
Distributed and Dynamic Map-less Self-reconfiguration for Microrobot Networks

Hicham Lakhlef, Hakim Mabed, and Julien Bourgeois
UFC/FEMTO-ST, UMR CNRS 6174, 1 cours Leprince-Ringuet, Montbeliard, France

{hlakhlef, hmabed, julien.bourgeois}@femto− st.fr

Abstract—MEMS microrobots are low-power and low-
memory capacity devices that can sense and act. One of
the most challenges in MEMS microrobot applications is the
self-reconfiguration, especially when the efficiency and the
scalability of the algorithm are required. In the literature,
if we want a self-reconfiguration of microrobots to a target
shape consisting of P positions, each microrobot should have
a memory capacity of P positions. Therefore, if P equals to
millions, each node should have a memory capacity of millions
of positions. Therefore, this is not scalable. In this paper, nodes
do not record any position, we present a self-reconfiguration
method where a set of microrobots are unaware of their current
position and do not have the map of the target shape. In other
words, nodes do not store the positions that build the target
shape. Consequently, memory usage for each node is reduced
to O(1). An algorithm of self-reconfiguration to optimize the
communication is deeply studied showing how to manage
the dynamicity (wake up and sleep of microrobots) of the
network to save energy. Our algorithm is implemented in Meld,
a declarative language, and executed in a real environment
simulator called DPRSim.

Keywords-distributed algorithms; DiMEMS; MEMS micro-
robot; self-reconfiguration; physical topology; optimization;
mobility; dynamicity; energy

I. INTRODUCTION

Micro-electro-mechanical systems (MEMS) is a technol-
ogy that enables the batch fabrication of miniature mechan-
ical structures, devices and systems that can sense and act.
Their applications require a massive deployment of nodes,
thousands or even millions [16] which will give birth to the
Distributed Intelligent MEMS (DiMEMS) [3].

Microrobots systems have a wide range of applications
such as odor localization, firefighting, medical service,
surveillance, search, rescue, and security. To do these tasks
the nodes have to perform the self-reconfiguration. Self-
reconfiguration can be seen from two different points of
view. First, it can be defined as a protocol, centralized or
distributed, which transforms a set of nodes to reach the
optimal logical topology from a physical topology [7], e.g,
the chain represents the worst complexity case with O(n),
the square represents the best one with O(

√
n). On the

other hand, the self-reconfiguration is built from modules
which are autonomously able to change the way they are
connected, thus changing the overall shape of the network.
This process is difficult to control, because it involves the
distributed coordination of a large numbers of identical
modules connected in time-varying ways. Optimizing the

energy cost of self-reconfiguration algorithms has a direct
impact on the energy efficiency of any swarm.
Mobility and dynamicity of the system are making the
problem even harder to handle as the logical topology of
the system has to be stored in a distributed structure, as
the spanning tree. The range of exchanged information and
the number of movements determine the communication
and the energy complexity of the distributed algorithm.
When the information exchange involves close neighbors,
the complexity is moderate and the resulting distributed self-
reconfiguration scales gracefully if the algorithm does not
need the predefined positions of the target shape.

This work takes place within the Claytronics project and
aims at optimizing the logical topology of the network.

II. RELATED WORKS

Many terms refer to the concept of self-reconfiguration.
The self-organization term can be found in protocols for
sensors networks to form a sphere or a polygon from a center
node [12], [13]. The term redeployment is also a new term
to address self-reconfiguration for sensor networks [8], [5].
For self-reconfiguration with robots or microrobots, there
is the protocol in [15] where the desired configuration is
grown from an initial seed module. A generator uses a 3D
CAD model of the target configuration and outputs a set of
overlapping blocks which represent this configuration. In the
second step, this representation is combined with a control
algorithm to produce the final self-reconfiguration algorithm.
Among the centralized algorithms we find centralized self-
assembly and/or reconfiguration algorithms [14]. Other ap-
proaches give each node a unique ID and a predefined
position in the final structure; see for instance [17]. The
drawback of these methods is the centralized paradigm
and the need for nodes identification. More distributed
approaches in [6], [9], [10], [11]. Claytronics, is a project
led by Carnegie Mellon University and Intel corporation. In
Claytronics, microrobots called catoms (Claytronics atoms.
The idea is to have hundreds of thousands of microrobots
forming by self-reconfiguration together objects of any shape
or size. Many works have already been done within the
Claytronics project. In [4], the authors propose a meta-
model for the reconfiguration of catoms starting from an
initial configuration to achieve a desired configuration using
creation and destruction primitives. The authors use these
two functions to simplify the movement of each catom. In

[2], a scalable protocol for Catoms self-reconfiguration is
proposed, written with the MELD language [1] and using the
creation and destruction primitives. In all these works, the
authors assume that all Catoms know the correct positions
composing the target shape at the beginning of the algorithm.

III. CONTRIBUTIONS

In this paper, we propose a new distributed approach for
self-reconfiguration of MEMS microrobots, where the target
form is built incrementally, and each node in the current
increment acts as a landmark for other nodes to form the
next increment, which will belong to the form. We introduce
a state model where each node can see the state of its
physical neighbors to achieve the self-reconfiguration, using
the states the nodes collaborate and help each other. In this
paper each node predicts its future actions (movements), so
it can compute the energy amount that will spend before the
beginning of the algorithm. The prediction property makes
the algorithm robust and energy-aware, because the node can
make sure that it has correctly followed the algorithm and
it is aware of the amount of energy that it will use. Also,
to keep the energy and to augment the probability that the
node will finish its task, each node is aware of the time slots
where it can sleep to save energy.

In the proposed algorithm, the exchange of messages
is limited to the construction of the spanning tree. The
spanning tree is used to ensure the connectivity of the
network and dynamically manage the nodes that can move.
Contrary to existing works, in our algorithm each node
has no information on the correct positions (predefined
positions) of the target shape, the algorithm does not need
to know the network size (nodes number) and movement of
microrobots is fully implemented.

We propose an efficient distributed algorithm for nodes
self-reconfiguration where each node moves by rotation
around their physical neighbors. We study the case of a self-
reconfiguration from a chain of microrobots to a square. The
performance of the self-organization algorithm is evaluated
according to the number of rotations and the time taken.
In this paper the MEMS network is organized initially
as a chain. By choosing a straight chain as the initial
shape, we aim to study the performance of our approach
in extreme case. Indeed, the chain form represents the worst
physical topology for many distributed algorithms in terms
of fault tolerance, propagation procedures and convergence.
Indeed, the number of direct contacts between macro-robots
is minimal and secondly the average distance between two
robots (in terms of number of hops) is of (n+ 1)/3 where
n is the number of robots.

We present the results of the simulations made with the
declarative language Meld [1] and the open-source simulator
DPRSim [18].

R

M0

P1

P2

P3

P4

P5

P6

EW

NE

SE

NW

SW

wt

y

x

O

V
M(x(t), y(t))

Figure 1. Node modeling,
in each movement the node
travels the same distance.

Figure 2. Two catoms.

 D2

 D1
A

B

A

A

Figure 3. Traveled distance in one movement = 2R, the node A travels
2R in one movement

IV. MODEL AND DEFINITIONS

Within Claytronics, a catom (figure 2) called in this paper
a node is modeled as a sphere which can have at most six
neighbors. Each node is able to sense the direction of its
physical neighbors (east (E), west (W), north-east (NE),
south-east (SE), south-west (SW) and north-west (NW)).
In this work, the starting physical topology is a chain of
n nodes linked together. A chain is a connected set of
nodes where each node has two neighbors excepting the two
extremities having one neighbor. We will take the example of
nodes that have neighbors in NW and SE directions and we
will show after how to generalize. A node A is in neighbor’s
list of node B if A is physically linked to B. In Claytronics,
communications are only possible through contact (i.e. only
neighbors can have a direct communication).
Snap−Connectivity : A dynamic network ensures a Snap-
Connectivity, if in all rounds of the algorithm the network
is connected (there is always a path between two nodes).
Spanning tree: Is a graph composed of all nodes without
any cycle. In the spanning tree, a node is either a child or
a parent, a leaf is node without children.
We call the own movements of a given node the number
of movements performed by. Consider the figure 1 which
represents a microrobot. We say that a microrobot has done a
single movement if the distance between its former position
and its new position is exactly twice the radius D1 = 2R.
For example, if the node is in a position at a distance D2
(see the figure 3) from the former position it has done two
movements. We assume (and according to the simulation
tools) that the change of message (consultation) between
two physical neighbors is carried without complexity (0
message), while the distance between them is zero. If a node
to decide needs to know the state of a non-physical neighbor
message exchange is required.

V. PROPOSED PROTOCOL

A. Dynamic Algorithm with Safe Connectivity (DASC)

In DASC, each node can only move around its physical
neighbor. To ensure snap-connectivity only nodes that do not
cause network non-connectivity can move around neighbors.
For this purpose we introduce the use of the tree to dynam-
ically manage the leaf nodes authorized to move.
Description of the algorithm
The algorithm runs in rounds. In each round, satisfied
predicates are executed. In a current round predicates with
best priority are executed while others with lowest priority
are ignored. We notice that in DASC, the state change
actions, represented by predicates labeled P1, are considered
more prior than a movement actions represented by P2.
The distributed algorithm seeks the desired form by an
incrementally process. In a completed increment, the nodes
that build it belong already to the form. The initiator which
is the root initializes the tree and becomes a parent of itself
(5). A node if it does not have a parent becomes a child
of one of the neighbor parents (6), a node is a leaf if all
its neighbors are parents (7). At the beginning all nodes
are initialized with the bad state with predicate (2). The
initiator belongs to the target shape, so it changes its state
to good (3), it will help its neighbors or future neighbors to
take correct positions. The nodes already in the target shape
act as a benchmark to neighbor or future neighbor nodes to
complete a new layer. The nodes already in the form change
their states with the predicate (3) and (8) and they become
constant, the node can check if its neighbor have the good
state with the predicate (3) and (8). The node that starts the
move is the lowest node in the chain that is the first leaf of
the first tree built, it rises until the root using motion around
other nodes with predicates (11) and (12). The nodes of the
current layer (layer being built) may make motion either at
left directly or NW directly with the last three predicates.
The node can change its state to good with predicate (3) if
it cannot move to left or in NW. With the predicate (13)
the node moves at left, it will have the neighbor that used it
to move at NE direction, it repeats the same motion until it
arrives to the diagonal node that have the state spe, it cannot
move around this last only if the diagonal node has not a
neighbor node in the E direction. Diagonal nodes take the
state spe with the predicate (4) and (10), and with (14) the
node moves until it takes a correct position. The state change
has a priority as the moving actions to avoid bad motion,
because of this we introduce the priority in our algorithm.
To avoid message exchange the node can change its state to
good if it has 3 neighbors having the state good (9) or one
neighbor has spe state and has neighbors in the both NE
and NW directions with predicate (10).

Variables and predicates
- v, u, u1, u2: variables denote a node belongs to the

network.
- {U}:set of nodes.
- good, bad, spe: states, a node can take one or two
states at the same time, but not spe and bad or good
and bad.
- Nx(v): the neighbor in the direction x of the node
v: x ∈ {(N), (E), (W), (NE), (SE)or(NW)}.
- connectedv: true if the node v is connected to the
network, false else (Boolean).
- Statev(k): the state of the node v, taking one or two
of these values k = good, bad or spe.
- Statev(s, good): the node v has s (s an integer)
neighbors that have the good state State(good) .
- moveAroundgoodv(u, Px): move around the neigh-
bor u in such a way that u becomes a v’s neighbor in
the direction x relative to v.
- Parent(v, u): the node v is parent of node u.
- isLeaf(v): the node v is a leaf in the tree.

Predicates checked only in the first round
1: Initiator(v) ≡ (¬Nnw(v) =) ∧ connectedv .
2: Statev(bad) ≡ connectedv ∧ ¬Initiator(v).
3: Statev(good) ≡ Initiator(v).
4: Statev(spe) ≡ Initiator(v).

Predicates checked in each round

5: Parent(v, v) ≡ Initiator(v).
6: Parent(v, u) ≡ (Parent(w, v), u 6=
w) ∧ neighbor(v, u) ∧ Stateu(bad) ∧ (6 ∃z ∈
N(v), Parent(v, z)).
7: isLeaf(v) ≡ (∀u ∈
N(v),¬Parent(v, u) ∧ ¬Parent(v, v)).
8: (P1): Statev(good) ≡ (Ne(v) =
u ∧ Stateu(good) ∧ ¬Nne(u)) ∨ Statev(3, good) ∨
(Statev(2, good) ∧ (Nne(v) = u ∧ Stateu(spe)) ∨
(Nw(v) = u ∧ Stateu(good))) ∨ Statev(spe).
9: Statev(s, good) ≡ (Nx(v) = {U} , |U | =
s ∧ State{u}(good)).
10: (P1): Statev(spe) ≡ (Nnw(v) =
u1)) ∧ (Nne(v) = u2, Stateu2(spe)).
11: (P2): moveAroundbadv(u, Pe) ≡ isLeaf(v) ∧
Statev(bad) ∧ (Nnw(v) = u ∧ Stateu(bad)).
12: (P2): moveAroundbadv(u, Pse) ≡ isLeaf(v) ∧
Statev(bad) ∧ (Nne(v) = u ∧ Stateu(bad)).
13: (P2): moveAroundgoodv(u, Pne) ≡ isLeaf(v) ∧
Statev(bad) ∧ (Nnw(v) = u ∧ Stateu(good)).
14: (P2): moveAroundgoodv(u, Pe) ≡ isLeaf(v) ∧
Statev(bad) ∧ (Nne(v) = u ∧ Stateu(good)).

the DASC Algorithm .

B. Predicting the number of movements for each node

To form the matrix of our square with NxN nodes, we
begin with an incremental process with a single node that

we assume in a correct square 1x1. After, we add each time
a new layer contains the number of nodes of the last column
plus the number of nodes of the last line of the current square
plus one node. Considerer the figure 4, the node i will take
a position p+x. Following the path from top to bottom the
node i will never move or move after all nodes after it, so if
node A is before B, A will take a position p+c, and node B
will take a position p+ k, with c > k. Adding layers, each
time we add a new layer with number of nodes equal to the
number of nodes of the previous layer plus two nodes, this
can be expressed on the form of this numerical sequence:

Uj = Uj−1 + 2. (1)

Where: Uj is the number of nodes in the layer j and Uj−1
is the number of nodes in layer j − 1.
In the chain we take a partitioning of the nodes to levels,
a level can be associated to one or many nodes. The nodes
take their levels with this following process: the first nodes
that have i ≤

√
n take the root level (level 0), for the

other nodes, the first x = (2
√
n − 2) nodes after the node

i =
√
n take the first level (level 1), and the second x − 2

nodes take the second level and so on (figure 4 shows an
example). So each node i gets one level at the end.
The number of movements for each node i of level j can
be given with the composition of two sequences Ui,j and Rj .

Rj =

0, if j = 0

2
√
n− 5, if j = 1

Rj−1 − 2, otherwise

(2)

With Rj is a number associated to nodes having the level
j and n is network size.

Ui,j =

0, if i ≤

√
n

2, if i =
√
n+ 1, j = 1

Ui−1 −Rj , if l(i+ 1) 6= j

Ui−1 + 2, otherwise

(3)

Where: Ui,j and Uj is the number of movements of node i
having level j or the number of movements rounds of nodes
having the level j and n is the network size.

Theorem 5.1: n is highest number of movements in this
algorithm.
Special case This case deals with the situation when the
number of nodes is not a square root. We assume it r. To
calculate the own movements we take a similar partitioning
to the previous. In this special case also r is the number
of movements. The next lines are used to express the own
movements for each node.
Let n = b

√
rc, and diff = r − n2.

1

2

3
4

5
6

7

8
9

10

11

12
13

14

15

16

L0

L1

L2

L3

L
Si

L
Si

p

p+15

p+1

p+2 p+3

p+4

p+5

p+6 p+7 p+8

p+9

p+10

p+11

p+12 p+13 p+14 p+15

Figure 4. Example of nodes partitioning into levels and the final positions
of nodes

Rj has the same definition in (2).

Ui,j =

0, if i ≤ n.

diff + 2n− 1, if i = n+ 1.

Ui−1 − 2, if n+ diff ≥ i > n.

diff + 2, if i = n+ diff + 1.

Ui−1 −Rj , if i > n+ diff, l(i+ 1) 6= j.

Ui−1 + 2, otherwise.

(4)

C. Energy saving
Sleeping state is used to save energy and awake state is

used to do the task for each node. The node cannot enter to a
sleep state by changing its state to good since the node after
changing its state to good becomes a reference for neighbors
or future neighbors and it should help its neighbors so
they can take correct positions belong to the final shape.
So, it should stay wake to send messages (consultation) to
neighbor nodes that need to know its state to decide. The
aim of the following functions is to find with an optimal
and deterministic method the time slots when the node must
wake up to help neighbors and where the node must sleep
to save energy. The following functions have a form of
mathematical sequences which are in fact messages. Thus,
by receiving the information from its neighbor the node can
know its value which refers to the time of entering wake or
sleep state. We take a partitioning of nodes to levels, each
node will have a level l(i), and some nodes take special level
say lsi. Nodes with i ≤

√
n take the level 0. For the others

nodes: the x = 2
√
n − 2 nodes after i =

√
n take level 1.

After, the following x − 2 nodes take the following level
(level 2) and so on. A special level lsi is associated to some
nodes: node 4

√
n−4 takes the level lsi, the following node

that takes the level lsi is the one after y = 2
√
n − 5, and

the the following node that will take the level lsi is the one
after y − 2 nodes and so on. Figure 4 shows an example.
Once the node has taken a child (in the tree) it may enter
to the sleep state and it must wake up at time when it will
have new neighbors, it is the time to reach it for nodes that
are going up. The root node starts the building of the tree
at the round t0, it becomes a parent and enters into sleep
state to save energy. Since the first leaf node will move n

rounds, (to become root’s neighbor in the E direction) it
will be neighbor of the root at the time n− 1. So, the root
adjusts the local clock to wake up at n − 1 + O(n)(with
O(n)) is the time the first tree) in order to collaborate with
its new neighbors. Similarly, other nodes are waiting for the
construction of the first tree and enter into sleep sate after
having a child, each node located after z nodes from the root
enters into awake state at n− z − 1 +O(n). The sequence
Si expresses in term of n

the time when each node can enter into sleep state after
helping its neighbors to take correct positions.

Ti =

{
7, if i = 1.

Ti−1 + 4, otherwise.
(5)

Where : Ti is a number associated to node i, i ≤
√
n−2.

Ij =

{
2
√
n− 1, if j = 3.

Ij−1 − 2, otherwise.
(6)

Where : Ij is a number associated to node i has evel j > 1.

Si =

n+ 2, if i = 1.

Si−1 + Ti−1, if i ≤
√
n− 1.

Si−1, if i =
√
n ∨ i =

√
n+ 1.

Si−1 + 2
√
n− 4, if l(i) = 2 ∧ l(i− 1) = 1.

Si−1 − 2, if ls(i− 1).(E)

Si−1 − Ii, if l(i− 1) 6= l(i).

Si−1 − 1, otherwise.

(7)

Where : Si +O(n) refers to the sleeping time for node i.

D. Generalization of the algorithm (DGASC)

We have presented an algorithm that deals with one case
of the chain, exactly with the case where nodes can have at
the beginning neighbors in directions SE or NW or in both
directions at the same time. To show how to generalize the
algorithm in order to deal with any chain at the beginning it
is important to show how to distinguishing the initiator (the
root) whatever the case. For other nodes can know what
form of chain is by looking at the direction of their two
neighbors. The root can be distinguished with principle that
it has only one neighbor in the direction SW or SE or E,
obviously whatever the shape of the chain we cannot find
one where another node that has only one neighbor in the
direction SW or SE or E, other nodes have two neighbors
in the same time one in the direction D and the other in
the inverse direction say −D for examples: one neighbor in
SE direction and the other in the direction NW (NW-SE),
SW and NE (NE-SW) or E and W(W-E). The last node in
the chain has one neighbor in the direction NW, NE or W.
After recognizing the form of chain, an algorithm similar
to DASC presented is called, for example if the chain was

with the form where the nodes can only have neighbors in
the directions NE or SE or in both directions, we have to call
DASC−d if we define DASC−d as the previous algorithm
but the move is made from NE to NW or to W or from NW
to W.

VI. SIMULATION

We have done the simulation with the declarative language
Meld using DPRSim. In our simulations the radius of the
node is 1 mm. We simulated with a laptop with processor
Intel(R) Core(Tm) i5, 2.53 Ghz. The results of these sim-
ulations come to agree the results obtained previously, in
particular the number of movements for each node and the
effectiveness of dynamicity. The nodes applied the procedure
of partitioning to levels and predicted with the two functions
Ui,j and Rj the number of movements for each node, at
the end of the algorithm each node compares the results
of prediction to the results calculated by it. The figure 6
represents the overall number of movements in the networks
corresponds to

O =

i=n,j=
√
n−1∑

i=1,j=0

Ui,j (8)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000

T
ic

ks

Nodes

DASC
DASC’

Figure 5. Execution time.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 200 400 600 800 1000 1200

ov
er

al
l n

um
be

r
of

 m
ov

em
en

ts

Nodes

Figure 6. The overall number of movements in the network.

The nodes applied the procedure of nodes partitioning into
levels and obtain with the function discussed previously the
time slot when they enter into the sleep state and the wake

up state. The figure 5 represents the execution time in ticks
by the number of nodes, with counting the tree (DASC’) and
without counting the tree (DASC). In the curve representing
the number of movements, we remark for some values of the
network size n, the number is always n as found in theory.
For the curves that represents the execution time figure 5,
without counting the time of construction of the tree of
DASC we see that if the number of nodes increases the time
increase. If we count the time of the tree (O(n) time), the
execution time of the algorithm increases dramatically. As
conclusion, to ensure a Snap-connectivity through all time
slots of the algorithm and to manage dynamically the nodes
that can move, we have to use the tree, and by using the
tree, we need more time to achieve the self-reconfiguration.

VII. CONCLUSION

In this paper, we presented a new method to complete
the self-reconfiguration where the nodes do not know the
fixed positions of the target shape but only the aimed shape;
nodes collaborate and help each other by analyzing the
characteristics of the target shape. Compared to the literature
works this algorithm is scalable because each node needs
only three state to achieve the self-reconfiguration. Nodes
in our paper can perform the algorithm regardless the place
where they are because the algorithm is independent of
the map, that what we call portability. We have presented
a protocol that guarantees the connectivity throughout the
execution time of the algorithm. The proposed algorithm
is characterized by a constant memory needs and message
exchange is limited to neighboring consultations. Conse-
quently, system reconfiguration is fast. We presented how
to manage the dynamicity of the network to save the energy
and how to predict the movements of nodes in order to
make the algorithm robust and energy-aware. However, some
open problems remain; we will study the fault tolerance on
self-reconfiguration in microrobots networks. The study of
the effect of self-reconfiguration on the permutation routing
where the objective will be to optimize the path of a node to
go to the correct position where it finds its correct data. Also,
the use of tabu algorithms to achieve the self-reconfiguration.

VIII. ACKNOWLEDGMENTS

This work is funded by the Labex ACTION program (con-
tract ANR-11-LABX-01-01), ANR/RGC (contracts ANR-
12-IS02-0004-01 and 3-ZG1F) and ANR (contract ANR-
2011-BS03-005). The authors wish to express their appre-
ciation to the anonymous reviewers for their constructive
comments.

REFERENCES

[1] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry,
and P. Pillai, Meld: A Declarative Approach to Programming
Ensembles,In Proceedings of the IEEE International Conference
on Intelligent Robots and Systems (IROS ’07), October, 2007.

[2] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, Padmanabhan
Pillai, and Jason D. Campbell, A Language for Large Ensem-
bles of Independently Executing Nodes, In Proceedings of the
International Conference on Logic Programming, July, 2009.

[3] J. Bourgeois and S.C. Goldstein. Distributed Intelligent
MEMS: Progresses and perspectives, 3-rd Int. Conf. ICT Inno-
vations, volume of Advances in Intelligent and Soft Computing,
pages 15–25, Ohrid, Macedonia, September 2012.

[4] D. Dewey, S. S. Srinivasa, M. P. Ashley-Rollman, M. D. Rosa,
P. Pillai, T. C. Mowry, J. D. Campbell, and S. C. Goldstein,
Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems, In Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems, September, 2008.

[5] J. Eckert, and H. Lichte, and F. Dressler and H. Frey,
On the Feasibility of Mass-Spring-Relaxation for Simple Self-
Deployment, 8th IEEE/ACM International Conference on Dis-
tributed Computing in Sensor Systems Hangzhou, China, 2012.

[6] C. Jones, M. J. Mataric, From local to global behavior
in intelligent self-assembly.In: Proc. 2003 IEEE International
Conference on Robotics and Automation, , vol. 1, pp. 721-726.
IEEE Computer Society Press, Los Alamitos, 2003.

[7] S. Jeon, C. Ji, Randomized Distributed Configuration Manage-
ment of Wireless Networks: Multi-layer Markov Random Fields
and Near-Optimality CoRR abs/0809.1916, 2008.

[8] F. Kribi, P. Minet, A. Laouiti, Redeploying mobile wireless
sensor networks with virtual forces, IFIP Wireless Days, Paris,
France, December 2009.

[9] H. Lakhlef, H. Mabed, J. Bourgeois, Distributed and Efficient
Algorithm for Self-reconfiguration of MEMS Microrobots, in the
28th ACM Symposium On Applied Computing, pages 560-566,
Coimbra, Portugal, March 2013.

[10] H. Lakhlef, H. Mabed, J. Bourgeois, Parallel Self-
reconfiguration for MEMS Microrobot, in the 7-th IEEE Region
8 International conference on Computer as a Tool, Zagreb,
Croatia, July 2013.

[11] H. Mabed, H. Lakhlef, J. Bourgeois Fully Distributed Rede-
ployement Algorithm for Multi-Robot System.In: 6th Int. Conf.
on NETwork Games, COntrol and OPtimization,NetGCooP’12.
IEEE Computer Society, Avignon, France, 2012.

[12] M. Mamei, A. Roli, F. Zambonelli, Emergence and Control of
Macro Spatial Structures in Perturbed Cellular Automata, and
Implications for Pervasive Computing Systems, IEEE Transac-
tions on Systems, Man, and Cybernetics, 36(5), May 2005.

[13] M. Mamei, M. Vasirani, F. Zambonelli, Experiments of
Morphogenesis in Swarms of Simple Mobile Robots, Journal
of Applied Artificial Intelligence, 8(9-10):903-919, Oct. 2004.

[14] D. Rus, M. Vona, Crystalline robots: Self-reconfiguration with
compressible unit modules,Autonomous Robots 10(1), 107-124,
2001.

[15] K. Stoy, R. Nagpal, Self-Repair Through Scale Independent
Self-Reconfiguration, Proc. IEEE/RSJ International Conference
on Intelligent Robotsn and systems, Sendai, japan, 2004.

[16] B. Warneke, M. Last, B. Leibowitz, and K.S.J Pister,K.S.J.,
2001, Smart Dust: Communicating with a Cubic-Millimeter
Computer,Computer Magazine, pp. 44-51, 2001.

[17] P. White, V. Zykov, J. C. Bongard, H. Lipson, Three
dimensional stochastic reconfiguration of modular robots In:
Proceedings of Robotics Science and Systems, pp. 161-168.
MIT Press, Cambridge , 2005.

[18] Physical rendering simulator (dprsim):
http://www.pittsburghintel-research.net/dprweb.

