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Abstract. Dwyer et al. define a language to specify dynamic properties
based on predefined patterns and scopes. To define a property, the user
has to choose a pattern and a scope among a limited number of them.
Dwyer et al. define the semantics of these properties by translating each
composition of a pattern and a scope into usual temporal logics (LTL,
CTL, etc.). First, this translational semantics is not compositional and
thus not easily extensible to other patterns/scopes. Second, it is not
always faithful to the natural semantics of the informal definitions.

In this paper, we propose a compositional automata-based approach
defining the semantics of each pattern and each scope by an automa-
ton. Then, we propose a composition operation in such a way that the
property semantics is defined by composing the automata. Hence, the se-
mantics is compositional and easily extensible as we show it by handling
many extensions to the Dwyer et al.’s language. We compare our com-
positional semantics with the Dwyer et al.’s translational semantics by
checking whether our automata are equivalent to the Biichi automata of
the LTL expressions given by Dwyer et al. In some cases, our semantics
reveals a lack of homogeneity within Dwyer et al.’s semantics.

Keywords: Formal Methods, Temporal Properties, Compositional Au-
tomata Semantics, Temporal logics, Property Patterns.

1 DMotivations

Dynamic properties are commonly described by temporal logics such as the
Linear Temporal Logic (LTL). These formalisms are difficult to appropriate by
system designers and validation engineers. In order to ease their understanding
and writing, Dwyer et al. (denoted DAC in the reminder of the paper) propose
in [4, 5] a language of properties based on the composition of predefined patterns
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and scopes. A pattern expresses a temporal property on executions seen as se-
quences of states/events. A scope determines the parts of executions on which
the pattern must hold.

In these works, we can measure how much it can be difficult to express
properties directly by temporal formulse. For example, with the language of
DAC, one can express the following property: "the state property P’ responds
to the state property P between the state properties Q and R” by composing
the pattern P’ responds to P and the scope between Q and R. The corresponding
LTL formula given by DAC is: J((Q A—~RAOR) = (P = (-R U (P’ A —=R)))
U R). Even if the specifier is familiar with LTL, these formulee are very difficult
either to write or to understand due to the huge semantics gap between the
intuitive formulation of the property in the natural language and its complex
and error-prone translation into LTL.

Besides the natural semantics of the patterns and scopes, DAC provide formal
semantics by translation into many temporal logics, mapping each pattern/scope
combination to a corresponding temporal formula. As there are 10 patterns and
5 scopes, they had to translate the 50 combinations [3]. DAC also noted many
possible patterns/scopes variants [3], but they do not support them because
translating more than 20 pattern and 20 scope variants requires up to 400 tem-
poral formulee. Moreover, DAC have defined informally generic patterns (e.g. a
first chain of events precedes a second chain of events) that they do not succeed
to translate into equivalent generic temporal logic formulse. Hence, they trans-
lated a limited number of obvious cases (e.g. chains having only 1 or 2 events).
Extensibility and Genericity are the main limitations of such a translational
semantics.

Furthermore, this translational semantics arises two consistency limitations:

Faithfulness : DAC claim that the temporal formule were primarily validated
by peer review amongst the project members and then tested against some
(un)satisfying sequences of states/events. Hence, we have no formal guarantee
that the translated temporal formula is faithful to the intended natural semantics
associated to the pattern/scope combination;

Homogeneity : DAC define their language by clearly separating both pattern
and scope notions. From a user point of view, a pattern (resp. scope) has a
unique natural semantics never mind the scope (resp. pattern) with which it
is combined. By adopting translational semantics, they flattened this key sep-
aration and translated each pattern and each scope many times into different
formulee corresponding to the different possible combinations. Hence, the same
pattern (resp. scope) may have different interpretations according to the scope
(resp. pattern) with which it is combined.

In this work, we want a specification language (1) to make easier the ex-
pression of the temporal properties by relying on the predefined patterns and
scopes of DAC [5]. This language must be easily extensible (2) by adding new
variants of patterns and scopes thanks to a compositional semantics. Finally, we
intend to adopt an automata-based semantics (3) that is well-adapted to verify
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properties, and to generate and evaluate tests because it is provided with many
usual structural coverage criteria.

These motivations bring three main contributions that we present in this
paper. First, we define a compositional semantics giving an automaton seman-
tics combining the automata of any pattern and any scope. Second, we compare
this compositional semantics w.r.t. the LTL translational semantics given by
DAC. We will show that even though they focused on translating few specifica-
tion patterns, they give non-homogeneous interpretations to some patterns and
scopes when writing the LTL formulse. Third, We will give support to many
generic patterns and many scope variants emphasizing the extensibility of our
compositional semantics.

The paper is structured as follows. Sec. 2 recalls the property language pro-
posed by DAC Sec. 3 presents the compositional semantics of this language by
means of automata and their composition. Sec. 4 compares our semantics w.r.t.
DAC’s semantics and presents the automatization process of our approach using
an LTL transformation tool into Biichi automata and a model-checking environ-
ment to prove that our automaton is (or is not) equivalent to the LTL formula.
Sec. 5 shows the extensibility potential of the language and its semantics. Finally,
Sec. 6 concludes and gives some future works.

2 Dwyer et al.’s Property Specification Language

DAC have proposed a pattern-based approach [4]. This approach uses specifi-
cation patterns that, at a higher abstraction level, capture recurring temporal
properties. The main idea is that a temporal property is a combination of one
pattern and one scope. A scope is the part of system execution paths over
which a pattern must hold.

Patterns The patterns are temporal conditions on the system executions. DAC
propose the ten following patterns classified in the left side of Fig. 1.

— always P: the state property P must hold in all states,

— never P: the state property P does not occur in any state,

— eventually P: the state property P occurs at least once,

— eventually P at most 2 times: the state property P becomes true (after being
false in the preceding state) at most 2 times. In other words, switching from
- P to P occurs at most twice

— P precedes P’: a state property P’ must always be preceded by a state property
P within the execution interval,

— (P1,P3) precedes P’: a state property P’ must be preceded by a sequence of
states starting by a state property P; and leading to a state property P,

— P precedes (P, P}): a sequence of state properties P}, P4 must be preceded by
a state property P,

— P’ responds to P: a state property P must always be followed by a state prop-
erty P’ within the execution interval,

— P’ responds to (P1,P2): a sequence of states starting by a state property Py
and leading to a state property P, must be followed by a state property P/,
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— (P{,P%) responds to P: a state property P must be followed by a sequence of
states P7, P5.

Property Patterns Q R Q Q R Q

/ \ globally IEEEEE——

Occurrence Order

before Q INEG_g:
/ \ / \ after Q  m—
always eventually  precedes responds to :

between Q and R e—— m— N m—

never eventually chain chain
at most 2 times precedence response after Q unless R e——j— R

Fig. 1: DAC’s Patterns and Scopes

Scopes A scope determines the system execution intervals over which the pat-
tern must hold. In [4], the authors propose five kinds of scopes that are illustrated
in the right part of Fig. 1. A property is true if the pattern holds on the execu-
tion intervals represented by the thick slices of the sequences. Let p be a pattern
and s be a scope, the property p s has the following meaning:

— p globally: the pattern p must hold on the whole execution,

— p before Q: the pattern p must hold before a state property Q occurs,

— p after Q: the pattern p must hold after a state property Q occurs,

— p between Q and R: the pattern p must hold within the system execution in-
tervals from an occurrence of Q to the next occurrence of R,

— p after Q unless R has the same meaning of p between Q and R, but it must
hold even if the state property R does not occur.

It is clear that the patterns of DAC dramatically simplify the specification
of temporal properties, with a fairly complete coverage. Indeed, they collected
hundreds of specifications and they observed that 92% of them fall into this small
set of patterns/scopes [4]. Furthermore, DAC adopt translational semantics and
provide a complete library [3], mapping each pattern/scope combination to the
corresponding formula in many formalisms (e.g. LTL, CTL, Quantified Regular
Expressions, u-calculus). For example, for each scope s, this library maps the
property schema P’ responds to P s to the equivalent LTL formula as it is given
in Tab. 1.

Scope s LTL

globally OF = oP)

before Q Q= (P=(-QU (P A-Q))UQ

after Q 0@ = 0O(P = OP"))

between Q and R| O((Q A~RAOR) = (P = (-R U (P’ A—R))) UR)
after Q unless R| O(Q A-R= ((P= (-R U (P'A—=R))) W R)

Tab. 1: DAC’s LTL Mappings of P’ responds to P s

We may note that DAC define informally the generic pat-
terns:  bounded existence [eventually P at most k times], chain  prece-
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dence [(P1,...,Pn) precedes (PY,...,P.)] and chain response
[(P1,...,PL,) responds to (Py1,...,P,)]. But because of the translational se-
mantics they can only consider and translate a limited number of cases that are
the ten patterns listed above.

3 Compositional Automata-based Semantics

In our approach, the semantics of the temporal properties is defined composition-
ally by automata composition. Any pattern p is defined by a Biichi automaton
pa where the transitions are labeled by state propositions. Any scope s is defined
by a specialized Biichi automaton that has a special state, called composition
state and noted cs, in which a pattern automaton pa can be replaced. Hence, the
resulting automaton corresponding to a property p s is defined by substituting
the composition state cs of the scope automaton sa by a pattern automaton pa.
The resulting automaton is then a Biichi automaton that accepts all the infinite
executions (or runs) that satisfy the property.

3.1 Pattern and Scope Automata

Let P be a finite set of state propositions. A Biichi automaton over P is a finite-
state automaton which accepts infinite words. It is formally defined by a 5-tuple
(Q,init, F,P,T)) where Q is a finite set of states, init(€ @) is the initial state,
F(C Q) is a set of accepting states and T(C @ x P x Q) is a labeled transition
relation.

An infinite word Py, P> ... P, ...is accepted by a Biichi automaton if there

exists a run qo i Q1 2) q2 - Qn—-1 i qn - - . such that gy = init and each

step of the run is a transition (Vi € N, ¢; Pi; gi+1 € T) and the set of accepting
states within the run is infinite ({i € N | ¢; € F}).

While a pattern is described as a Biichi automaton, a scope s is a Biichi
automaton which has a composition state cs representing a generic pattern.
Hence, a temporal property p s is described by a standard Biichi automaton
that is the scope one in which the composition state is substituted by the pattern
automaton.

Definition 1 (Pattern and Scope Automata). Let P be a finite set of state

propositions. A pattern automaton is defined by a Bichi automaton pa =

(Qpa, initpa, Fpa, P, Tpa) and a scope automaton by a Biichi automaton sa o
sa U {cst, initsy, Fsa, P, Tsa) in which the set of states is the disjoint union o
) ) ) J

a set of standard states Qs; and a composition state denoted cs.

Figure 2 illustrates the pattern automata associated to the patterns presented
in Sec. 2. The initial states are pointed to by incoming arrows while the accepting
states are marked by double circles. We give here the complements of both
chain response patterns because the complements are simpler and smaller (3
states instead of 6). The reader may know that Biichi automata are closed under
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p True -P P -P P -P
p M -p M p X -p
-8 %5 8—(5 O-O0000
(a) always P (b) never P (c) eventually P (d) eventually P at most 2 times
~H P O True
-PA-P True -P' =P'A=P, True O
P -P' APy P, 7 ,
SGreng e g O
(e) P precedes P’ (f) (P1,P2) precedes P’ (g) P precedes (P17, P3)

P’ vV P , Pr
PA-P 7
True —P -P'

P 48 N e {O@

(h) P’ responds to P (i) =[P’ responds to (P1,P2)]  (j) —[(P1, P%) responds to P]

Fig. 2: Pattern Automata

complementation and there are many construction algorithms [9]. In Sec. 4, we
will explain how we proceed to automatically obtain all these pattern automata.

Fig. 3 illustrates the scope automata associated with the scopes presented
in Sec. 2. Squares are used to represent the composition states. Double squares
are accepting composition states. In Sec. 4, we will explain how we proceed to
automatically obtain all these scope automata.

-Q

(c) cs after Q

(a) cs globally

-R -QV R QAR “QVR QA-R
R R
(d) cs between Q and R (e) cs after Q unless R

Fig. 3: Scope Automata

3.2 Composition

In this subsection, we formally define the operation of substitution of the com-
position state cs by a pattern automaton pa in a scope automaton sa.

Definition 2 (Composition Operation). Let pa d:Ef (Qpa, initpa, Fpa, P, Tpa)
be a pattern automaton and sa = (Qsa U {cs},initsa, Fsa, P, Tsa) be a scope au-
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tomaton where cs is the composition state of sa. The substitution of the state
cs by pa in sa is the Biichi automaton (Q,init, F, P, T) where:

- Q = QanQsa

~init inits, if initsy, # Cs o Fy, if cs & Fg,
"~ | init,a  otherwise (Fea \ {cs}) UF,,  otherwise

— T CQxPxQ is the smallest relation defined by the following rules:
q i} q/ S Tpa
q PAR q/ cT

h def ’ d _ ’ 7" " Py
where R = A =P’ and Out(cs) = {P’ | 3¢"".(¢" € Qsa ANcs — ¢" € Tw,)}
P’ €Out(cs)

1. Pattern transitions:

P . P
q — cs € Ty, initpa — q € Thpa

PAP/
q ——q €T

2. Left-closed scope opening transitions:

P ’
. . ., — € Ty, q € Fpa
3. Right-open scope closing transitions: = ! ! 2

qu’ET

Tw, ¢, ¢ € Qu

L
i>q/€T

4. Other scope transitions: 49— 4d
q

The resulting set of states is the union of the sets of states without the
composition state cs. The initial state is the initial state of the pattern if the
composition state is initial, otherwise it is the initial state of the scope. When
the composition state cs is an accepting one, the set of accepting states is the
union of both sets of accepting states without cs. Otherwise, it is only composed
of those of the scope.

The resulting transitions are defined as follows. The rule 1 adds each transi-
tion within the pattern automaton after modifying the label into P A—-P{A---A
- P! where P/, i €[0,...,n] are the labels carried by the n transitions outgo-
ing from the composition state cs as illustrated in Fig. 4(a) where the rectangle
represents the composition state cs having two outgoing transitions. This restric-
tion of the labels on the pattern transitions is applied in order to avoid that they
capture the scope ones, hence scope transitions keep priority. For example, any
transition of the pattern P’ responds to P does not satisfy the condition R which
is the exit condition of the scope between Q and R. Indeed, the condition R must
not be satisfied (i.e. the exit of the scope must not be possible) before reaching
the pattern’s accepting state where outgoing transitions hold R (see rule 3). The
rule 2 synchronizes the transitions of the scope leading to the composition state
cs with the initial transitions of the pattern by making the conjunction of their
labels as it is illustrated in Fig. 4(b). For every transition outgoing from the
composition state cs, the rule 3 adds a transition from every accepting state of
the pattern as illustrated in Fig. 4(c). Rule 2 makes the scope interval left-closed
and rule 3 makes it right-open, this aspect will be detailed in Sec. 5. Finally,
the rule 4 adds each transition of the scope automaton in which the composition
state cs is not involved.
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Py
cs /O P A—-P]A-P}
p ,

(a) Rule 1
O =0 = OO0 [PH-® - 0@
(b) Rule 2 (left-closed) (c¢) Rule 3 (right-open)

Fig. 4: Hlustration of Composition Rules

Ezample 1 (Composition of Automata). Fig. 5 shows the Biichi automaton ob-
tained by applying the composition operation given in Def. 2 to the temporal
property P’ responds to P between Q and R.

-R -QVR (P'V-P)A-R ~P' AR
(P'V-P)AQA-R PA-P A-R

PA-P AQA-R

Fig.5: P’ responds to P between Q and R

Our composition operation is made in a linear complexity w.r.t. the size of
the pattern and scope automata. Thus, this automata-based approach yields a
technique to transform each DAC temporal property into a Biichi automaton
from two Biichi automata in a linear complexity. In contrast, building the same
Biichi automaton from the LTL formula given as translation would be exponen-
tial w.r.t. the size of the formula [7].

4 Comparison of Both Semantics

In this section, we present the experiments we conducted in order to measure the
consistency of our compositional semantics against the translational semantics
given by DAC [3]. We do so by comparing our resulting automata with the LTL
formulae given by DAC.

For these experiments, we used the GOAL (Graphical Tool for Omega-
Automata and Logics) tool [11] that is an adequate graphical tool for defining
and manipulating Biichi automata and temporal logic formulee. GOAL supports
the translation of temporal formule such as Quantified Propositional Tempo-
ral Logic (QPTL) into Biichi automata where many well-known translation al-
gorithms (e.g. LTL2BA [6]) are implemented and most of them support past
operators. It also provides language equivalence between two Biichi automata
thanks to efficient complementation, intersection and emptiness algorithms. As
the recent implementation of GOAL is based on the Java Plugin Framework,
it can be properly extended by new plugins, providing new functionalities that
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are loaded at run-time. We implemented our composition algorithm within an

independent plug-in that we make available at the web page [10].

The process we applied to do our experiments can be summarized as follows:

1. We used the DAC’s LTL formulze that correspond to the properties combining
any pattern with the globally scope to generate the patterns automata using
GOAL. These formule are shown in Tab. 2 within the globally column. Note
that, using our composition operation, the substitution of some pattern p
within the scope globally keeps unchanged the automaton pa. This is the way
we obtained the pattern automata previously presented in Fig. 2.

2. We used the DAC’s LTL formulse that correspond to the properties com-
bining the always P pattern with any scope to generate the scope automata
using GOAL. These formulse are shown in Tab. 2 within the always P row.
Interpreting the unique state having the P loop transition as the composition
state, we obtained the scope automata previously presented in Fig. 3.

3. We ran our composition to automatically generate the automata for all pat-
tern/scope combinations. We compared them with the automata obtained
directly from the corresponding DAC’s LTL formula given in [3]. The results
of the comparison are given in Tab. 2. For each combination, the automaton
of the translational semantics may be equivalent (=), strictly included (C),
strictly superior (D) or not included nor superior (#) to the automaton given
by composition. The non-equivalent cases are indexed by a case number which
we use below to explain the reasons behind the mismatching.

globally before R| after Q |[between Q and R| after Q unless R
always P Oop OR = O-Q)v 0@ A =R = 0@QA -R =
(=P UR)|O(QAOP)|(-RW (P A=R)))|(-RU(PA=R)))
never P O-pP = = = =
eventually P OP c (1) = c(2) c (2)
eventually P (=P W (P W (=P = = = =
at most 2 times w (P w O-P))))
P precedes P’ -P'wP = S (3) c (2 c(2)
(P1, P2) precedes P’ oP' = (=P’ U (P1A = = c (2) c (2)
=P’ A O(=P’ U Py)))
P precedes (P7, P}) (0(P{ A OOP)) = = = c @ c @
((=P{) U P))
P’ responds to P 0P = oP’) = = = =
(P1,P]) responds to P [O(P = o(P{ AOOPI)|| 2 (9 = S @ S @)
P’ responds to (P1, P2) O(PL A OOPy = £ (5) = # (5) £ (5)
O(0(P2 A OP)))

Tab. 2: Comparison between DAC’s Semantics and Compositional Semantics

Tab. 3 provides for each mismatching case the formula proposed by DAC and
the corresponding formula (verified using GOAL) to the composition automaton
we obtained by our composition algorithm. We call this formula composition
formula and we underline the differences. We use the symbol & for “previous”
(resp. B for “back-to”) to represent the past-time dual operator of the future
operator () for “next” (resp., W for “weak-until”). We use the past temporal
operators only in case (2) to obtain a concise formula. The reader may know
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that past-time modalities do not add expressive power to future linear-time
temporal logic but it can be exponentially more succinct [8].

Mismatching cases DAC’s Formula Composition Formula

(1) eventually P before R “RW (P A —R) C |R_VY_-RW (P A-R)

(2) eventually P/Precedence

between Q and R/after Q unless R|J((Q A —=R) = ...) C|lO(QAS(-QBR)A=R)=...)

(3) P precedes P after Q O0-QVo(QA (=P WP)H D|O-QVv(=QU (QA (=P W P)))

(4) (P1,P}) responds to P ..(P=> (~RU(P{A-R|DJ[...(P=> (-RU (P{ A—-R

before R/ ... AO (-RUPH ... A O (~R U (PJA=R)))) - - -

(5) P’ responds to (P1, P2) ...(PLAO(-RUPy) = | # |...(Pf AO(-R U (PyA=R)) =

before R/ . .. O(=R U (Py AOP')) ... O(=R U (Pa A (=R U (P A=R))))) ...

Tab. 3: Mismatching Cases

The mismatching case (1) emphasizes that DAC’s formula does not recog-
nize the case where R occurs at the initial state, so the interval of the scope
is empty since the interval is right-open (see details in Sec. 5) and the prop-
erty eventually P before R is obviously true. It was an oversight as all other LTL
formulz of the before scope handle such empty interval cases.

Considering case (2), DAC mention in the notes published in [3] that the first
occurrence of Q opens the intervals of the scopes after Q, between Q and R and
after Q unless R (See the right part of Fig. 1). However, some of the proposed
formulee are unfaithful to the first occurrence semantics as they consider all
occurrences of Q. For example, the trace of Fig. 6a that verifies the property
P precedes P’ between (first) Q and R, is accepted by our generated composition
automaton (equivalent to J((Q A "R A& (-Q B R)AOR) = (=P U (P'V
R)))), but it is rejected by the formula given by DAC (i.e. O((Q A =R AQR) =
(=P U (P'VR)))). The past predicate &(—Q B R) (i.e. previous (- back-to R))
ensures that only the first occurrence of Q is considered as there is no occurrence
of Q in the past since the last occurrence of R if there is any. We note here
that expressing with future modalities the first occurrence of Q following some
occurrence of R in between Q and R or after Q unless R, is tedious. For example,
the equivalent pure future formula of P precedes P’ between (first) Q and R is:

(" QA-RAOR)W (QAN-RAOR) AN (-P' W (P V R))))
AOR= ((QAN-RAOR)W (QAN-RAOR) A (-P" W (PV R))))).

Q P Q P’ R Q P’ Q P P’ Py Py R P’
C--C--20---0O---0 G -0 -C--0O-- 0 C--2C---0---0
(a) case (2) (b) case (3) (c) case (5)

Fig. 6: Mismatching examples

In case (3), the formulse proposed by DAC consider any occurrence of
Q (O(Q A ...)) rather than the first occurrence (-Q U (QA...)). As a
typical example, the trace of Fig. 6b that does not verifiy the property
P precedes P’ after Q, is rejected by our generated composition automaton but
it is accepted by the formula given by DAC.
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Cases (2) and (3) are quite similar and the question “why such a mis-
matching does not happen for other patterns?”’ obviously arises. There are
two answers depending on cases. In most cases, DAC handle the first oc-
currence semantics within their LTL formulse, in other cases, patterns are
response-oriented properties where the all and first occurrence of Q seman-
tics are equivalent. For example the LTL formula given by DAC of the property
P’ responds to P after Q, i.e. O(Q = O(P = OP’)) (all occurrences) is equiva-
lent to ours 0Q = (-Q U (Q A O(P = OP'))) (first occurrence).

DAC have chosen to define scopes as right-open intervals that do not include
the state marking the end of the scope [3]. In case (4) and a part of case (5), DAC
provide formulee where Pj and R can occur simultaneously; that is unfaithful to
the right-open scope semantics.

In case (5), the DAC formula of P’ responds to (Py, P2) using the modality
eventually (OR) does not require that the response P’ occurs within the scope!
(i.e. before R). For example, the trace of Fig. 6¢ that does not verify the prop-
erty P’ responds to (Pq, P,) before R, is rejected by our generated composition
automaton but it is accepted by the formula given by DAC.

The experiments, we did here, show the homogeneity of our composition
semantics and reveal many different interpretations of the same scope within
the translational semantics given by DAC. This emphasizes that it is difficult
to give faithful LTL translation to all combinations of patterns and scopes. Our
composition semantics brings a valuable consistency.

5 Genericity and Extensibility of the Approach

In the following, we will show the genericity and extensibility of our composition
semantics. First we propose some generic patterns and some variant scopes that
are not supported by the translational semantics of DAC and then we show their
corresponding representation using our automata-based approach.

5.1 Generic Patterns and Variants of Scopes

First, we consider generic patterns that DAC have defined informally but they
do not succeed to translate them into equivalent generic temporal logic formulas,
hence they only translated a limited number of obvious cases.

— In DAC’s work, the pattern eventually has only two forms: eventually P
means that P is true at least once and eventually P at most 2 times means
that the states switch from —P to P at most twice (see Fig. 2). We
consider three new generic variants to this pattern: eventually P k times,
eventually P at least k times and eventually P at most k times that mean re-
spectively: the state P becomes true exactly k times, at least k times and
at most k times where k is some natural integer constant.

— Similarly, we propose three generic variants of the eventually pattern con-
sidering the number of all occurrences of state P rather than the number
of switching occurrences from —P to P. We call them precisely P k times,
precisely P at least k times and precisely P at most k times.
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— Finally, we consider both Chain Precedence and Chain Response pat-
terns having the generic forms [(Py,...,P,) precedes (P7,...,P/)] and
[(Pi,...,PL,) responds to (Py,...,Py)].

Next, we propose some enhancements to improve the expressiveness of scopes.

These enhancements are inspired by the DAC’s notes [3] and our needs within

the TASCCC project [1].

— DAC have chosen to define scopes as right-open intervals (i.e. left-closed) that
include the state marking the beginning of the scope, but do not include the
state marking the end of the scope. We extend scopes with support to open
the scope on the left or close it on the right. Hence, we add one variant for
both the before _ and after _ scopes and three supplementary variants for the
between _ and _ and after _ unless _ scopes. We chose DAC’s semantics as the
default semantics.

— In DAC’s work, between Q and R and after Q unless R scopes are interpreted
relatively to the first occurrence of Q (see Fig. 1). We keep the first occurrence
as default semantics and we add variants to support the last occurrence
semantics.

The syntax of our extended pattern-based language is summarized in Fig. 7.
Non-terminals are indicated by italics, keywords are in policy and terminals are
underlined. For example a is an atomic proposition. (...)? designates an optional
part. The element P stands for a state property which is a boolean proposition
over the alphabet of the different atomic propositions and the optional element
‘" or ]’ stands for the interval’s nature, open or closed at each endpoint.

Property ::= Pattern Scope
Pattern ::= always P
| never P
| (eventually | precisely) P ((at least | at most)? integer times)?
| Chain precedes Chain
| Chain responds to Chain
Scope  ::= globally
| before P (‘| ])?
| after (‘[ | ])? P
|
\

between (‘[ | |")? last? P and P (‘[ | ])?
after (‘' | ])? last? P unless P (‘[ | ])?
Chain == P | P ‘) Chain
P n=altrue| =P | PV P

Fig. 7: Syntax of Enriched DAC’s Temporal Properties

5.2 Variant Semantics

The generic patterns and the last variants of scopes such as between last Q and R
are directly expressed in our approach by describing their suitable automata,
since their semantics does not have impact on the composition definition (Def. 2)
given in Sec. 3. Fig. 8 shows graphically their associated automata.
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-P P -P -P -P P -P True -P P -P -P
gP%ﬁPgP 6 gp%ﬁng 6 gpgﬁPgP é
P xk— P xk—— P xk—
(a) eventually P k times (b) eventually P at least k times (C) eventually P at most k times
-P -P -P -P -P True -P -P -P
§ o 8e. . § B e fr. § [ b8
— xk — — xk — — xk —
(d) precisely P k times (e) precisely P at least k times (f) precisely P at most k times
—Py A-P] =P, A-P{ True
-P] } Py A=P| Pn_1 A=P] Pn
SO -
_p! p True  -P»
, P ! % P Pl
(g) (P1,...,Pn) precedes (P,...,P.) (h) =[(P{,...,P.) responds to (P1,...,Py)]

-QVR

QA-R

(i) cs between last Q and R (J) cs after last Q unless R

Fig. 8: Automata of Generic Pattern and Scope Variants

However, the scopes variants on the closure and opening of the intervals such
as before Q | or after | Q require some generalizations in the composition defini-
tion. Indeed, in Def. 2, we did not make a distinction between right-open and
right-closed intervals, and left-open and left-closed intervals. We have chosen by
default the right-open and left-closed intervals as initially given by DAC [4, 3].
An interval left /right-open corresponds to a strict composition while a left /right-
closed corresponds to a non-strict composition. A strict composition means that
given a composition state cs, its ingoing transitions should be completely exe-
cuted before the transitions outgoing from the initial state of the pattern au-
tomaton are triggered (left-open, see Fig. 9a), and the transitions ingoing in
the accepting states of the pattern automaton should be completely performed
before the outgoing transitions of cs are triggered (right-open, see Fig. 4c). A
non-strict substitution means that the transitions outgoing from the initial state
of the pattern automaton should be simultaneously executed with the ingoing
transitions of cs (left-closed, see Fig. 4b), and the transitions ingoing in the ac-
cepting states of the pattern automaton should be simultaneously executed with
the outgoing transitions of cs (right-closed, see Fig. 9b).

Hence, to describe sequencing relationships between the states of the scope
automaton and the pattern automaton at the left and the right borders of the
composition state, we add the following rules 2’ and 3’ to the composition defi-
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P ~ P 7 /
© 49, (D) () > (D)

(a) left-open (b) right-closed

Fig. 9: Illustration of Left-open and Right-closed Composition Rules

nition Def. 2 :
- -y Ly s € T
2°. Left-open scope opening transitions: e e
q — inity, € T
P P,
9 — Gpa € Tha, Gpa € Fpa, s — q° € T

PAP’
s g eT

8’. Right-closed scope closing transitions:

Due to the compositional semantics we adopted to support the patterns and
the scopes proposed by DAC, our language is generic and easily extensible.
To add a new variant of any pattern or any scope, it suffices to describe it
once in terms of an automaton. This is much easier than specifying all resulting
combinations in LTL. We only need to specify the n patterns plus the m scopes
to generate the n X m combinations. In our extension for [1], we have identified
above 12 patterns and 21 scopes. To describe them using DAC’s semantics, we
need to translate 252 combinations whereas following our approach, it suffices
to specify the 17 scheme of automata of Fig. 2, Fig. 3 and Fig. 8.

6 Conclusion and Future Work

In this paper, we present a compositional semantics of the DAC’s property lan-
guage. It is defined by the automata of the patterns and the scopes and by the
composition operation. We compare it with DAC’s translational semantics asso-
ciating an LTL formula with each pattern/scope combination. This comparison
emphasizes the homogeneity of our semantics and reveals that the interpreta-
tions of many scopes within their semantics are unfaithful w.r.t the informal
definitions given in [4, 5].

Our semantics being compositional, the property language is generic and
easily extensible. In this paper, we have shown that handling generic patterns
and adding new scope variants, only require to give their semantics by automata.
Then, the composition operation gives the semantics of all properties that can be
described by combining any new pattern with all existing scopes and combining
any new scope with all existing patterns. We also made explicit both the closing
and opening default choices of the DAC’s semantics by generalizing the com-
position operation. Moreover, our approach, consisting to choose a scope and a
pattern automata, is more efficient for automata-based verification of properties
or coverage evaluation of test sequences than a method which consists to choose
an LTL formula because it replaces the exponential LTL formula translation into
automata by a linear automata composition.

In [2], we are currently using this approach for the evaluation of the coverage
of dynamic properties (described as a pattern and a scope composition) by a
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test suite. The works that we present here are limited to combine one pattern
with one scope. We aim to generalize this work by combining several patterns
with a succession of scopes.
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