← S0(i)
11: end for
12: {While there exists a target which is not covered

by a cover set and the set of available sensors is
not empty}

13: while T 6= /0 and S 6= /0 do
14: Choose randomly a target i∗ in T
15: Assign randomly one sensor j ∈NS(i∗) in each

cover set k ∈ NC(i∗)
16: Update Ck,T (Ck) ∀k = 1..Kmax
17: Update T,S and NS(i),NC(i), ∀i ∈ T
18: end while
19: K2← Kmax
20: if T is not empty then
21: for all i ∈ T do
22: Delete the cover sets Ck ∈ NC(i)
23: K2← K2−1
24: end for
25: end if

3.6 Exact Method

In this section, we present how to deduce the optimal
number of disjoint cover sets once we applied each of
the previous algorithms. We obtain an approximated

solution with algorithm 1 or with the randomized al-
gorithm and we denote by Kmin = max{K1,K2} the
achieved number of disjoint cover sets, where K1 cor-
responds to the number of disjoint cover sets obtained
with algorithm 1 and K2 to the number of disjoint
cover sets obtained with the randomized algorithm.
As the optimal number of disjoint cover sets Kopt is
bounded by Kmax = min1..m |S0(i)|, we deduce that
Kmin ≤ Kopt ≤ Kmax. The intuitive idea is to deduce
Kopt by performing a binary search between Kmin and
Kmax. At each step of the search process, we check if
there exists a partition of the sensors in K cover sets.
Once the number of disjoint cover sets is fixed to K,
the distribution of sensors among the K cover sets is
given by the resolution of the following integer pro-
gramming (IP) problem:

min1
subject to :
∑ j∈S0(i) y jk ≥ 1, ∀i ∈ T0,∀k ∈ K
∑k=1..K y jk ≤ 1, ∀ j ∈ S0
y jk ∈ {0,1}

(6)

The decision variables y jk are binary variables
which are equal to 1 if the sensor j belongs to the
cover set k and 0 otherwise. Note that there is no
real objective function. We only try to find a distri-
bution of the sensors over K cover sets which satisfies
some constraints. The first constraint ensures that all
targets are covered in each cover set k = 1..K. The
second constraint forces each sensor to be in only one
cover set. For a given number K of cover sets, it may
happen that the problem has no solution. In this case,
we decrement K and we solve again the problem (6).
To compute Kopt , we perform a binary search as pre-
sented in algorithm 3.

Note that the integer programming problem (6)
which is solved at each iteration of the binary search
process, to reach the optimal solution, is known to
be NP-hard (Garey and Johnson, 1990). We use
a Branch-and-Bound method to solve it, and we
have interest that algorithm 1 provides the best lower
bound to avoid additional iterations for the resolution
of the integer programming problem.

4 RESULTS

In this section we evaluate the performance of our
algorithms by way of simulations. We simulate a net-
work with sensor nodes and target points randomly
located in a 500m×500m area. We assume the sens-
ing range is equal for all the sensors in the network
and is set to 150m. In the different scenarios we vary
the number of randomly deployed sensor nodes n be-



Algorithm 3 Exact Method - binary search

Require: A set of targets T0, a set of sensors S0
Ensure: A set of cover sets C1,C2, ...,CKopt

Kopt ← Kmin
while Kmin! = Kmax do

K← dKmin+Kmax
2 e +1

Solve (6 )
if (6 ) has no solution then

Kmax← K
else

Kmin← K
Kopt ← K
Optimal solution y∗jk of (6 ) are saved

end if
end while
for all k = 1..Kopt do

Ck←∪(s j/y∗jk=1){s j}
end for

tween 50 and 200 with an increment of 50. The num-
ber m of targets to be covered varies between 30 and
120 with an increment of 30. The following require-
ments are satisfied: each sensor covers at least one
target and each target is covered by at least one de-
ployed sensor, the connectivity of the network is en-
sured and all sensors are capable of communicating
with the base station. For a given number of sensors
and targets, we generate 100 random topologies of
network. Our experiments have been conducted on a
regular Linux workstation with a AMD Athlon(tm) 64
X2 Dual Core Processor 4000+ of 2,1 GHz. The reso-
lution of the integer programming problem is carried
out by the Branch-and-Bound method implemented
in GLPK (GNU linear Programming Kit) (Mahkorin,
2010) available in the public domain.

Note that for convenience and sake of simplicity,
there is no need to conduct comparison with previous
works in the literature since the obtained results are
compared to the optimal ones achieved by the exact
method.

4.1 Number of disjoint cover sets

We measure the average number of disjoint cover sets
K1, K2, Kopt over the 100 instances for the algorithm
1, the randomized algorithm and the exact method. As
algorithm 1 and the randomized algorithm integrate
a random part, they are executed 50 times for each
network topology of each scenario. Table 16 sum-
marizes the obtained results. Results of table 16 are
consistent with those obtained in the literature (Cardei
and Du, 2005). The number of disjoint cover sets in-
creases with sensor density, and decreases as the num-

ber of targets goes up for a fixed number of sensors.
This is explained by the fact that sensors are more
requested. The obtained results show that our algo-
rithm 1 has a very good behavior because it is able
to achieve near optimal solution compared to the op-
timal one obtained by the exact method in almost all
simulated cases. On the other side a simple random-
ized algorithm provides solutions which are far more
than 15% of the optimum and this gap, computed as
Kopt−K2

Kopt
, grows when the number of sensors and tar-

gets increases to reach 38% with 200 sensors and 120
targets.

Table 16: Number of disjoint cover sets

N M K2 K1 Kopt

50 30 2.97 3.46 3.46
60 2.44 2.96 2.96
90 2.19 2.60 2.60
120 2.06 2.49 2.49

100 30 7.16 8.84 8.84
60 5.54 7.54 7.54
90 4.97 6.99 6.99
120 4.65 6.70 6.70

150 30 10.75 13.50 13.50
60 8.80 12.03 12.03
90 7.89 11.34 11.34
120 7.42 10.91 10.91

200 30 14.53 19.03 19.03
60 11.65 16.94 16.98
90 10.44 16.11 16.11
120 9.67 15.53 15.59

4.2 Comparison of the execution times

In this section, we compare and comment the CPU
execution times of the different resolution methods.
Table 17 gives the distribution of the execution times
(in seconds) for the three methods over the 16 scenar-
ios. Note that the method called ”exact method” con-
sists in performing a binary search between Kmin and
Kmax and in solving an integer programming problem
at each iteration. To assess the efficiency of our al-
gorithm 1, we distinguish two cases for the reporting
execution times of the exact method. In the first case,
Kmin is given by the number of disjoint cover sets (K2)
obtained by the randomized algorithm, and in the sec-
ond case, the binary search begins with Kmin = K1.

From table 17, we can see that the running times
increase with both sensor and target density as ex-
pected (see the time complexity value in section 3.4).
If the optimal value of the number of disjoint cover



Table 17: Execution times (in seconds) for the 3 methods

N M Randomized Heuristic Exact method Exact method
algorithm 2 algorithm 1 (Kmin = K1) (Kmin = K2)

50 30 0.010 0.023 0.000 0.026
60 0.019 0.031 0.000 0.053
90 0.026 0.037 0.000 0.058
120 0.036 0.046 0.000 0.030

100 30 0.026 0.145 0.000 1.445
60 0.056 0.176 0.000 2.443
90 0.086 0.205 0.000 3.540
120 0.118 0.227 0.000 4.070

150 30 0.041 0.503 0.000 17.478
60 0.100 0.653 0.000 25.733
90 0.160 0.698 0.000 42.646
120 0.222 0.768 0.000 58.182

200 30 0.063 1.270 0.000 123.600
60 0.150 1.660 16.190 251.467
90 0.250 1.730 0.000 345.877
120 0.352 1.936 83.26 543.568

sets is reached with our algorithm 1, then no reso-
lution of the integer programming is involved again.
This leads to the execution times which are equal to
zero (column 5 of table 17). Moreover, the resolution
of integer programming is time consuming and the
involved binary search task to compute the optimal
value by starting with random solution may require
more than 9 minutes as the number of sensors/targets
goes up.

5 CONCLUSIONS

In this paper, we have addressed the problem
of lifetime optimization in wireless sensor networks.
This is a very natural and important problem, as sen-
sor nodes have limited resources in terms of memory,
energy and computational power. To cope with this
problem, an efficient centralized energy-aware algo-
rithm is presented and analyzed. Our algorithm seeks
to prolong the network lifetime by organizing sensors
into disjoint cover sets which operate successively in
order to monitor all targets. Our algorithm involves a
linear assignment problem to generate mutually dis-
joint cover sets containing a minimal number of sen-
sors and covering a maximal number of targets at each
iteration. Simulation results highlight the good be-
haviour of our algorithm, which provides near optimal
solutions (equal to the optimal ones achieved by the
exact method for almost all scenarios) with minimum
time complexity. The quality of the obtained lower
bound reduces significantly the search for the optimal

number of cover sets, because this search process re-
quires the resolution of an integer programming prob-
lem which is time-consuming.

Our future work will explore other possible strate-
gies to guide our algorithm and to test it on larger in-
stances. Another open area of further study is to adapt
our algorithm so that the partition of the sensors into
disjoint cover sets meet different objectives.
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