
A Scalable Fault Tolerant Diffusion Scheme for Data
Fusion in Sensor Networks

Jacques M. Bahi, Arnaud Giersch and Abdallah Makhoul
Computer Science Laboratory, University of Franche-Comté (LIFC)

Rue Engel-Gros, BP 527, 90016 Belfort Cedex, France
{jacques.bahi, arnaud.giersch, abdallah.makhoul}@univ-fcomte.fr

ABSTRACT
In sensor networks, sensor nodes are usually deployed randomly
over an area to collect the information of interest. Data fusion is
the phase of processing the collected information by sensor nodes
before they are sent to the end user. This paper introduces a dis-
tributed consensus algorithm that allows the nodes of a sensor net-
work to track the average ofn sensor measurements. The study of
the above mentioned algorithm showed that it is robust to asyn-
chronism and dynamic topology changes. It is also put in evi-
dence that the algorithm is fully distributed and does not require
any global coordination. Moreover, The proposed method doesn’t
involve explicit point-to-point message or routing, it diffuses in-
formation across the network. Accordingly, simulation results are
provided illustrating the effectiveness of the studied algorithm.

1. INTRODUCTION
Sensor networks have been considered as one of the most impor-
tant technologies for the 21st century, due to their tight integration
with the physical world. The main task of a sensor node is to detect
events and collect data from the region of interest. The phase of
processing the collected data before sending it to the final user is
known as "data fusion", or “sensor fusion”. It is defined as the pro-
cess of gathering data from multiple and various sources. The data
fusion in sensor networks is quiet different than other networks, due
to their particularity and originality in the sense that, they are au-
tonomous, have a limited capability and are infrastructure less. Due
to the above reasons, data fusion over sensor networks deals with
issues as developing distributed, asynchronous and non-complex
algorithms and methods to integrate collected data.

A fundamental problem in sensor networks is to solve detection
and estimation problems using distributed scalable algorithms. In
this paper, a specific method of sensor fusion is utilized for the
estimation of the average of the collected data which is identified
throughout the paper as the unknown parameter estimation. We
assume that each sensor takes a measurement of the unknown pa-
rameter. The aim is to then find the average of the physical mea-
surements over the whole network. This problem is also known as
the average consensus problem [11, 5].

In order to compute the average consensus, centralized and dis-
tributed fusion schemes are distinguished. In the centralized fu-
sion schemes, each sensor collects the information and sends it by
multi-hop communications or by direct transmission to a central
base station which extracts the estimation of the unknown parame-
ter. This scenario suffers from significant setbacks such as routing
and dynamic topology changes. In addition, direct transmission has
also proven to be very ineffective. For example, some sensor nodes
may be very far away from the base station, thus the amount of en-
ergy consumed can be extremely high. In contrast to the centralized
schemes, in distributed data fusion methods, the sensor nodes only
communicate their collected data to their neighbors, which elimi-
nates the need for a computing center. In such schemes, each sensor
node updates its data to get a local estimation of the average in the
entire network.

Many schemes for distributed data fusion in sensor networks have
been proposed. The first and the simplest method is flooding. Via
the method of flooding, each sensor node broadcasts all its stored
and received data to its neighbors. As a consequence, each node
has all the data of the network and acts as a fusion center to com-
pute the average consensus. Nevertheless, the above technique has
several disadvantages [11]. By flooding, duplicate messages can
be sent to the same node, or one node can receive the same mes-
sage from several neighbors. In addition, this proposed technique
requires a significant amount of transmissions and a large storage
memory, which wastes the network’s resources and which consid-
erably decreases the lifetime of the network.

An iterative method for distributed data fusion in sensor networks
based on the calculation of an average consensus has been proposed
in [11]. The authors consider a sensor network ofn sensor nodes,
where every node takes a noisy measurement of the unknown pa-
rameter. Each node broadcasts its data to its neighbors and updates
its estimation according to a weighted sum of the received data.

Alternatively, in [5] the authors proposed a scalable sensor fusion
scenario that performs fusion of sensor measurements combined
with local Kalman filtering. They developed a distributed algorithm
that allows the sensor nodes to compute the average of all of their
measurements. It is worthy to note that many other sensor fusion
and average consensus approaches are based on Kalman filters and
mobile agents [9, 4, 8, 7].

Although the above mentioned works and other existing data fu-
sion scenarios guarantee some level of robustness to node failure
and dynamic topology changes [11, 5, 10], they do not address cer-
tain practical issues such as fault tolerance and asynchronism. As

sensor nodes are driven by batteries and have a small and finite
source of energy, they are prone to failure. Moreover, due to exter-
nal influences, the reachability of nodes is not always guaranteed,
which leads to dynamic topology changes. Furthermore, naturally
and due to wireless channels the messages are prone to loss. In syn-
chronous methods, it is assumed that all nodes perform operations
in a step order, which is impractical and undesirable in real sensor
networks. Hence, one of the most challenging issues in sensor net-
works is to provide a data fusion method that does not require any
node synchronization.

To the best of our knowledge, the above aspects which are ex-
tremely important, are not taken into account in previous data fu-
sion scenarios. In this work, a fault tolerant and asynchronous data
fusion scheme in sensor networks will be presented. It focuses on
a distributed iterative procedure for calculating averages over asyn-
chronous sensor networks. The sensor nodes exchange and update
their data by the mean of a weighted sum in order to achieve the
average consensus. The suggested algorithm does not rely on syn-
chronization between the nodes nor does it require any knowledge
of the global topology. To round up, the convergence of the pro-
posed algorithm is proved in a general asynchronous environment.

The outline of the paper is as follows. In the next section we in-
troduce the problem of average consensus. In section 3, we present
our work, the general algorithm as well as some practical aspects.
Section 4 is devoted to the experimental results. Finally we con-
clude the paper and we briefly discuss future works.

2. AVERAGING IN SENSOR NETWORK
A sensor network is modeled as a connected undirected graphG =
(V, E). The set of nodes is denoted byV (the set of vertices),
and the links between nodes byE (the set of edges). The nodes
are labeledi = 1, 2, . . . , n, and a link between nodesi andj is
denoted by(i, j). The dynamic topology changes are represented
by the time varying graphG(t) = (V, E(t)), whereE(t) is the
set of active edges at timet andV is the set of nodes which stays
invariable. The set of neighbors of nodei at timet is denoted by
Ni(t) = {j ∈ V | (i, j) ∈ E(t)}, and the degree (number of
neighbors) of nodei at timet by ηi(t) = |Ni(t)|.

Each node takes initial measurementzi, for the sake of simplicity
let us suppose thatzi ∈ R. Then,z will refer to the vector whose
ith component iszi. Each node on the network also maintains a
dynamic statexi(t) ∈ R which is initially set toxi(0) = zi.

Intuitively each node’s statexi(t) is its current estimate of the av-
erage value

Pn

i=1 zi/n. The goal of the averaging algorithm, is to
let all the statesxi(t) go to the average

Pn

i=1 zi/n, ast → ∞.

In the work presented in [11], each node exchanges its instanta-
neous data with its neighbors and updates its state following a lin-
ear discrete time method as follows

xi(t+1) = xi(t)−
X

j∈Ni

αij(t)(xi(t)−xj(t)), i = 1, . . . , n. (1)

Hereαij(t) is the weight onxj(t) at nodei, andαij(t) = 0 for
j 6∈ Ni(t).

This method is a specific method and it does not consider many im-
portant practical issues such as transmission errors and delays. it is
however, robust to the dynamic topology changes, in other words to
the link failures. Hence, the results presented in equation 1 implic-

itly assume synchronization. Knowing that real sensor networks
constitute an inherently asynchronous environment with dynamic
network delays, synchronization is impractical and undesirable. To
avoid those problems, we will present in the next section our ap-
proach which is more general and takes into account delays and
messages reliability.

3. ASYNCHRONOUS FUSION SCHEME
This section is devoted to the main algorithm of the averaging data
scheme. First we introduce the general form of the algorithm, then
some practical aspects are developed.

3.1 General Algorithm
The proposed algorithm to compute the average consensus over the
network is based on information diffusion. As shown in the pre-
vious section, each node takes a measurement and then cooperates
with its neighbors in a diffusion manner to estimate the average of
all the collected information. To overcome the synchronization be-
tween the nodes, the algorithm is able to deal with communication
delays and with messages loss. It is inspired from the load bal-
ancing algorithm presented by Bertsekas and Tsitsiklis in [3, sec-
tion 7.4]. In the load-balancing field, the idea is to balance some
“load” in order to fully use the processor resources. By applying
the same kind of algorithm, and substituting some scalar to the load,
we obtain an algorithm that leads to computing the average of the
initial values. In this work, the algorithm of Bertsekas and Tsitsik-
lis is however extended to be able to deal with dynamic topology
changes, and messages loss.

These are some common notations and assumptions required by
our algorithm. As our method takes into account delays and does
not rely to any node synchronization, we consider that at timet a
nodei gets the state of its neighborj at timedi

j(t), where0 ≤

di
j(t) ≤ t, di

j(t) represents the transmission delay between nodesi

andj. Therefore, let us denotexi
j(t) = xj(d

i
j(t)) ∈ R the state of

nodej at timedi
j(t), received at timet by nodei. Then, we defined

the extended neighborhood of nodei at timet as the set

N i(t) =
n

j | ∃ di
j(t) ∈ {t − B + 1, ..., t} , such thatj ∈ Ni(d

i
j(t))

o

;

note thatNi(t) ⊂ N i(t).

Finally, sij(t) is the amount of the data sent by nodei to nodej at
time t, andrji(t) = sji((d

i
j(t)) is the amount of data received by

nodei from nodej at timet.

We now introduce three assumptions that ensures the convergence
of our algorithm.

ASSUMPTION 1. There existsB ∈ N such that∀t > 0,
t − B < di

j(t) ≤ t and the union of communication graphs
St+B−1

τ=t
G(τ) is a connected graph.

This assumption known as jointly connected condition [11, 1] im-
plies that each nodei is connected to a nodej within any time
interval of lengthB and that the delay between two nodes cannot
exceedB.

ASSUMPTION 2. There existsα > 0, ∀t > 0,
∀i ∈ N,∀j ∈ Ni(t), such thatα(xi(t) − xi

j(t)) ≤ sij(t).
`

sij(t) = 0 if (xi(t) ≤ xi
j(t)) for all j ∈ Ni(t)

´

.

ASSUMPTION 3.

xi(t) −
X

k∈Ni(t)

sik(t) ≥ xi
j(t) + sij(t) (2)

The two last assumptions are given to manage the choice ofsij(t).
The first one postulates when a nodei detects a difference between
its state and the states of its neighbors. Therefore, it computes non
negligiblesij to all nodesj where(xi(t) > xi

j(t)). The assump-
tion 3 prohibits nodei to compute very largesij which creates
a ping-pong state. Recall that, the ping-pong state is established
when two nodes keep sending data to each other back and forth,
without ever reaching equilibrium. These assumptions are similar
to assumption 4.2 introduced in [3, section 7.4].

The main steps of our algorithm are presented by Algorithm 1.

Algorithm 1 The General Algorithm.
1: Each node maintains an instantaneous statexi(t) ∈ R, and att = 0

(after all nodes have taken the measurement), each node initializes its
state asxi(0) = zi.

2: At each stept each nodei:

• compares its state to the states of its neighbors;

• chooses and computessij(t). They have to be chosen carefully
in order to ensure the convergence of the algorithm;

• diffuses its information;

• receive the information sent by its neighborsrji(t);

• updates its state with a combination of its own state and the
states at its instantaneous and extended neighbors (N i(t)) as
follows

xi(t + 1) = xi(t)−
X

j∈Ni(t)

sij(t) +
X

j∈Ni(t)

rji(t). (3)

The evaluation of the statexi under Algorithm 1 can therefore be
understood by considering equation (3).

THEOREM 1. if the assumptions 1, 2 and 3 are satisfied, Algo-

rithm 1 guarantees thatlimt→∞ xi(t) = 1
n

n
P

i=1

xi(0) i.e., all node

states converge to the average of the initial measurements of the
network.

The proof of theorem 1 is available in [2].

3.2 Practical Aspects
This section covers practical aspects for the implementation of Al-
gorithm 1. The main two aspects are how to choosesij(t) and how
to overcome the loss of messages.

Each node updates its state following equation (3). This is achieved,
by updating each sensorssij(t) through time. For the sake of
simplicity, the value ofsij(t) is chosen to be computed by the
weighted difference between the sates of nodesi andj as follows:
sij(t) = αij(t)(xi(t)− xi

j(t)) if xi(t) > xi
j(t), sij(t) = 0 other-

wise.

The choice ofsij(t) is then deduced from the proper choice of the
weightsαij(t). Hence,αij(t) must be chosen such that the states

Algorithm 2 Temporally updating weights of nodei.
1: for j ← 1 to n do
2: if j 6= i then
3: sij ← 0
4: αij ← 0
5: end if
6: end for
7: k ← 0
8: Sum← 0
9: find ℓ such that∆ℓ

i = Deltai[k]
10: αiℓ = 1/(ηi + 1)
11: siℓ = αiℓ ×∆ℓ

i
12: repeat
13: Sum← Sum + sil

14: k ← k + 1
15: find ℓ such that∆ℓ

i = Deltai[k]
16: αiℓ ← 1/(ηi + 1)
17: siℓ ← αiℓ ×∆ℓ

i

18: until NOT ((xi − Sum ≥ xi
ℓ
+ siℓ) AND (k < n))

at all the nodes converge to the average
Pn

i=1 zi/n, in other words
assumptions 2 and 3 must be satisfied.

First let define the deviation∆j
i (t) of nodei as:∆j

i (t) = xi(t) −

xi
j(t) if j ∈ Ni(t) andxi(t) > xi

j(t), ∆j
i (t) = 0 otherwise.

Algorithm 2 presents our method for temporally updating the aver-
aging weights. Nodei computes the difference between its current
state and current states of its neighbors. The positive deviations
(∆j

i > 0) are then stored in the arrayDeltai, in a decreasing or-
der. Then, it sets the weightαij to 1/(ηi(t) + 1), whereηi(t) is
the current number of its neighbors, starting by its neighbors nodes
j whose have the larger deviations while respecting assumption 3.

Note that, this algorithm could be used with other formulas to com-
puteαj

i as long as assumptions 3 and 2 are ensured.

After computing weights, the nodes exchange their data and infor-
mation with their neighbors. During these exchanges, some mes-
sages can potentially be lost. It will now be shown how to deal
with such message loss. The main idea is that, each time some
datasij(t) is sent by a nodei, it must be, at a later time, taken
into account by the nodej. This cannot happen if the message
containingsij(t) disappears, due to some communication failure.
In order to be able to recover such lost message, instead of send-
ing sij(t), it is the sumΣsij

(t) =
P

0≤τ≤t
sij(τ) that is sent.

Symmetrically the receivers maintain the sum of the received data
Σrji

(t) =
P

0≤τ≤t
rji(τ). Upon receiving, at a timet, a message

from nodei, a nodej can now recover all the amount of data that
was sent before timedj

i (t). It has only to calculate the difference
between the receivedΣsij

(dj
i (t)) and the locally storedΣrji

(t).

To conclude, the state messages exchanged during the execution of
the algorithm are composed of two scalar values : the current state
of the node,xi(t), and the sum of the sent dataΣsij

(t).

4. EXPERIMENTAL RESULTS
To evaluate our approach, we conducted multiple series of simula-
tions using the discrete event simulator OMNET++ [6]. The objec-
tive of these simulations is to confirm that our algorithm can suc-
cessfully achieve desirable results for a wide range of sensor net-
works with an arbitrary distribution of sensor nodes. Therefore, we
performed several runs of the algorithm (an average of 100 runs).
In each experimental run, the network graph is randomly generated,

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 It

er
at

io
ns

Tr

Synchronous Algorithm
Asynchronous Algorithm

Figure 1: Number of Iterations

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10

S
im

ul
at

ed
 T

im
e

Tr

Synchronous Algorithm
Asynchronous Algorithm

Figure 2: Simulated time

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 It

er
at

io
ns

Nodes Density

Synchronous Algorithm
Asynchronous Algorithm

Figure 3: Number of iterations

 10

 15

 20

 25

 30

 40 60 80 100 120 140 160 180 200

S
im

ul
at

ed
 T

im
e

Nodes Density

Synchronous Algorithm
Asynchronous Algorithm

Figure 4: Simulated Time

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 0.1 0.2 0.3 0.4 0.5

nu
m

be
r

of
 it

er
at

io
ns

Probability of link failure

Asynchronous Algorithm

Figure 5: Number of Iterations

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.1 0.2 0.3 0.4 0.5

S
im

ul
at

ed
 ti

m
e

Probability of link failure

Asynchronous Algorithm

Figure 6: Simulated Time

where the nodes are distributed over a[0, 100]× [0, 100] field; then
two nodes are connected by an edge if the Euclidean distance be-
tween them is less than 30. Furthermore, every node is randomly
given an initial datazi. They are normalized in such a manner that
their average is set toone. After the topology-formation phase
is completed, the nodes begin the iterative computation and ex-
change messages with their neighbors. A simulation experiment
stops when the sensor network reaches global convergence. We
have this condition when all the sensor nodes dataxi go toone.

In our simulations, we compared our algorithm in two modes syn-
chronous and asynchronous. In the first one, each node has to
wait until the whole neighbors update their data, before updating
its data. On the other hand, in asynchronous mode, the sensor node
operates independently without the need of waiting the other nodes.

We studied the performance of our algorithm with regard to the
following parameters: (a) The time ratioTr, defined as the ratio
of the time taken by a node to perform an iteration over the time
to transfer a message. This ratio and its impact will be studied in
section 4.1. (b) The number of sensor nodes. We will show how
our algorithm reacts once we increase the number of sensor nodes
deployed in the same area. (c) The probability of the communica-
tion link failurep. As in sensor networks the communication links
are prone to failure, we study the behavior of our approach under
the dynamically changes of the communication graphs.

The main metrics we evaluated in this paper are, the mean error
between the actual dataxi and the average of the initial data, the
mean number of iterations and the overall time before reaching the
global convergence. This time is the one simulated, as given by
the discrete simulator OMNET++ [6]. For all the experiments, the
global convergence state is said to be reached whenεi = |xi −

Pn

i=1 yi/n| becomes less than some fixed constantε.

Note that, in the figures next sections, the points represent the ob-
tained results and the curves are an extrapolation of these points.

4.1 Basic Behavior
First, we show simulation results for the case where we have a fixed
topology with a fixed number of 50 nodes andε = 10−4. The
essential parameter we varied in this section is the time ratioTr.

Figures 1 and 2 show the variation of the mean of the number
of iterations as well as the overall simulated time, while varying
the ratioTr in synchronous and asynchronous modes. In the syn-
chronous algorithm, the number of iterations stays constant, which
is not surprising since the iterations of the different nodes are syn-
chronized. Furthermore, as expected in this case, the simulated
time increases linearly withTr.

In the asynchronous mode, it is noticed that the number of iterations
is very high for lowTr (Tr ≤ 1), then it decreases sharply until the
value of iterations is equal to the value in the synchronous mode (at
Tr ≈ 2.5). For the higherTr the number of iterations stays con-
stant and is slightly greater than the number of iterations in the syn-
chronous mode. Intuitively, this can be understood by the fact that,
in the asynchronous case and for largeTr, the iterations are natu-
rally nearly synchronized. If the time evolution in the two modes
is tracked, it is observed that when1 ≤ Tr ≤ 6 the synchronous
mode needs more time than the asynchronous mode to reach the
global convergence. This is interpreted as follows: for such values
of Tr, the cost of synchronizations is more important than the cost
of the additional iterations needed by the asynchronous mode.

In a second experiment, the sensor network was fixed (50 nodes

Tr = 2) and the behavior of the algorithm was stimulated, in
both synchronous and asynchronous modes. The mean error of
the nodesε′ =

Pn

i=1 εi/n was plotted see Figure 7. It can be
seen that the convergence in the synchronous mode is faster than
the convergence in the asynchronous one. It is also noticed that
the two graphs have the same pace. In many scenarios an exact
average is not required, and one may be willing to trade precision
for simplicity. For instance, minimizing the number of iterations to
reduce the energy consumption can be superior in sensor networks
applications where exact averaging is not essential.

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140

M
ea

n
E

rr
or

Number of Iterations

Synchronous Algorithm
Asynchronous Algorithm

Figure 7: The Mean Error ε

4.2 Larger Sensor Network
Our scheme can be applied to sensor networks where a large num-
ber of sensor nodes are deployed, since it is fully distributed and
there is no centralized control. In our simulations we varied the
number of sensor nodes from 20 to 200 nodes, deployed in the re-
gion [0, 100] × [0, 100], we selected the time ratioTr = 2 and
for all nodesi, ε = 10−4. However, as shown in the two Figures
(Figure 3 and Figure 4), as the number of sensor nodes increases,
the average of the iterations number as well as the time needed to
reach global convergence decreases in the two cases synchronous
and asynchronous. We notice that in the synchronous mode we ob-
tained less number of iterations, on the other hand it takes more
time to reach the global convergence than the asynchronous one.
The higher the degree of a node, the more the precise would be the
estimation of the average consensus and hence the lower will be the
number of iterations.

4.3 Dynamic topology
In a next step, we simulated the proposed sensor fusion scheme
with dynamically changing communication graphs. We generated
the sequence of communication graphs as follows: at each time
step, each edge in the graph is only available with a selected prob-
ability p, independent of other edges and all previous steps. To
ensure the jointly connected condition of the generated graphs, we
selected a period of timeτ in which an edge cannot stay discon-
nected more thanτ time. We fixed the number of sensor nodes to
50, the time ratioTr to 2 andε = 10−4. In preliminary results, the
periodτ was chosen in a way that is equal to three times the time of
a communication. We show in figure 5 and figure 6 the variation of
the number of iterations and the time simulation with the probabil-
ity of link failure p. We notice that the number of iterations and the
overall time increase with the increase of the probability, but not in
an exponential way.

Note that we also tried to run the synchronous algorithm with dy-
namic topology changes, but the execution times were so prohibitive,
that we abandoned those experiments. These results confirm that
synchronous algorithms are unfeasible for real sensor networks.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduce a fault tolerant diffusion scheme for
data fusion in sensor networks. This algorithm is based on data
diffusion, the nodes cooperate and exchange their information only
with their direct instantaneous neighbors. In contrast to existing
works, our algorithm does not rely on synchronization nor on the
knowledge of the global topology. We prove that under suitable
assumptions, our algorithm achieves the global convergence in the
sense that, after some iterations, each node has an estimation of the
average consensus overall the whole network. To show the effec-
tiveness of our algorithm, we conducted series of simulations and
studied our algorithm under various metrics.

In our scenario, we have focused on developing a reliable and ro-
bust algorithm from the view points of asynchronism and fault tol-
erance in a dynamically changing topology. We have taken into
account two points which don’t have been previously addressed
by other authors, namely the delays between nodes and the loss
of messages. Knowing that in real sensor networks the nodes are
prone to failures, one of the high-level goals of our future work is
to allow nodes to be dynamically added and removed during the
execution of the data fusion algorithm.

6. REFERENCES
[1] J. Bahi, R. Couturier, and F. Vernier. Synchronous distributed

load balancing on dynamic networks.Journal of Parallel and
Distributed Computing, 65(11):1397–1405, 2005.

[2] J. M. Bahi, A. Giersch, and A. Makhoul. A fault tolerant
diffusion scheme for data fusion in sensor networks.
Technical report, LIFC laboratory, 2008.
http://info.iut-bm.univ-fcomte.fr/staff/makhoul/.

[3] D. P. Bertsekas and J. N. Tsitsiklis.Parallel and Distributed
Computation: Numerical Methods. Athena Scientific, 1997.

[4] R. Olfati-Saber, J. Fax, and R. Murray. Consensus and
cooperation in networked multi-agent systems.Proc. of
IEEE, pages 215–233, 2007.

[5] R. Olfati-Saber and J. S. Shamma. Consensus filters for
sensor networks and distributed sensor fusion.Proceedings
of 44th IEEE Conference on Decision and Control
CDC-ECC, 2005.

[6] OMNeT++. http://www.omnetpp.org/.
[7] D. Scherber and H. Papadopoulos. Distributed computation

of averages over ad hoc networks.IEEE journal on Selected
Areas in Communications, 23(4):776–787, April 2005.

[8] D. Spanos, R. Olfati-Saber, and R. Murray. Distributed
sensor fusion using dynamic consensus.proceedings of
IFAC, 2005.

[9] A. Speranzon, C. Fischione, and K. Johansson. Distributed
and collaborative estimation over wireless sensor networks.
Proceedings of 45th IEEE Conference on Decision and
Control, 2006.

[10] M. S. Talebi, M. Kefayati, B. H. Khalaj, and H. R. Rabiee.
Adaptive consensus averaging for information fusion over
sensor networks.In the proceedings of The Third IEEE
International Conference on Mobile Ad-hoc and Sensor
Systems (MASS’06), 2006.

[11] L. Xiao, S. Boyd, and S. lall. A scheme for robust distributed
sensor fusion based on average consensus.Proc. of the
International Conference on Information processing in
Sensor Networks (IPSN), pages 63–70, 2005.

