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Abstract. Model-Based Testing (MBT) uses a model of the System Un-
der Test as reference to automatically derive test cases. Since it is often
not reasonable to cover all the behaviours formalized in the model, cove-
rage criteria are applied to select a relevant subset of model behaviours.
In this paper, we propose a dedicated test coverage criterion, based on
Def-Use criteria on signal exchange, to implement MBT approach from
Systems Modeling Language (SysML) test models to validate mecha-
tronic systems. This novel criterion is introduced and the relevance of
the approach from SysML models is discussed regarding results obtained
with a dedicated MBT toolchain implementing this criterion.
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1 Introduction

Model-Based Testing (MBT) refers to the processes and techniques dealing with
the automatic derivation of abstract test cases (including stimuli and expected
outputs) from an abstract formal model, and the generation of executable tests
from these abstract test cases [1]. MBT is usually performed to automate and ra-
tionalize functional black-box testing activities. The abstract model, called test
model, formalizes the behavioural aspects of the System Under Test (SUT) in
the context of its environment and at a given level of abstraction. It thus cap-
tures the control and observation points, the expected dynamic behaviour, the
data associated with the tests, and finally the initial state of the SUT. The test
model must be precise and formal enough to enable unambiguous interpretations
to automate the derivation of test cases. UML4MBT approach [2] enables auto-
mated functional test generation from a UML test model written with a subset
of UML language [3] and OCL constraints [4]. These UML and OCL fragments
are respectively called UML4MBT and OCL4MBT [5]. Basically, class diagrams
define the points of control and observation of the SUT, instance diagrams define
the initial state of the SUT and give the set of the test data, while Statemachines
with OCL constraints define the expected behaviours in a formal way.



Fig. 1. UML4MBT existing toolchain.

This MBT solution is implemented by the toolchain depicted in Fig. 1. It
takes as input a test model specified by the UML4MBT/OCL4MBT language,
which has a precise and unambiguous meaning. OCL4MBT expressions indeed
provide the expected level of formalization necessary for model-based testing
modeling. This precise meaning makes it possible to simulate the execution of
the models and to automatically generate test cases. Such a test case takes the
form of an abstract sequence (abstract because it is defined at the abstraction
level of the test model) of the high-level actions modeled in the test model.
These generated test cases contain the stimuli to be executed on the SUT, but
also the expected results, obtained by resolving the associated OCL constraints.
Finally, the test cases are concretized into executable scripts to be automatically
executed on the targeted testing platform.

Since there is usually an infinite number of possible test cases that can be ge-
nerated from a test model, some test selection criteria have to be applied to select
a subset of appropriate test cases regarding the global purpose of the test cam-
paign, and/or to ensure a given coverage of the system behaviours. Test selection
criteria are usually based either on control-flow coverage [6] (such as all-states,
all-transitions, all-k-paths, etc.), or data-flow coverage [7] (such as All-Defs, All-
Uses, All-DU-Paths, etc.). Moreover, condition coverage criteria [8] (such as CC,
DC, D/CC, MC/DC, etc.) may additionally be applied to enforce the structural
coverage of the decisions of the test model. The test coverage strategy applied by
the UML4MBT approach relies both on control-flow and condition coverage cri-
teria: UML4MBT applies All transitions coverage, which ensures to cover each
transition of the UML4MBT Statemachines, and Decision/Condition Coverage
(D/CC) criterion, which ensures the coverage of all the conditions and all the
decisions of the UML4OCL annotations.

In this paper, we propose to extend the UML4MBT solution to specifically
address embedded mechatronic system domain. We thus propose to adapt this
existing approach (1) by taking Systems Modeling Language [9] (SysML) as input
test models, (2) by introducing a dedicated coverage criteria, called ComCover,
to select relevant test cases from such models, and (3) by developing a fully
automated toolchain supporting this MBT process dedicated to mechatronic
and embedded systems. The paper is organized as follows. Section 2 introduces
the motivation and the context of this research. Section 3 defines the subset of
SysML notation supported to express the test model. Section 4 and 5 respectively
describe and formalize the original ComCover criterion dedicated to such test
models. Section 6 presents the toolchain developed to support this approach
and introduced case-study results. Section 7 finally concludes the paper.



2 Related Works

Mechatronic systems refer to systems that combine software, electronical systems
and additional mechanical parts to perform a dedicated function. In this context,
embedded softwares define a part of a larger system or product. Then, we can
deduce that the embedded system exists because the larger system needs it. That
is why testing an embedded system, without considering the system containing
it, is often not efficient. In order to completely analyze and validate this kind of
system, it appears necessary to take into account all parts which influences it.

Since 1990, the well-know simulation program PELOPS3 is developed on
the idea that, to specify a vehicle embedded systems in order to analyze it, it
is necessary to represent three specific parts: the vehicle, the driver and the
environment. This framework [10] is depicted in the Fig. 2.

Fig. 2. Driving framework.

This realistic kind of modeling can then be validated by simulation: theoret-
ical results calculated using such model framework are indeed compared with
concrete results given by the physical corresponding system [11]. These three
parts have to contain all elements that can influence the behaviour of the em-
bedded system. This framework is nowadays still used in several works, and
defines the preamble of the work presented in this paper. However, taking into
account each environment part usually introduces combinatorial explosion prob-
lems, especially when each system part is tested independently. Moreover, in
order to detect undesired behaviour, it is necessary to study interaction network
between all the system components [12]. Consequently, our approach does not
consist in verifying properties by proving local properties of each component,
but to consider the global system components by focusing on their interactions.

A pain of such approaches can be caused by the heterogeneity of the different
components and technology domains. To avoid this issue, it is needed to make
uniform the representation of components at a given and adequate abstract
level. [13] shows that using UML/SysML based models is an efficient way for
automation engineering to handle the complexity of embedded systems. In this
way, to avoid combinatorial problems, it is necessary to capture in the context
model only the information required to simulate the behaviour of the system
with regards to the evolution of its environment.

3 See http://www.pelops.de/UK/index.html



Several testing approaches for embedded systems are based on a model of
the SUT environment. Typically, as proposed in [14], a test case is defined as a
sequence of stimuli that are sent from the environment to the embedded system
under test In order to generate test cases, the authors apply Adaptive Random
Testing and Search-Based Testing. These techniques allow to reduce combinato-
rial explosion during calculation, but gives poor information about the coverage
of the test model and make difficult to assess a certain coverage.

Concerning the choice of the modelling language, two main strategies have
been explored. As shown in [15], the first approach promotes the use of formal
and mathematical languages such as Petri nets and VHDL-AMS codes. This
kind of languages is powerful to specify mathematical and physical expressions,
but they are not easy to acquire and does not often correspond to software
engineer knowledge. Indeed, to be admitted by the software engineers, such ap-
proaches need to use a language widely used by software engineers. This point
of view notably motivates the second approach that considers less formal, and
often graphical, models. Moreover, in practice, starting the analysis of complex
system using too formal models is not convenient: it is usually necessary to be-
gin the study using a more abstract notation in order to master the complexity
of such systems. In this way, in [16], the authors propose to develop a domain
model with UML class Diagram to represent the global structure of the environ-
ment (relationships, properties and constraints). Several behavioral models for
each environment parts are also designed using UML Statemachines to model
the dynamic part of the system. Other UML-based approaches use sequence di-
agrams, as [17], to model behavioural aspects or to represent test classification
trees. In [18], the authors propose to use SysML to initially specify the system
in a graphical manner. This language, where the object-oriented features are not
visible, makes it possible to capture the mechatronic aspects of the SUT, and
ease the interaction between different teams of multi-domain engineers.

In this paper, we also propose to use the Unified Modeling Language paradigm.
This notation gives the advantage to be widely supported in terms of tools and
training material. More precisely, we adopt SysML as specification language.
Even if SysML is a recent modeling language, it is indeed on the rise in embed-
ded system domain and some studies already use it to develop new industrial
validation approaches (e.g. Model Checking and testing of on-board space ap-
plications [19]). Moreover, SysML, being defined as an OMG standard profile of
UML, makes it possible to reuse existing testing approaches and tooling based
on UML test models. In this way, it allows to adapt the existing UML4MBT
approaches by focusing on the specific needs of testing mechatronic systems.

3 SysML4MBT Modeling

This section describes the subset of SysML notation supported to express the
test model. This description is based on a simplified version of a realistic case
study that will be used in the next sections to illustrate our approach.



3.1 Emergency-Stop Case Study

The emergency-stop case study describes a train emergency-stop system. This
example will be used in the next sections to illustrate the proposed MBT ap-
proach. This system is defined by the following functionalities and rules:
– The train can either be stationing or moving on rail track.
– It is possible to set off the emergency− stop by pulling the button button1.
– It is possible to set off the emergency−stop by pushing the button button2.
– When one of these two buttons is activated, a signal is sent to the emergency-

stop manager system, which automatically stops the train and sets off the
alarm if the train is moving, or only prevents the driver if the train is stopped.

To model this system, it is necessary to represent mechanical parts (buttons
for example) and communications between subsystems (buttons and emergency-
stop manager system) using signal. Mechatronic systems are indeed typically
composed of some logical and some physical parts that communicate using me-
chanical or physical signals. But UML, and so UML4MBT, is not adapted to
cover such aspects: a UML4MBT class diagram represents a logical entities of
the system, and not at all a physical system; classes contain operations and at-
tributes but signals are not allowed; only one Statemachine annotated by OCL
expressions is allowed; neither parallel structures (parallel states, fork and join
states) nor historic states are supported in the Statemachine; etc. That is why
we decided to extend UML4MBT capabilities using SysML profile notation to
capture the semantics of such embedded systems. To model the communication
network between the subsystems of the SUT, the expressiveness of UML4MBT
has also been extended by taking into account the communication ports and
links. It should be noted that the representation of time constraints, which is an
other major aspect of embedded systems, will not be considered in the current
approach, but will be studied in future work by using a dedicated UML extension
such as MARTE [20] profile.

3.2 SysML4MBT Expressiveness

The test model, specified by SysML diagrams, defines the expected behavior
of the SUT: it formalizes the control and observation points of the SUT, and
its expected behaviour. However, SysML contains a large set of diagrams and
notations that are defined with a flexible way and some freedom that can offer
different semantical interpretations. For practical MBT, it is necessary to select
a subset of SysML, and to clarify its semantics so that MBT tools can interpret
the models in a unambiguous way. We thus define a precise subset of SysML for
test generation purpose called SysML4MBT. A SysML4MBT model is composed
of the following entities:
– A Block Definition Diagram (BDD) represents the static view of the system.

It is defined as a stereotype of the UML class diagram. It can contain blocks,
associations, compositions, signals, flow specifications and enumerations.

– An Internal Block Diagram (IBD) precises interconnections between and/or
inside the physical parts of the system. The SysML IBD is defined as a
stereotype of the UML Composite Structure Diagram.



– One or more Statemachines specify the dynamical view of the system. SysML
Statemachines are directly inherited from UML Statemachines. Addition-
ally to UML4MBT, SysML4MBT enables parallel structures (parallel states,
fork/join states and multiple Statemachines) and historic states.

– In order to represent in a formal way the dynamical aspect of the system,
OCL4MBT constraints are used to define the pre and post-conditions of the
operations, and the guards and effects of the transitions in the Statemachine.
The circumflex operator, which represents a sent signal in OCL, has been
added to the OCL4MBT initial expressiveness.

3.3 SysML4MBT Modeling

To model the emergency-stop system, the train can be divided into three parts:
the first part defines the general state of the train, the second one defines the
button system, and the third one specifies the emergency-stop manager. It should
be noted that, due to their simplicity and to simplify the presentation, only
Statemachines are presented and depicted in Fig. 3 (BDD and IBD are not shown
in this paper), and actions are all abstracted in the Statemachines. Finally, each
transition is identified by a label trX to ease the explanation understanding.

(a) Train (b) Button

(c) Emergency

Fig. 3. Statemachines of the emergency-stop case study

The Statemachine defining the behaviour of the train, contains two states:
STOP (the train is stationing) and MOV E (the train is moving). The expression
callStart (resp. callStop) represents a call of start (resp. stop) operation that is
a request to move (resp. stop) the train. At the initial state, the button system is
waiting for an activation of one of the buttons. When one of them is activated (ac-
tion pullButton1 if the button1 is pulled, and action pushButton2 if the button2
is pushed), a signal is sent to the emergency manager system. The sending of this
signal is modeled by the action SendStop. Finally, the emergency-stop manager
is initially positioned in the state WAIT . When it receives the emergency-stop
signal sent by the button system (transition triggered by ReceiveStop), the train
will stop and the alarm will be set off if the train is moving (guard of the tran-
sition); else, it only prevents the driver. This example will be used in the rest of
the paper to illustrate the SysML4MBT testing approach.



4 Test Model Coverage Strategies

Some well-known criteria are usually used in Model-Based Testing techniques. A
hierarchy of structural coverage criteria is notably defined in [21] and is depicted
in the figure 4. Criteria in the box are control-flow criteria, the others are data-
flow criteria. The (inheritance) arrows depict that if the criterion at the start of
the arrow is covered, the criterion pointed by this arrow is also covered.

Fig. 4. Usual hierarchy of criteria.

The criterion All states consists in the coverage of each state of the model,
while All transitions ensures that each transition is covered. It means that for
each state (resp. transition), at least one test case executes it (if it is feasible).
The criterion All DU (shortcut for All Definition/Use) deals with the coverage
of each couple of definition (update) and use (reading) of each variable. It means
that each time a variable is modified in the model, for each time it is read, a test,
executing the definition before executing the use of the variable (without execut-
ing an other definition meantime) has to be generated. The criterion All DU is
defined as an extension of the All transitions criterion: it ensures the coverage
of all transitions and all definition/use pairs. The criterion All DU − paths sug-
gests the same level of coverage as All DU , but apply the approach to cover, for
each variable, all the possible paths linking a definition and a use. Finally, the
most constrained criterion of this hierarchy is the criterion All paths: it guaran-
tees the coverage of all the possible paths in the system. The All DU − paths
and All paths criteria are infeasible in practice due to combinatorial explosion
of reachable states, and can be usually applied only on very small models since
it generates a large number (potentially infinite) of test cases.

4.1 Strategy implemented within UML4MBT

The test coverage strategy implemented within UML4MBT relies both on control-
flow and condition coverage criteria. UML4MBT applies All transitions that
ensures to cover each transition, and also implements Decision/Condition Cove-
rage criterion (D/CC) for each decision branch of the model. The D/CC criterion
deals with the coverage of all the conditions and all the decision of the model. It
means that for each effect of each transition, the condition of decision structure
and the decision itself have to be true and false in at least one test case.



These criteria do not take into account particularities of SysML models.
Indeed, a major issue of SysML4MBT models in comparison with UML4MBT
models concern the representation of communication links and exchanges (send
and receive of signals) between components of the system. The next subsection
underlines this lack of the UML4MBT approach on the emergency-stop example.

4.2 Illustration of the UML4MBT Strategy

The three Statemachines of the case study model contain six transitions. Each
one contains only one behaviour without condition. Then, the application of the
All Transitions criterion is sufficient and the D/CC criterion is of no interest
in this case. By performing UML4MBT approach to this model, the test cases
represented in the table 1 are generated (in the representation of test cases,
elements in parenthesis represent automatically fired transitions, while elements
into brackets gives the name of the corresponding transition).

Table 1. Tests generated using UML4MBT strategy.

Targets Id Tests

Train state Statemachine

trA
Start the train.

S1 callStart[trA]

trB
Stop the train.

S2
callStart[trA]
→ callStop[trB]

Button system Statemachine

trC
Pull the button 1.

S3
pullButton1[trC]
→ (ReceiveStop[trE])

trD
Push the button 2.

S4
pushButton2[trD]
→ (ReceiveStop[trE])

Emergency manager Statemachine

trE
Emergency stop called
(train already stopped).

Already covered by S3
and S4.

trF
Emergency stop called
(train moving).

S5
callStart[trA]
→ pullButton1[trC]
→ (ReceiveStop[trF ])

Since the sequence S1 is included in S2, S1 is not required. Thus, to satisfy
the coverage criterion All Transitions, the four test cases represented by the
sequences S2, S3, S4 and S5 are generated by the UML4MBT approach.

This example shows that there is a deficiency on the case study coverage
because the scenario, consisting to push the button2 when the train is moving,
is not required to satisfy the criterion. In critical system context, it appears to
be necessary to test such case. Then, to avoid this lack, a more precise strategy
should be applied: for this purpose, a dedicated data-flow test selection strat-
egy, called ComCover, has been defined to cover all the configurations of signal
exchange. The next subsection introduces this dedicated criterion and defines it
with regards to the previously presented criteria.



4.3 ComCover Strategy

Within SysML4MBT test generation strategy, we are interested in the coverage
of each signal received from each signal sending. In this way, we propose to
adapt the DU approach, which concerns variables of the system, to address the
exchange of signals in order to create a sensible test metric for reactive parallel
Statemachines. This original criterion is called All DUsig, and the corresponding
strategy to select test cases, that satisfy this criterion, is called ComCover.

The All DUsig criterion, based on All DU , deals with the coverage of send
and receive events. The criterion All DUsig guarantees the coverage of the suc-
cession of the sending event and the receive event: For each transition pair that is
synchronized on the same event (one sender and one receiver), a test is required
to show that the sender triggers the receiver. In analogy with the All DU crite-
rion, the All DUsig criterion can be seen as an extension of the All transitions
criterion. Thus, the All DUsig criterion ensures the coverage of all transitions
and all send/receive couples. Finally, we also define the All DUsig − paths crite-
rion, which guarantees, for each send/receive couple, the coverage of all possible
paths containing them. The criteria hierarchy is updated as shown in Fig. 5.

Fig. 5. Hierarchy of communication criteria.

The strategy, which consists in generating test cases in order to guarantee
the All DUsig criterion, is called ComCover. The use of All DUsig − paths as
selection criterion has not been implemented, and not be experimented, due to
scalability issues. Indeed, All DU − paths criteria is known to be infeasible in
practice since it results in an infinite number of tests when the Statemachine
contains loops [22].

The ComCover strategy is thus based on communications between parts: its
purpose is to extract all send/receive couples of SysML4MBT Statemachines and
to cover them by at least one test case that fires the concerned signal receiving
behaviour after having fired its sending. Concretely, each behaviour BhvA (of
a transition in a Statemachine) that sends a signal to a specific port, and each
behaviour BhvB that can receive the signal sent by BhvA, are extracted from
the model. Each couple BhvA/BhvB then constitutes a test target to be covered
by at least one test case to ensure All DUsig.



4.4 Illustration of the ComCover Strategy

This section presents the results of the ComCover strategy using the SysML4MBT
emergency-stop example. This model contains two signal sendings: SendStop on
the transition trC and SendStop on trD. The receive of the signal can activate
two transitions: trE and trF . Then, four test targets can be derived: the couples
C1 (by firing trC before trE), C2 (by firing trC before trF ), C3 (by firing trD
before trE)and C4 (by firing trD before trF ). The test cases of Table 2 are then
generated using a classical breadth-search algorithm to cover each couple.

Table 2. Test cases generated using ComCover.

Targets Id Tests

C1 (trC/trE)
Pull the button 1
(train already stopped).

S6
pullButton1[trC]
→ (ReceiveStop[trE])

C2 (trC/trF)
Pull the button 1
(train moving).

S7
callStart[trA]
→ pullButton1[trC]
→ (ReceiveStop[trF ])

C3 (trD/trE)
Push the button 2
(train already stopped).

S8
pushButton2[trD]
→ (ReceiveStop[trE])

C4 (trD/trF)
Push the button 2
(train moving).

S9
callStart[trA]
→ pushButton2[trD]
→ (ReceiveStop[trF ])

Complement to guarantee All transitions

trB
Stop the train.

S10
callStart[trA]
→ callStop[trB]

In comparison with the results obtained using UML4MBT approach, S6 and
S3 are equals, like S8 and S4, S7 and S5, and S2 and S10. On this simple
example, all tests generated by the strategy of the UML4MBT approach are also
generated with the ComCover strategy. Besides, the sequence that was missing
using UML4MBT approach (activation of the emergency-stop using the button2
when the train is moving), is generated by ComCover with the sequence S9.

5 Formalization
This section proposes a formalization of the criteria D/CC and All DUsig.

5.1 Formalization of a SysML4MBT Model
In this subsection, we introduce the subset of SysML4MBT notation that is
required to formalize the coverage criteria. All elements annotated with ∗ are
not detailed here, but can be found in [23], where the SysML4MBT modeling
expressiveness is fully formalized. A SysML4MBT model is composed of a Block
Definition Diagram (BDD), Internal Block Diagram (IBD) and one or more
Statemachines (SM). Internal Block Diagram, not required to formalize criteria,
will be ignored in the rest of this section. We adopt the same restrictions for
BDD in which only blocks and signals are relevant to define the criteria.



Definition 1 (Model) A SysML4MBT model can be defined by the 2-tuple
〈BDD,SMS〉, where BDD represents the Block Definition Diagram and SMS
is a set of Statemachine Diagrams (SM).

Definition 2 (BDD) A BDD is defined by the 2-tuple 〈SIGS,BLOCKS〉,
where SIGS is the set of all signals and BLOCKS is the set of all blocks.

Definition 3 (Block) A Block BLOCK is defined by the 3-tuple 〈OPS∗,
PROPS∗, PORTS∗〉, where OPS is a set of all operations, PROPS the set
of all properties, and PORTS the set of all ports contained in the block.

To directly access to block elements of a model M, we define the accessors
M.allProps, M.allOps and M.allPorts that respectively represent the set of
all properties, operations and ports of the model M . We can now formalize the
SysML4MBT Statemachine and its transitions. A transition starts from a state
and reaches an other (which can be the same), and can be guarded and triggered
by an event. When this event appends, if the guard of the transition holds, the
transition is fired and one of its behaviours is executed.

Definition 4 (SM) A Statemachine is represented by a 2-tuple 〈STATES∗,
TRANS〉, where STATES denotes all states of the Statemachine Diagram, and
TRANS is a set of all transitions of the Statemachine Diagram.

Definition 5 (Transition) A transition is defined by 〈TRstart∗, TRend∗,
TRtrig, TRguard∗, TRbhvs〉 where:

– TRstart is the initial state of the transition.

– TRend is the final state of the transition.

– TRtrig corresponds to the trigger of the transition
TRtrig ∈ ((BDD.SIGS ∗ allPorts) ∪ allOps).

– TRguard defines the guard of the transition.

– TRbhvs contains all behaviours of the transition.

The behaviours of the transition are defined by an effect and a guard, which
is a boolean expression that must hold to execute the action. It is formalized in
the following way.

Definition 6 (Behaviour) A behaviour is defined by a 2-tuple 〈BHV decision∗,
BHV action〉, where:

– BHV decision defines the guard.

– BHV action is the set of all effects that can be executed when the behaviour
is activated. An effect takes the form of a signal sending on a specific port
or an update of a property value:
(BDD.SIGS ∗ allPorts) ∪ (allProps ∗ newV alue)
(newV alue represents the new value to be associated to the property).



5.2 Formalization of a Test Case

Within test generation from SysML4MBT models, we define a test case as a
trace (sequence) of steps (operation calls).

Definition 7 (Trace) TRACES defines the set of all possible traces of the
SysML4MBT model. A trace tr, such that tr ∈ TRACES, contains an ordered
set of steps 〈StepOP ∗, StepBhv∗, AllBhvs∗〉, where:

– StepOP defines the operation triggering the behaviour.
– StepBhv is the executed behaviour if the trigger holds.
– AllBhvs is an ordered set that contains all the behaviours (including StepBhv)

triggered by StepOP .

The set of generated test cases TESTS is thus a subset of TRACES that
contains all the traces selected by the test generation strategy: TESTS ⊆
TRACES. All the elements, needed to formalize the coverage criteria D/CC
and All DUsig have been introduced.

5.3 Formalization of the Criteria

Using the definitions introduced in the previous subsection, we firstly propose in
Fig. 6, the formalization of the criterion all transitions applied on UML4MBT
model, which is refined using SysML4MBT model by All DUsig criterion.

∀ trans.(trans ∈ {t|∃ sm.(sm ∈M.SMS ∧
t ∈ sm.TRANS)} ⇒

∃ bhvTest.(bhvTest ∈ {b|∃ (step, t).(t ∈ TESTS ∧
step ∈ t ∧
b ∈ step.AllBhvs)} ∧

bhvTest ∈ trans.TRbhvs))

Fig. 6. Formalization of All transitions criterion.

The All DUsig criterion applied to SysML4MBT model, to improve its cove-
rage regarding communication exchange, is defined in Fig. 7 (in this formaliza-
tion, the formula bhvSend <step.AllBhvs bhvRec means that bhvSend is before
bhvRec in the step.AllBhvs ordered set).

∀ (sig, port, bhvSend, trRec).
((sig ∈M.BDD.SIGS ∧ port ∈M.allPorts() ∧
bhvSend ∈ {b|∃ (sm, t).(sm ∈M.SMS ∧

t ∈ sm.TRANS ∧ b ∈ t.TRbhvs)} ∧
trRec ∈ {t|∃ sm.(sm ∈M.SMS ∧

t ∈ sm.TRANS)} ∧
〈sig, port〉 ∈ bhvSend.BHV action ∧
trRec.TRtrig = 〈sig, port〉)
⇒ ∃ (step, bhvRec).

(step ∈ {s|∃ t.(t ∈ TESTS ∧ s ∈ t)} ∧
bhvSend ∈ step.AllBhvs ∧
bhvRec ∈ step.AllBhvs ∧
bhvRec ∈ trRec.TRbhvs ∧
bhvSend <step.AllBhvs bhvRec))

Fig. 7. Formalization of All DUsig criterion.



Informally, this formalization establishes that a test set satisfies this criterion
if all pairs signal send/receive is covered by at least one test case. The criterion
All DUsig − paths enforces this criterion by ensuring the coverage of all paths
that can be used to provide the All DUsig criterion (this criterion has not been
experimented due to scalability issues and is thus not formalized in this paper).

Finally, we can use the formalization of a SysML4MBT model to formalize
the D/CC criterion, which is applied in our approach to complete the previous
data-flow strategies. This formalization is expressed in Fig. 8.

∀ bhv.(bhv ∈ {b|∃ (sm, t).(sm ∈M.SMS ∧
t ∈ sm.TRANS ∧ b ∈ t.TRbhvs)}

⇒ ∃ bhvTest.(bhvTest ∈ {b|∃ (step, t).(t ∈ TESTS ∧
step ∈ t ∧ b ∈ step.AllBhvs)} ∧

bhvTest = bhv))

Fig. 8. Formalization of D/CC criterion.

6 Toolchain and Experimentation Results

The ComCover approach consists to automatically derive, from a SysML4MBT
model, test cases that satisfy All DUsig. Moreover, we decide to ensure the
D/CC criterion to cover the conditional branches specified in the model. The
toolchain implementing this approach from SysML4MBT models is an extension
of the existing UML4MBT toolchain (See Fig. 1 in the introduction of this
paper), which derives test cases from UML4MBT model by computing both
All transitions and D/CC test selection strategies. The obtained toolchain,
depicted in Fig. 9, translates the entities of the SysML4MBT model into an
equivalent UML4MBT model, and allows to re-use the test generation techniques
and algorithms initially developed for UML4MBT models.

Fig. 9. SysML4MBT toolchain.

The implementation of the ComCover approach is then performed during the
translation of the SysML4MBT model into the corresponding UML4MBT model,
as suggested in other Model-Based approaches such as [22]. More precisely, it con-
sists to specialize the translation rules of SysML4MBT into UML4MBT model
such that applying All transitions and D/CC strategies on UML4MBT resulting
model implies the coverage of the initial SysML4MBT model by All DUsig and
D/CC criteria. The next sections give details about this implemented approach.



6.1 Model Transformation

The rules to translate SysML4MBT models into an equivalent UML4MBT mod-
els are defined and detailed in [23]. SysML being a profile of UML, the majority of
the rewriting rules from SysML4MBT to UML4MBT can be automatically per-
formed by deleting the stereotype layer of SysML (blocks become classes, block
properties become class attributes, block operations become class operation. . . ).
For specific SysML entities, dedicated translation rules are defined:

– Each SysML4MBT signal is translated into a dedicated UML4MBT class.
– Each receive port is translated into a link between the class representing the

block hosting the port and each class representing each signal that can be
received on this port.

– The OCL operator circumflex is translated into an OCL expression that
manipulates the link resulting from the translation of the receive ports

– Historic states are rewriting using a class attribute that simulates a memory
state and related OCL constraints are added on transitions.

– parallel structures (fork/join, parallel states and multiple Statemachines) are
translated into sequential structures by applying a synchronized product.

6.2 ComCover Implementation

To apply the ComCover strategy, specific transitions have to be introduced dur-
ing the translation from SysML4MBT into UML4MBT model. These artificial
behaviours concern each signal send/receive couple, which defines the goal of the
All DUsig coverage criterion: each pair signal send/receive of the SysML4MBT
model is thus represented by one specific transition in the resulting UML4MBT
model. Since UML4MBT applies a selection strategy based on the criteria
All transitions and D/CC, we can ensure that each pair signal send/receive
is covered by the generated test cases. The implementation of this dedicated
translation requires three steps: firstly, adding an attribute on each generated
UML4MBT classes to represent SysML4MBT signals; secondly adding OCL ex-
pression on all behaviours sending a signal to update this attribute; and thirdly
adding OCL expression on each transition triggered by a signal receive to test
if it is pending. These steps are explained in the next subsections. It can be
noted that, to simulate the All DUsig−paths criterion, it would be necessary to
add one transition for each path linking each pair signal send/receive, and this
processing may not terminate if the state diagram contains loop.

6.3 Case Study Results

The ComCover selection strategy has been experimented and validated with sev-
eral case studies. The most realistic one concerns the behaviours of the steering
column of a car, which consisted to test the reactions of the system contingent on
road plots. In the SysML4MBT model, road characteristics are represented us-
ing blocks. Those blocks are linked to the steering column that defines the SUT.
This case study gave rise to a complete toolchain from the SysML4MBT test
model (high level of abstraction) to the execution of the generated test cases on a
Matlab/Simulink simulation model and a physical test bench (concrete system).



This realistic experimentation enables the detection of some errors both in the
simulation model and in the concrete system configuration. More details about
this end-to-end toolchain and the experimentation results on this case-study have
been respectively published in [24] and in [25]. A short videotape, exemplifying
it, is also available4. This experimentation demonstrates the relevance of the
ComCover strategy for embedded mechatronic systems, that strongly rely on
subsystem communication, by focusing the test objectives on signal exchanges.

7 Conclusion and Future Work
This paper proposes original coverage criteria (All DUsig and All DUsig−paths)
to increase the model coverage, within MBT approach from Systems Modeling
Language, to validate mechatronic systems. These criteria are based on a Def-
Use approach focused on the communication features of the SysML test model.
A dedicated test selection strategy, called ComCover, has been defined and im-
plemented to automatically generate test cases covering the All DUsig criterion.
This strategy aims to improve an existing MBT process by considering communi-
cating embedded systems modeled using SysML. However, the results presented
in this paper are not restricted to this process and can be applied in all ap-
proaches that consider systems defined by material and logical subparts that
communicates to each other. Finally, this automated toolchain has been experi-
mented with industrial case studies, which allow to highlight the relevance of the
ComCover strategy to generate test cases for (complex) communicating system.
We are now investigating the use of real-time constraints in the SysML4MBT
test model to complete the SysML4MBT model and improve the relevance of
test cases for real-time systems. This model feature, major aspect of embedded
system domain, will be addressed using the dedicated UML MARTE profile.
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