Automatic Decidability: A Schematic Calculus for
Theories with Counting Operators

Elena Tushkanova!2, Christophe Ringeissen!, Alain Giorgetti:2,
and Olga Kouchnarenko?!-2

1 Inria, Villers-les-Nancy, F-54600, France

2 FEMTO-ST Institute (UMR 6174), University of Franche-Comté, Besangon,
F-25030, France

—— Abstract

Many verification problems can be reduced to a satisfiability problem modulo theories. For build-
ing satisfiability procedures the rewriting-based approach uses a general calculus for equational
reasoning named paramodulation. Schematic paramodulation, in turn, provides means to reason
on the derivations computed by paramodulation. Until now, schematic paramodulation was only
studied for standard paramodulation. We present a schematic paramodulation calculus modulo
a fragment of arithmetics, namely the theory of Integer Offsets. This new schematic calculus is
used to prove the decidability of the satisfiability problem for some theories equipped with count-
ing operators. We illustrate our theoretical contribution on theories representing extensions of
classical data structures, e.g., lists and records. An implementation within the rewriting-based
Maude system constitutes a practical contribution. It enables automatic decidability proofs for
theories of practical use.

1998 ACM Subject Classification F.4.1 Mechanical theorem proving, 1.2.3 Inference engines
Keywords and phrases Decision Procedures, Superposition, Schematic Saturation

Digital Object ldentifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Decision procedures for satisfiability modulo background theories of classical datatypes
such as lists, arrays and records are at the core of many state-of-the-art verification tools.
Designing and implementing these satisfiability procedures remains a very hard task. To help
the researcher with this time-consuming task, an important approach based on rewriting has
been investigated in the last decade [2, 1].

The rewriting-based approach allows building satisfiability procedures in a flexible way by
using a general calculus for automated deduction, namely the paramodulation calculus [15]
(also called superposition calculus). The paramodulation calculus is a refutation-complete
inference system at the core of all equational theorem provers. In general this calculus
provides a semi-decision procedure that halts on unsatisfiable inputs by generating an empty
clause, but may not terminate on satisfiable ones. However, it also terminates on satisfiable
inputs for some theories axiomatising standard datatypes such as arrays, lists, etc, and thus
provides a decision procedure for these theories. A classical termination proof consists in
considering the finitely many cases of inputs made of the (finitely many) axioms and any
set of ground flat literals. This proof can be done by hand, by analysing the finitely many
forms of clauses generated by saturation, but the process is tedious and error-prone. To
simplify this process, a schematic paramodulation calculus has been developed [11] to build
the schematic form of the saturations. It can be seen as an abstraction of the paramodulation

© E. Tushkanova, C. Ringeissen, A. Giorgetti and O. Kouchnarenko;
37 licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.

Editors: Billy Editor, Bill Editors; pp. 1-16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

calculus: If it halts on one given abstract input, then the paramodulation calculus halts
for all the corresponding concrete inputs. More generally, schematic paramodulation is a
fundamental tool to check important properties related to decidability and combinability [12].

To ensure efficiency, it is very useful to have built-in axioms in the calculus, and so to
design paramodulation calculi modulo theories. This is particularly important for arithmetic
fragments due to the ubiquity of arithmetics in applications of formal methods. For instance,
paramodulation calculi have been developed for Abelian Groups [10, 13] and Integer Off-
sets [14]. These calculi provide decision procedures for theories of practical interest. New
combination methods a la Nelson-Oppen have been developed to consider unions of these the-
ories sharing fragments of arithmetics. This paves the way of using non-disjoint combination
methods within SMT solvers. In [14], the termination of paramodulation modulo Integer
Offsets is proved manually. Therefore, there is an obvious need for a method to automatically
prove that an input theory admits a decision procedure based on paramodulation modulo
Integer Offsets.

In this paper, we introduce theoretical underpinnings and a tool support that allow us
to automatically prove the termination of paramodulation modulo Integer Offsets. To this
aim, we design a new schematic paramodulation calculus to describe saturations modulo
Integer Offsets. Our approach requires a new form of schematization to cope with arithmetic
expressions. The interest of schematic paramodulation relies on a correspondence between
a derivation using (concrete) paramodulation and a derivation using schematic paramod-
ulation: Roughly speaking, the set of derivations obtained by schematic paramodulation
over-approximates the set of derivations obtained by (concrete) paramodulation. We show
under which conditions the termination of schematic paramodulation implies the termination
of (concrete) paramodulation. Again, the fact of considering Integer Offsets requires some
specific proof arguments. We illustrate our contribution on the examples of theories con-
sidered in [14] — the theory of lists with length and the theory of records with increment. Our
approach has been developed and validated thanks to a proof system we have implemented
in the rewriting logic-based environment Maude [6] by using its reflection mechanism and
its equational reasoning engines. This proof system implements schematic paramodulation
modulo Integer Offsets. The proofs related to our examples are obtained via this automatic
proof system.

Paper outline. Section 2 introduces preliminary notions related to first-order theories,
the paramodulation and schematic paramodulation calculi, and theories with counting
operators. Section 3 describes the new schematic paramodulation calculus and states
conditions under which its termination implies the one of the (concrete) paramodulation
calculus. Sections 4 and 5 respectively describe our implementation and experimentations
with Integer Offsets extensions. Eventually, Section 6 concludes.

2 Background

We consider many-sorted first-order equational logic. A (many-sorted functional) signature
Y is a set of declarations of distinct function symbols and their type. A function declaration
is of the form f: sy x ... X s, — s, where f is a function symbol, n > 0 is its arity, s1, ...,
sp and s are sorts from a finite set of sorts S. The sorts s1, ..., s, are called the argument
sorts and s is called the value sort of f. Each sort is interpreted by a nonempty domain.
The only predicates are equalities on sorts, denoted =, for each sort s € S, whose type is
s x s. We simply denote them = when there is no risk of confusion.

Given a signature 3, we assume the usual first-order syntactic notions of term, position,



literal, clause, formula, substitution as defined, e.g., in [8]. When extended to many sorts,
these notions additionally require that all terms have the appropriate sorts. A rewrite system
is a set of directed equalities, called rewrite rules. It can be applied repeatedly along the
direction given by the rules to replace equals by equals in any term. A term is in normal
form if it cannot be rewritten any further. A rewrite system is convergent if its application
to any term leads to a unique normal form.

Throughout this document, universally quantified variables are represented by capital
letters. Given a term ¢ and a position p, ¢|, denotes the subterm of ¢ at position p, and #[l],
denotes the term ¢ in which [ appears as the subterm at position p. When the position p is
clear from the context, we may simply write ¢[I]. Application of a substitution o to a term
t is written o(t). The notations C[l] and o(C) are also used for any clause C. The empty
clause, i.e. the clause with no disjunct, corresponding to an unsatisfiable formula, is denoted
by L. The clause obtained from a clause C' by replacing the terms occurring in C' with their
normal forms w.r.t. a convergent rewrite system R is denoted C |g.

Terms, literals and clauses are ground whenever no variable appears in them. Given a
function symbol f, an f-rooted term is a term whose top-symbol is f. A compound term is
an f-rooted term for a function symbol f of positive arity. The depth of a term is defined
inductively as follows: depth(t) = 0, if ¢ is a constant or a variable, and depth(f(t1,...,t,)) =
1+ maz{depth(t;) | 1 <i<n}. A term is flat if its depth is 0 or 1. A positive literal is an
equality | = r and a negative literal is a disequality [ # r. We use the symbol < to denote either
= or #. The depth of a literal I < r is defined as follows: depth(l > ) = depth(l) + depth(r).
A positive literal is flat if its depth is 0 or 1. A negative literal is flat if its depth is 0.

We also assume the usual first-order notions of model, satisfiability, validity, logical
consequence. A first-order theory (over a finite signature) is a set of first-order formulae with
no free variables. When T is a finitely axiomatized theory, Az(T) denotes the set of axioms
of T. In this paper we consider first-order theories with equality, for which the equality
symbol = is always interpreted as the equality relation. A formula is satisfiable in a theory
T if it is satisfiable in a model of T'. The satisfiability problem modulo a theory T amounts
to establishing whether any given finite conjunction of literals (or equivalently, any given
finite set of literals) is T-satisfiable or not.

We consider inference systems using well-founded orderings on terms (resp. literals)
that are total on ground terms (resp. literals). An ordering < on terms is a simplification
ordering [8] if it is stable (I < r implies o () < o(r) for every substitution o), monotonic
(I < r implies t[l], < t[r], for every term ¢ and position p), and has the subterm property
(i.e., it contains the subterm ordering: if [ is a strict subterm of r, then [ < r). Simplification
orderings are well-founded for finite signatures. A term ¢ is mazimal in a multiset S of terms
if there is no u € S such that ¢ < u. Hence, if ¢ £ u, then ¢t and u are different terms and
t is maximal in {¢,u}. An ordering on terms is extended to literals by using its multiset
extension on literals viewed as multisets of terms. Any positive literal [ = r (resp. negative
literal I # r) is viewed as the multiset {l,r} (resp. {l,1,r,7}). Also, a term is mazimal in a
literal whenever it is maximal in the corresponding multiset.

2.1 Paramodulation Calculus

As in [16] we consider only unitary clauses, i.e. clauses composed of at most one literal.
The Unitary Paramodulation Calculus is the inference system UPC [16] consisting of the
rules in Figures 1 and 2, where U stands for disjoint union. Expansion rules (Figure 1) aim
at generating new (deduced) literals. The Superposition rule uses an equality to perform
a replacement of equal by equal into a literal. The Reflection rule generates the empty



clause when both sides of a disequality are unifiable. Contraction rules (Figure 2) aim at
simplifying the set of literals. Using Subsumption, a literal is removed when it is an instance
of another one. Simplification rewrites a literal into a simpler one by using an equality that
can be considered as a rewrite rule. Deletion removes trivial equalities. We assume the usual
definitions of redundancy, saturation, derivation and fairness as defined, e.g., in [16].

A fundamental feature of UPC is the usage of a simplification ordering < to control
the application of Superposition and Simplification rules by orienting equalities. Hence, the
Superposition rule is applied by using terms that are maximal in their literals with respect to
<. This ordering is total on ground terms. We use a lexicographic path ordering [8].

Let us recall the usual definitions of redundancy, saturation, derivation and fairness. A
clause C' is redundant with respect to a set S of clauses if either C € S or S can be obtained
from S U {C} by a sequence of applications of contraction rules (cf. Figure 2). An inference
is redundant with respect to a set S of clauses if its conclusion is redundant with respect to
S. A set S of clauses is saturated if every inference with a premise in S is redundant with
respect to S. A derivation is a sequence Sy, S1,...,S;, ... of sets of clauses where each S;41
is obtained from S; by applying an inference to add a clause (by expansion rules in Figure 1)
or to delete a clause (by contraction rules in Figure 2). One can remark that an application
of the Simplification rule corresponds to two steps in the derivation: the first step adds a
new literal, whilst the second one deletes a literal. A derivation is characterized by its limit,
defined as the set of persistent clauses szo ﬂi>j S;, that is, the union for each j > 0 of the
set of clauses occurring in all future steps starting from S;. A derivation Sp, S1,..., S, ...
is fair if for every inference with premises in the limit, there is some j > 0 such that the
inference is redundant with respect to S;. The set of persistent literals obtained by a fair
derivation is called the saturation of the derivation.

iy [u']ar u=t
Superposition ([ r
if i) o(u) € o(t), ii) o(l[u']) £ o(r), and iii) u' is not a variable.
. v £u
Reflection 1

Above, v and 1/ are unifiable and o is the most general unifier
of u and .

Figure 1 Expansion inference rules of UPC

Subsumption %L{’LL}/} if L' =o(L).
L . su{ci,li=r
Simplification 50 {é[a[(r)L :];n}
if i)' =0o(l), ii) o(l) > o(r), and iii) C[I'] > (o(l) = o(r)).
Deletion w

Figure 2 Contraction inference rules of UPC



2.2 Paramodulation Calculus for Integer Offsets

The paramodulation calculus defined in [14] adapts the calculus UPC to the theory of Integer
Offsets, so that it can serve as a basis for the design of decision procedures for Integer Offsets
extensions. The theory of Integer Offsets is axiomatized by the following set of axioms:

(s0)  VX.  s(X)#0
(inj) VX,Y. s(X)=s(Y)=X=Y
(acy) VX. X #s"(X) forall n>1

over the signature X; := {0 : INT,s : INT — INT}. The second axiom specifies that the
successor function s is injective. The third axiom is in fact an axiom scheme, which specifies
that this function is acyclic.

A (non-disjoint) Integer Offsets extension is a many-sorted theory whose set of sorts
contains INT, whose signature shares symbols with ¥, and whose axioms possibly involve the
symbols s and 0. Following [14, Section 5], we consider two Integer Offsets extensions: the
theory of lists with length whose signature is Xy;,; = {car: LISTS — ELEM, cdr : LISTS —
LISTS, cons : ELEM X LISTS — LISTS, len : LISTS — INT, nil :— LISTS, 0 :— INT, s : INT —
INT} and whose set of axioms Ax(LLI) consists of

car(cons(X,Y)) = X cons(X,Y) # nil
cdr(cons(X,Y Y len(nil) =0
len(cons(X,Y)) = s(len(Y))

where X is a universally quantified variable of sort ELEM, and Y is a universally quantified
variable of sort LISTS, and the theory of records of length 3 (without extensionality) with
increment whose signature is X gy = U?Zl{rstorei : REC X INT — REC, rselect; : REC —
INT, incr : REC — REC, s : INT — INT} and whose set of axioms Ax(RII) consists of

rselect;(rstore;(X,Y)) = Y forie {1,2,3}
rselect;(rstore;(X,Y)) = rselect;(X) for i,j € {1,2,3} with ¢ # j
rselect;(incr(X)) = s(rselect;(X)) for ¢ € {1,2,3}

where X is a universally quantified variable of sort REC, and Y is a universally quantified
variable of sort INT.

SU{s(u) =s(v)}
Rl SU{u=nv}

if v and v are ground terms.

SU{s(u )—tS( ) =1t}
Rz SU{s(v)=1,u =0}

if w, v and t are ground terms, s(u) > t, s(v) > ¢ and u > v.

C1 SSLJLij(Sg )= J}_} if t is a ground term.
Cc2 SULs"(t) =1} if t is a ground term and n > 1.

SuUu{st(t)=t,L}

Figure 3 Ground reduction rules for Integer Offsets



The paramodulation calculus UPC; consists of the expansion rules of UPC (Figure 1),
the contraction rules of UPC (Figure 2) plus some additional reduction rules corresponding
to the axioms of the theory of Integer Offsets (Figure 3). We use a Tr — good ordering < to
control UPC;: < is a simplification ordering which is total on ground terms, such that 0 is
minimal and, for any non s-rooted terms t; and to, s™!(t1) > s"2(to) iff either t; = ¢3 and ny
is bigger than ng, or t; > to. The refutation completeness of UPCy is studied in [14].

2.3 Schematic Paramodulation

The motivation of schematic paramodulation is to derive a schematic form of saturations
computed by paramodulation. In the following, we consider the Schematic Unitary Paramodu-
lation Calculus, denoted by SUPC, as an abstraction of UPC. Indeed, any concrete saturation
computed by UPC can be viewed as an instance of an abstract saturation computed by
SUPC [12, Theorem 2]. Hence, if SUPC halts on one given abstract input, then 4PC halts for
all the corresponding concrete inputs. More generally, SUPC is an automated tool to check
properties of UPC such as termination, stable infiniteness and deduction completeness [12].

SUPC is almost identical to UPC, except that literals are constrained by conjunctions
of atomic constraints of the form const(z) where x is a variable. An implementation of
Paramodulation and Schematic Paramodulation calculi UPC and SUPC is presented in [16].

Let us recall the notions of constrained clause and instance of constrained clause used
in [12] for SUPC. An atomic constraint is of the form const(t), where ¢ is a term. It is true
iff ¢ is a constant. A constraint is a conjunction of atomic constraints which is true if each
atomic constraint in the conjunction is true. For sake of brevity, const(t1,...,t,) denotes
the conjunction const(ty) A--- A const(t,). A constrained clause is of the form C' || ¢, where
C'is a clause and ¢ is a constraint. A variable x is constrained in a constrained clause C' || ¢
if const(z) is in p; otherwise it is unconstrained. We say that o(C) is a constraint instance
of C' || ¢ if the domain of o contains all the constrained variables in C' || ¢, the range of ¢
contains only constants and o(y) is satisfiable. By a slight abuse of notation, we say that a
term u is ground with respect to a constraint ¢ if all the variables in u are constrained (are

in ).

3 Schematic Paramodulation Calculus for Integer Offsets

This section introduces a new schematic calculus denoted by SUPC;. It is a schematization
of UPC; taking into account the axioms of the theory of Integer Offsets within the framework
based on schematic paramodulation introduced in Section 2.3.

The theory of Integer Offsets allows us to build arithmetic expressions of the form s™(t)
for n > 0. The idea investigated here is to represent all terms of this form in a unique way.
To this end, we consider a new operator s™ : INT — INT such that s™(¢) denotes the infinite
set of terms {s"(t) | n > 1}. A schematic term is a term containing s*.

The calculus SUPC handles schematic clauses that extend constrained clauses of SUPC.

» Definition 1 (Schematic Clause). A schematic clause is a constrained clause built over the
signature extended with s*. An instance of a schematic clause is a constraint instance where
each occurrence of st is replaced by some s™ with n > 0.

The calculus SUPC; takes as input a set of schematic literals, Gy, that represents all
possible sets of ground literals given as inputs to UPCy:

Go= {L,xz=y]| const(z,y),x #y | const(z,y),u=-s"(v)]p}
UUfezT{f(xl, ceoyy) =z || const(zg, x1,. .., Tn)}



where wu,v are flat terms of sort INT whose variables are all constrained, and z,y are
constrained variables of the same sort.

3.1 Schematic Calculus

The calculus SUPC; is depicted in Figures 4, 5 and 6. It re-uses most of the rules of SUPC
(Figures 4 and 5) and completes them with two rules (Figure 6) coming from the reduction
rules for Integer Offsets (Figure 3).

In [14] the definition of derivation has been adapted to the paramodulation calculus for
Integer Offsets. Similarly, we adapt the standard definition of derivation to the schematic
paramodulation calculus modulo Integer Offsets.

» Definition 2. A derivation with respect to SUPC; is a (finite or infinite) sequence of sets
of literals S1,52,93,...,S5;,... such that, for every 4, it holds that:

1. S;y1 is obtained from S; by adding a literal obtained by the application of one of the
rules in Figures 4, 5 and 6 to some literals in S;;

2. S;4+1 is obtained from S; by removing a literal according to one of the rules in Figures 5
and 6.

el =t
Superposition (] s 7o A D)
if i) o(u) £ o(t), ii) o(l[u']) £ o(r), and iii) ¥’ is not an unconstrained
variable.
/
Reflection w if o (%) is satisfiable.
Above, v and v’ are unifiable and o is the most general unifier of v and u'.

Figure 4 Schematic expansion rules

We use a specific term rewrite system to simplify schematic terms. Hence, the rewrite
system RsT = { sT(s(z)) — sT(z), s(sT(x)) = sT(x), sT(sT(x)) — sT(x) } is applied eagerly
whenever a new literal is generated by superposition or simplification. For each of these
rules, one can easily check that the set of terms denoted by the left-hand side is included in
the set of terms denoted by the right-hand side.

Let us notice that the two rules C1 and C2 from UPC; (Figure 3) do not appear in
SUPC;. This is due to the fact that these rules produce only the empty clause 1 which
occurs already in the input set Gy. Note that the Reflection rule could be omitted as well,
but it is kept because it cannot be removed in the non-unitary case.

Similarly to [12], we introduce a specific Schematic Deletion rule to avoid the divergence of
SUPC;. Let us motivate this rule by considering the theory of lists with length. In fact, the
calculus generates a schematic clause len(a) = s(len(b))|const(a, b) which will superpose with
a renamed copy of itself, i.e. with len(a’) = s(len(b’)) ||const(a’,b’) to generate a schematic
clause of a new form len(a) = s(s(len(¥'))) ||const(a,b’). This process continues to generate
deeper and deeper schematic clauses so that the Schematic Saturation will diverge. To avoid
this divergence problem, the additional Schematic Deletion rule aims at checking whether



SU{L|l$, L'|[¢'}

SU{L[l4}
if either a) L € Ax(T), ¢ is empty and for some substitution o, L' = o(L);
or b) L' = o(L) and ¢’ = o (), where o is a renaming or a mapping from
constrained variables to constrained variables.

Subsumption

SU{CH gl = 1}
SU{Clo(rllle,t =r}
r € Ax(T), i) I' = o(l), iii) o(l) > o(r), and
iv) Cll'l > (a(l) = o(r)).

Simplification

Tautology SU—{USZM

SU{L|¢}
S

Deletion if ¢ is unsatisfiable.

chematic De SU{C"|le, Cs" (1)] |4}
Sehematic Del. =g YO (@]lv)

if o(n(C’) lgs+) = C[st ()], o(p) = 1, for a renaming o.

Figure 5 Schematic contraction rules

Ri SU {s(u) = S(U)”(p} if v and v are ground terms.
SU{u=vle}
o SU{s(u) =t[lp,s(v) = t||l9}

SU{s(v) =t u= vl Ap}

if w, v and t are ground terms, s(u) > ¢, s(v) >t and u > v.

Figure 6 Ground reduction rules

instances of a schematic clause C” are instances of another schematic clause C' containing an
occurrence of sT. To implement this rule, we apply a morphism 7 replacing all the occurrences
of s in C" by st (w(s(t)) = st (m(t)) for any ¢, n(z) = z if x is a variable), and then the
rewrite system Rs™ to replace a chain of s™ occurrences in m(C’) by only one occurrence of
sT. For instance, Schematic Deletion rule applies for the theory of lists with length since
Gy already contains the non-flat schematic literal len(a) = s™(len(b))||const(a, b), and so it
subsumes a schematic clause like len(a) = s(s(len(b))) ||const(a,b’). Similarly, the schematic
saturation of the theory of records with increment diverges. But thanks to the Schematic
Deletion rule, it terminates since the initial set of schematic literals additionally contains the
schematic literal rselect;(a) = sT(rselect;(b))||const(a,b). A generalization of this condition
to any theory extending Integer Offsets consists in adding to the standard definition of G



(introduced in [12]) a finite set of the schematic literals of the form u = s*(v)]||¢, where u
and v are two flat terms of sort INT whose variables are constrained by .

3.2 Adequation Result

We show that any clause in a saturation obtained by UPC; is an instance of a schematic
clause in a schematic saturation obtained by SUPC;, under the following assumption.

» Assumption 1. Let SC be any set of schematic clauses generated by SUPC;. If an sT-rooted
term (resp. s-rooted term) occurs in a term u which is maximal in an equality v = ¢ in
SC, then there is no s-rooted term (resp. st-rooted term) occurring in a term [[u'] which is
maximal in a clause [[u/] >t r in SC.

Without Assumption 1 we would need a specific unification algorithm to handle literals
involving s and sT. Thanks to it we can continue applying the superposition rule with
syntactic unification.

» Theorem 1. Let T be a theory axiomatized by a finite set Ax(T) of literals, which is
saturated with respect to UPCy. Let G be the set of all schematic clauses in a saturation
of Ax(T)U Gy by SUPC;. Then for every set S of ground flat literals, every clause in a
saturation of Ax(T)U S by UPCy is an instance of a schematic clause in Goo.

Proof. The proof is an adaptation of the one of [12, Theorem 2]. The proof is by induction
on the length of derivations of UPC;. The base case is obvious. For the inductive case, we
need to show two facts:

(1) each clause added in the process of saturation of Az(T)U S is an instance of a schematic
clause in the saturation G of Az(T) U Gy by SUPC;, and

(2) if a clause is deleted by Subsumption, Tautology or Deletion from (or simplified by
Simplification/reduced by Reduction in) G, then all instances of the latter will also be
deleted from (or simplified/reduced in) the saturation of Az(T) U S by UPC;.

Moreover, because of additional rewriting rules for terms containing s, we have to check
another fact:

(3) Any such rule preserves the set of instances of any schematic clause.

Proof of (1). Consider the Superposition rule of UPC;. By induction hypothesis I[u'] <t r
and u = t are instances of schematic clauses in G, i.e. there is some schematic clause D in
Goo such that I[u/] b 7 is an instance of D, and a schematic clause £ in Go such that u =t
is an instance of E. Two cases can be distinguished:

(%) If there is no occurrence of s in u or «/, then there exists a Superposition inference of
SUPC; in G, whose premises are D and E, and whose conclusion is a schematic clause
C such that o(l[t] > r) is an instance of C, where o denotes the most general unifier of u
and u’.

() If there are occurrences of s in both u and v/, two additional subcases can be considered.
Assume that @ and u’ denote the schematic terms of u and '

1. If @ and @/ contain only sT-rooted terms (resp. s-rooted terms), then we proceed as in
(5). A

2. If 4 contains an sT-rooted term (resp. s-rooted term) and u/ contains an s-rooted
term (resp. sT-rooted term), then @ may not unify with u since we use syntactic
unification, while u and v’ may unify. This subcase is avoided by Assumption 1 and
the side conditions of the Superposition rule.



Reflection of UPC; can be handled in a way similar to Superposition and is therefore

omitted.
Proof of (2). Let us consider Subsumption of SUPC;. For the case (a), let us assume
that there are a schematic clause A deleted from G, and a clause B in the saturation of
Az(T) U S by UPC;, which is an instance of the schematic clause A. Then there must exist
a clause C € Ax(T) and some substitution 6 such that §(C) C A. Since all the clauses in
Ax(T) persist, there must be a substitution 6’ such that 6’(C') C B. Thereby B must also
be deleted from the saturation of Az(T) U S by UPC;, and we are done. The case (b) of
Subsumption is just a matter of deleting duplicates and leaving only more general constrained
literals.

Since axioms do not contain the s* symbol, a similar argument can be used for Simplific-
ation of SUPC. Assume that there is a schematic clause C[l'] || ¢ in G simplified by an
equality | =r (I =r € Az(T)) into C[O(r)] || ¢. Let o be a substitution such that o(C[l']) is
an instance of C[I'] || ¢. Since | = r persists in the saturation of Az(T) US by UPCy, there
must be a simplification of o(C[l']) = a(C)[a(0(1))] by I = r into o(C)[a(0(r))] = a(C[6(r)]),
which is an instance of C[0(r)] || .

For the Tautology Deletion rule of SUPCy, it is easy to see that a constraint instance of
a tautology is also a tautology. For the Deletion rule of SUPC;, notice that clauses with an
unsatisfiable constraint have no instances.

For the reduction rule R1 of SUPCy, it is easy to see that an instance of a schematic
clause s(u) = s(v) will also reduce a root symbol s. For the reduction rule R2 of SUPCy, a
similar argument can be given.

Proof of (3). Let C' | gs+ be the clause obtained from C by replacing the terms occurring
in C with their normal forms w.r.t. Rst. The set of (concrete) clauses schematized by
a schematic clause C is included in the set of (concrete) clauses schematized by C' |ge+,
because a similar inclusion holds for all the terms in C' and all the rules in Rs™. <

3.3 Application to the Termination of Paramodulation

Contrary to the standard case, a schematized saturation may represent an infinite set of
clauses since the term s*(¢) represents all the terms s"(t) with n > 1. The difficulty is
then to prove the termination in this case. In [14], the termination proofs do not only rely
on the fact that there are finitely many forms of clauses generated by the paramodulation
calculus. In addition, the following proof argument is used: any new ground literal is strictly
smaller than the biggest ground literal in the input set. Similarly, whereas the schematic
paramodulation allows computing the different forms of clauses generated by paramodulation,
we still need an additional analysis to conclude that the paramodulation calculus terminates.
Fortunately, this analysis can be easily performed for some cases. We investigate hereafter a
new solution where the analysis is restricted to the (few) schematic equalities containing s
that occur in the (finite) schematic saturation.

» Assumption 2. A schematic equality containing s* cannot be instantiated with different
values of the exponent of s in a saturation of a satisfiable input.

Thanks to Assumption 2, there are only finitely many possible instances in the saturation
of a satisfiable input. For instance, we cannot have both i = s(j) and i = s?(j) in the
saturation of a satisfiable input due to the acyclicity axiom.

With respect to disequalities, we restrict us to the case where UPC; does not generate
new disequalities having an occurrence of s: the simplification of an input disequality is the
only way to have a disequality with an occurrence of s introduced in a derivation with UPCj.



This restriction is satisfied in the following cases:

The set of axioms of the theory contains only equalities.
The set of axioms of the theory contains some disequalities of a given sort, say D, such
that it is not possible to build terms of sort D containing s.

Hence, this restriction is satisfied for the theories we are interested in.

» Theorem 2. Assume that UPC; does not generate new disequalities having an occurrence
of s. If SUPCy generates a finite schematic saturation such that all its schematic equalities
satisfy Assumption 2, then UPCy terminates on any input set of ground literals.

Proof. Consider a satisfiable input. Let ng (resp. n.) be the number of disequalities (resp.
equalities) obtained from the schematic disequalities (resp. equalities) in the finite schematic
saturation by considering all possible instantiations of constrained variables by the finitely
many constants in the input. The number of clauses occurring in the saturation of the input
can be bounded as follows:

1. By hypothesis, the number of disequalities cannot be greater than nyg + iy, where ig4
denotes the number of disequalities in the input set.

2. Consider the equalities. According to Assumption 2, the number of equalities is bounded
by ne.

Consequently, the paramodulation calculus computes a finite saturated set of clauses and
terminates. <

One can remark that our restriction on the generation of new disequalities in Theorem 2 is
expressed with UPCy, but not with SUPC;. We adopt this solution because this restriction
is easy to satisfy in practice and it is sufficient for our need. Of course, an interesting problem
would be to find a way at the schematic level to ensure the boundedness of the generated
disequalities. A possible solution could be envisioned when all the generated schematic
literals are ground.

4 Implementation

This section presents an implementation of the schematic paramodulation calculus modulo
Integer Offsets SUPC;, by using the Maude system [7] and its support of rewriting logic.
It extends an implementation of SUPC described in [16]. We reuse the expansion and
contraction rules implemented in [16]. The new implementation supports many-sorted
theories. We discuss the normalization of schematic terms containing s*, the implementation
of the new reduction rules and the Schematic Deletion rule. We briefly introduce our support
for derivation traces before showing our experimental results.

Sorts. The underlying logic of Maude is order-sorted, admitting a subsort ordering, whereas
the underlying logic of our calculus SUPC; is many-sorted, i.e. there is no subsort relation
between sorts in the addressed theories. Let ¥ be a many-sorted signature and S be its set
of sorts. When implementing ¥ in Maude, each sort in S is implemented as a Maude sort.
For the theory of lists with length, the sorts LISTS, ELEM and INT are implemented by the
declaration

sorts Lists Elem Ints .



in Maude.! Moreover, no subsort relation is declared between these Maude sorts. This
condition guarantees that the order-sorted features of Maude (pattern-matching, unification,
etc) behave as many-sorted ones on the set of Maude sorts associated to S.

Schematic Literals. We take profit of the powerful reflection mechanism of Maude. Maude
terms are reflected as “meta-terms” with sort Term. The base cases in the metarepresentation

of terms are given by the subsorts Constant and Variable of the sort Term.
Most of our implementation works at the meta-level, i.e. its functions operate on meta-
terms with sort Term. Literals are defined by

sort Literal .
op _equals_ : Term Term -> Literal [comm]
op _!=_ : Term Term -> Literal [comm]

The attribute [comm] declares that the infix binary symbols equals and != for equality and
disequality are commutative. Then, the sort SLiteral of schematic literal is declared by

sorts SLiteral .

op emptyClause : -> SLiteral .

op ax : Literal -> SLiteral .

op _ |l _ : Literal Constraint -> SLiteral .

where the infix operator || constructs a constrained literal from a literal and a constraint
of sort Constraint. A constraint is implemented as a set of atomic constraints of the form
const (¢) where t is a term. An atomic constraint is satisfiable iff ¢ is of subsort Variable,
but unification sometimes produces const () where ¢ is not a variable. Such a constraint is
afterwards detected as unsatisfiable.

Normalization of Schematic Terms. The rewrite system Rs™ is convergent, i.e. it computes
a unique normal form. The nf function (nf : Term -> Term) computes this normal form.
This function is applied eagerly whenever a new literal is generated. The normalization of
terms is extended to literals by the nfLit function (nfLit : Literal -> Literal) that
normalizes both sides of a given literal.

Ground Reduction Rules. Let us now present the encoding of the reduction rules of SUPC;.
We translate them into rewrite rules.
The R1 reduction rule is encoded by the following conditional rewrite rule:

crl [redi]
’succ[U] equals ’succ[U’] || Phi => U equals U’ || Phi
if isVarInConstraint(U, Phi) and isVarInConstraint(U’, Phi)

This rule removes the root symbol in both sides of a literal if this root symbol is ’succ
(’succ stands for s) and the variables of their subterms U and U’ are constrained (are in

Phi). This condition is checked by the function isVarInConstraint.
The following Maude conditional rewrite rule encodes the R2 reduction rule.

crl [red2]
’succ[U] equals T || Phil, ’succ[V] equals T || Phi2 =>
’succ[V] equals T || Phi2, U equals V || cleanConstraint(U, V, Phil, Phi2)

L An s is added to the Maude sort names for integers and lists because Maude sorts named Int and List
already exist.



if isVarInConstraint(U, Phil) and isVarInConstraint(V, Phi2) and
isVarInConstraint (T, Phil) and gtLPO(’succ[U], Phil, T) and
gtLPU(’Succ[V], Phi2, T) and gtLPD(U, (Phil, Phi2), V)

The ordering > on terms is implemented as a Boolean function gtLP0 such that gtLPO(u, Phi, t)
= true iff u > ¢t. We add the additional parameter Phi that collects the constrained variables,
since constrained variables of different sorts are comparable. The function cleanConstraint
aims at removing the constrained variables that do no occur in u = v.

Schematic Deletion. The Schematic Deletion rule is encoded by the following Maude
conditional rewrite rule

crl [sdel]l : L || Phil, L’ || Phi2 => L’ || Phi2
if conditionDel(L || Phil, L’ || Phi2)

The function conditionDel implements the side conditions of the Schematic Deletion rule
presented in Figure 5.

Traces. An additional and important feature of our tool consists in providing a trace
indicating the name of the applied rule, the schematic clauses it is applied to at each
derivation step and the position at which the rule is applied. This trace helps understanding
the origin of each new schematic clause.

Let us show the syntax of traces for the superposition rule:

] rle  w =ty
a(llt] parfle Ad)
The expression sup(Cy, Cz, u, l[u'], Ctx) gives C3 means that the constrained clause
C3 = o(I[t] < 7| A1) is derived from the constrained clauses C; = (I[u'] > 7|¢) and
Cy = (u = t||¢) by superposing term u from Cy in term [[v] from C; at the context Ctx =[],
where the rewriting has taken place.

5 Experimental Results

The implementation has been used to compute the schematic saturations for the theories
LLI and RII introduced in Section 2.2. These computations generate the expected results,
as shown in [17].

5.1 Example 1
Consider Axz(LLI) U Gy that consists of the empty clause and the following literals:

1. Axioms for lists 3. Schematic literals of sort ELEM

a) car(cons(X,Y)) =X a) car(a) = e || const(a,e)

b = t
b) cdr(cons(X,Y)) =Y ) e1 = ez || const(er, e2)
c) e1 # ea || const(er,ez)
c) cons(X,Y) # nil

4. Schematic literals of sort LISTS
2. Axioms for the length

o

cons(e,a) =b || const(e,a,b)

)
a) len(cons(X,Y)) = s(len(Y)) b; cdr(a) = b || const(a,b)
)

o

b) len(nil) =0 a="b| const(a,b)

d) a#b | const(a,b)



5. Schematic literals of sort INT d) i1 = sV (42) || const(i1,i2)

)
) i =len(a) || const(a,1)
)
) i

@

a) len(a) = s (i) || const(a,1)
b) len(a) = st (len(b)) || const(a,b)
c) i =s"(len(a)) || const(a, i) g

—

i1 =142 || const(i1,i2)
1 # iz || const(i,i2)

The saturation of Az(LLI) UGy by SUPC; consists of Ax(LLI) U Gq and the following
schematic literals:

1. sT(i1) = s (i) || const(i1,iz2) 4. s (i1) = sT(len(a)) || const(i1,a)
2. i1 #st(i1) || const(i1,i2) 5. len(a) = len(b) || const(a,b)
st(i1) # sT(i2) || const(iz,i2) 6. s (Ien(a)) =sT(len(d)) || const(a,b)

Indeed, our tool computes the following trace:

sup(label(5.d), label(5.d), i1, i1, []) gives sT(i1) = st (i2) || const(i1,iz)
sup(label(5.9), label(5.d), i1, i1, []) gives i1 # st (i2) || const(i1,i2)
sup(label(2),label(5.d), i1, i1, []) gives st (i1) # st (i2) || const(i1,i2)
sup(label(5.a), label(5.b), len(a), len(a), []) gives st (i1) =st(len(a)) || const(ii,a)
sup(label(5.b), label(5.b), st (len(d)), sT(len(d)), []) gives len(a) = len(d) || const(a,b)
sup(label(5.b), label(5.b), len(a), len(a), []) gives st (len(a)) = st (len(b)) || const(a,b)

5.2 Example 2

Counsider Az(RII)U Gq that consists of the empty clause and the following literals, where
i,j are any integers in {1,2,3} such that i # j:

1. Axioms for records d) a #0b | const(a,b)

a) rselect;(rstore;(X,Y)) =Y
b) rselect;(rstore;(X,Y)) = rselect;(X,Y)

4. Schematic literals of sort INT

a) e = rselect;(a) || const(a,e)
rselect;(a) = s (e) || const(a,e)
rselect;(a) = s™ (rselect; (b)) || const(a, b)

)
)
)
) e =sT(rselect;(a))||const(a,e)
)
)
)

2. Axiom for the increment

=3

a) rselect; (incr(X)) = s(rselect;(X))

Qo

3. Schematic literals of sort REC

@

_ ot
a) b= rstore;(a,e) || const(a,b,e) e1=s"(e2) || const(es, e2)

b) b =incr(a) || const(a,b)
¢) a="b| const(a,bd)

)

e1 = ez || const(er,e2)

e1 # ez || const(er,e2)

o

The saturation of Az(RII)U Gy by SUPC; consists of Ax(RII)U Gy and the following
schematic literals, where ¢ is any integer in {1,2,3}:

st(e1) = st (e2) || const(er, ez) 5. sT(rselect;(a)) = st (rselect; (b)) || const(a,b)
e1 # st (e2) || const(er, ez2)
st(e1) # s (e2) || const(er, e2)

rselect; (a) = rselect;(b) || const(a,b) 7. rstore;(a,st(e)) = b || const(a,b,e)

6. st (e1) = st (rselect;(a)) || const(a,e1)

A



Indeed, our tool computes the following trace:

sup(label(4.e),label(4.e), e1, e1, []) gives sT(e1) =s(e2) || const(er,e2)
sup(label(4.g),label(4.€), e1, e1, [|) gives e1 # st (e2) || const(er,ez)
sup(label(2), label(4.¢), e1, e1, []) gives st(e1) #sT(e2) || const(er,ez)
sup(label(4.c), label(4.c), s (rselect; (b)), sT (rselect; (b)), []) gives
rselect; (a) = rselect;(b) || const(a,b)
sup(label(4.c), label(4.c), rselect;(a), rselect;(a), []) gives
st (rselect;(a)) = sT (rselect; (b)) || const(a,b)
sup(label(4.c), label(4.b), rselect;(a), rselect;(a), []) gives s (e) = s (rselect;(a)) || const(a,e)
sup(label(3.a),label(4.€), e1, rstore;(a,e), rstore;(a,[]),) gives
rstore;(a,s (e)) = b || const(a,b,e)

Both examples satisfy Assumption 1 given in Section 3.2. In fact, s-rooted terms occur
only in the set of axioms of theories LLI and RII. In both cases the s-rooted term is not
the maximal one, therefore, the Superposition rule cannot be applied between this axiom
and any other literal containing an s™-rooted term. Let us check that Assumption 2 given in
Section 3.3 is also satisfied. Assume m and n are distinct strictly positive integers. Clearly,
s"™(j) and s™(j) denote different values, and so we cannot have both i = s™(j) and i = s™(j)
in a saturation of a satisfiable input. Moreover, rstore;(a,s™(e)) and rstore;(a,s™(e)) denote
different records, and so we cannot have both b = rstore;(a,s™(e)) and b = rstore;(a,s™(e)) in
a saturation of a satisfiable input. Consequently, according to Theorem 2, we can conclude
that the paramodulation calculus terminates for both examples.

6 Conclusion

This paper has introduced a new schematic calculus integrating the axioms of the Integer
Offsets theory into a framework based on schematic paramodulation. In this context,
introducing the sT operator together with rewriting rules for terms containing s+ fits well
with automatic verification needs. Indeed, similar abstractions have been successfully used to
verify cryptographic protocols with algebraic properties [4], and to prove properties of Java
Bytecode programs [3]. Moreover, like in [3], our schematization can be used for fine-tuning
the precision of the analysis.

In the present paper the calculus with a new form of schematization for arithmetic
expressions has been used to automatically prove the termination of paramodulation modulo
Integer Offsets for data structures equipped with counting operators. Our schematic calculus
is described as a rule-based system and implemented and validated in the Maude environment.

This paper is the first extension of the notion of schematic paramodulation dedicated to
a paramodulation calculus modulo a built-in theory. This study has led to new automatic
proof techniques that are different from those performed manually in [14]. The assumptions
we use to apply our proof techniques are easy to satisfy for equational theories of practical
interest. As future work, we plan to extend this current framework to theories defined by
arbitrary clauses, in order to allow for instance arrays with counting operators. Decision
procedures for some extensions of the theory of arrays already exist (see, e.g. [5, 9]) but
our approach would additionally provide automated proofs of decidability. In this direction,
we would have to find a less restrictive assumption to guarantee termination, possibly via
a criterion involving the simplification ordering. As in [12], we plan to study some other
combinability conditions, and to work on the possibility of determining an upper bound on
the number of clauses generated in saturation. Another research direction is to consider
a schematic calculus for a more expressive built-in theory of arithmetic, like the theory of
Abelian Groups [10, 13].



—— References

1

10

11

12

13

14

15

16

17

A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Logic, 10(1):1 — 51, 2009.

A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability proced-
ures. J. Inf. Comput, 183(2):140 — 164, 2003.

Y. Boichut, T. Genet, T. P. Jensen, and L. Le Roux. Rewriting approximations for fast
prototyping of static analyzers. In F. Baader, editor, RTA, volume 4533 of LNCS, pages
48-62. Springer, 2007.

Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Handling algebraic properties in automatic
analysis of security protocols. In K. Barkaoui, A. Cavalcanti, and A. Cerone, editors,
ICTAC, volume 4281 of LNCS, pages 153-167. Springer, 2006.

A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In E. A.
Emerson and K. S. Namjoshi, editors, VMCAI, volume 3855 of LNCS, pages 427-442.
Springer, 2006.

M. Clavel, F. Duran, S. Eker, S. Escobar, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
C. L. Talcott. Unification and narrowing in Maude 2.4. In R. Treinen, editor, RTA, volume
5595 of LNCS, pages 380—-390. Springer, 2009.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. The
Maude 2.0 system. In R. Nieuwenhuis, editor, RTA, volume 2706 of LNCS, pages 76-87.
Springer, 2003.

N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of Theoretical Com-
puter Science, volume B, pages 243-320. Elsevier and MIT Press, 1990.

S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for extensions of
the theory of arrays. Ann. Math. Artif. Intell., 50(3-4):231-254, 2007.

G. Godoy and R. Nieuwenhuis. Superposition with completely built-in abelian groups.
Journal of Symbolic Computation, 37(1):1-33, 2004.

C. Lynch and B. Morawska. Automatic decidability. In LICS, pages 7-16, Copenhagen,
Denmark, July 2002. IEEE Computer Society.

C. Lynch, S. Ranise, C. Ringeissen, and D.-K. Tran. Automatic decidability and combin-
ability. J. Inf. Comput, 209(7):1026-1047, 2011.

E. Nicolini, C. Ringeissen, and M. Rusinowitch. Combinable extensions of Abelian groups.
In R. Schmidt, editor, CADE, volume 5663 of LNCS, pages 51-66. Springer, 2009.

E. Nicolini, C. Ringeissen, and M. Rusinowitch. Satisfiability procedures for combination
of theories sharing integer offsets. In S. Kowalewski and A. Philippou, editors, TACAS,
volume 5505 of LNCS, pages 428-442. Springer, 2009.

R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In J. A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, pages 371-443. Elsevier and
MIT Press, 2001.

E. Tushkanova, A. Giorgetti, C. Ringeissen, and O. Kouchnarenko. A rule-based framework
for building superposition-based decision procedures. In F. Durdn, editor, WRLA, volume
7571 of LNCS, pages 221-239. Springer, 2012.

E. Tushkanova, C. Ringeissen, A. Giorgetti, and O. Kouchnarenko. Automatic Decidability
for Theories Modulo Integer Offsets. Research Report RR-8139, INRIA, November 2012.



	Introduction
	Background
	Paramodulation Calculus
	Paramodulation Calculus for Integer Offsets
	Schematic Paramodulation

	Schematic Paramodulation Calculus for Integer Offsets
	Schematic Calculus
	Adequation Result
	Application to the Termination of Paramodulation

	Implementation
	Experimental Results
	Example 1
	Example 2

	Conclusion

