Model-Based Vulnerability Testing
for Web Applications

Franck Lebeau*, Bruno Legeard*!, Fabien Peureux* and Alexandre Vernotte*
*FEMTO-ST Institute - DISC department - UMR CNRS 6174
16, route de Gray 25030 Besangon, FRANCE
Email: {flebeau, blegeard, fpeureux, avernott}@femto-st.fr
TSmartesting R&D Center - 18, rue Alain Savary, 25000 Besancon, FRANCE
Email: bruno.legeard @smartesting.com

Abstract—This paper deals with an original approach to
automate Model-Based Vulnerability Testing (MBVT) for Web
applications. Today, Model-Based Testing techniques are mostly
used to address functional features. The adaptation of such
techniques for vulnerability testing defines novel issues in this
research domain. In this paper, we describe the principles of our
approach, which is based on a mixed modelling of the application
under test: the specification indeed captures some behavioral
aspects of the Web application, and includes vulnerability test
purposes to drive the test generation algorithm. Finally, this
MBVT approach is illustrated with the widely-used DVWA
example.

Keywords—Vulnerability testing, Model-Based Testing, Web ap-
plications, DVWA example.

I. INTRODUCTION

The continued growth of Internet usage as well as the
development of Web applications foreground the challenges
of It security, particularly in terms of data confidentiality, data
integrity and service availability.

Thus, as stated in the annual barometer concerns of Infor-
mation Technology Managers!, for 72% of them, computer
security and data protection are their primary concerns. This
growth of risk arises from the mozaic of technologies used
in current Web applications (eg HTMLS5), which increases the
risk of security breaches.

This situation has led to significant growth in application-level
vulnerabilities, with thousands of vulnerabilities detected and
disclosed annually in public databases such as the MITRE
CVE - Common Vulnerabilities and Exposures’>. The most
common vulnerabilities found on these databases especially
emphasize the lack of resistance to code injection of the kind
SQL Injection or Cross-Site Scripting (XSS), which have many
variants. They appear in the top list of current web applications
attacks.

Application-level vulnerability testing is first performed by
developers, but they often lack the sufficient in-depth knowl-
edge in recent vulnerabilities and related exploits. This kind
of tests can also be achieved by companies specialized in
security testing, in pen-testing (for penetration testing) as
instance. These companies monitor the constant discovery of
such vulnerabilities, as well as the constant evolution of attack

IBarometer CIO 2012, survey from the CSC institute, the 01 Informatique
magazine and the BFM radio http://assets1.csc.com/fr/downloads/Barometre_
CIO_2012_Tout_se_transforme_OK.pdf

2Web site of MITRE CVE database - http://cve.mitre.org

techniques. But they mainly use manual approaches, making
the dissemination of their techniques very difficult, and the
impact of this knowledge very low.

The work presented in this paper aims to automate vul-
nerability testing of Web applications, in order to extend the
testing capability of these applications, increase the detection
of such vulnerabilities and improve the overall level of security.
The approach studied, based on model-based test generation
techniques, aims to capture vulnerability test patterns in order
to automate their implementation on Web applications.

The original contributions of this paper are:

e The consideration of the application’s functional be-
haviour to generate vulnerability test cases, which
allows for a more thorough exploration and testing
of the Web application;

e The capture of Vulnerability Test Patterns as test
purposes used to drive the test generation engine
through models;

e The modelling activity dedicated to vulnerability test-
ing that combines modelling of the system under test
and modelling of the environment activities.

In the remainder of this paper, we first present our approach
following the example of vulnerability testing of Cross-Site
Scripting (XSS). We provide modelling material and test
purposes in order to show how our test generation tool chain
computes vulnerability test cases, that are executable on the
target application. This presentation then relies on an experi-
ment conducted on a Web application named DVWA - Damn
Vulnerable Web Application - which is a demonstration ap-
plication featuring typical vulnerabilities. Finally, we position
this work in the state of the art and offer a conclusion and
perspectives.

II. MODEL-BASED VULNERABILITY TESTING

We propose to revisit and adapt the traditional approach of
Model-Based Testing (MBT) in order to generate vulnerability
test cases for Web applications. This adapted approach is called
Model-Based Vulnerability Testing (MBVT). In this section,
we firstly describe the specificities of the MBVT approach.
Secondly, we introduce the running example, named DVWA,
used in the rest of the paper to illustrate the MBVT approach,
and finally, we define the scope of the experiments conducted
on this example.

L
Vulnerability Test
Test i) Purposes
Patterns__ I >
1
! Vulnerability
H Tests
[— v
Functionnal -
1 =1 ()

_/-

[Test Execution

Legend : ;/ Security Test Engineer SsuT

Fig. 1. Model-Based Vulnerability Test process

A. Principles of the MBVT approach

MBT [1] is an increasingly widely-used approach that
has gained much interest in recent years, from academic
as well as industrial domain, especially by increasing and
mastering test coverage, including support for certification, and
by providing the degree of automation needed for shortening
the testing execution time. MBT refers to a particular approach
of software testing techniques in which both test cases and
expected results are automatically derived from a high-level
model of the System Under Test (SUT). This high-level model,
which defines the input of the MBT process, specifies the
behaviours of the functions offered by the SUT, independently
of how these functions have been implemented. The generated
test cases from such models allow to validate the behavioural
aspects of the SUT by comparing back-to-back the results
observed on the SUT with those specified by the model. MBT
aims thus to ensure that the final product conforms to the
initial functional requirements. It promises higher quality and
conformance to the respective functional requirements, at a
reduced cost, through increased coverage (especially about
stimuli combination) and increased automation of the testing
process [2]. However, if this technique is used to cover the
functional requirements specified in the behavioural model of
the SUT, it is also limited to this scope, since what is not
modeled will not be tested.

The use of MBT techniques to vulnerability testing requires
to adapt both the modelling approach and the test genera-
tion computation. Within the traditional MBT process, which
allows to generate functional test cases, positive test cases’
are computed to validate the SUT in regards to its functional
requirements. Within vulnerability testing approach, negative
test cases* have to be produced: typically, attack scenarios to
obtain data from the SUT in an unauthorized manner. The
proposed process, to perform vulnerability testing, is depicted
in Figure 1. This process is composed of the four following
activities:

@ the Test Purposes activity consists in formalizing
test purposes from vulnerability test patterns that the
generated test cases have to cover;

3We call “positive test” a test case that checks whether a sequence of
stimuli produces the expected effects with regards to the specifications. When
a positive test is in success, it demonstrates that the tested scenario is
implemented correctly.

4By ”negative test case” we define a test case targeting an unexpected use
of the SUT. When a negative test case succeeds, it highlights a problem in
the SUT.

@ the Modelling activity aims to define a model that
captures the behavioural aspects of the SUT in order to
generate consistent (from a functional point of view)
sequences of stimuli;

® the Test Generation and Adaptation activity consists
in automatically producing abstract test cases from the
artefacts defined during the two previous activities;

@ the Concretization, Test Execution and Observation
activity aims to (i) translate the generated abstract
test cases into executable scripts, (ii) to execute these
scripts on the SUT, (iii) to observe the SUT responses
and to compare them to the expected results in order
to assign the test verdict and automate the detection
of vulnerabilities.

All these MBVT activities are supported by a dedicated
toolchain, which is based on an existing MBT software named
Certifylt 3] provided by the company Smartesting °.

This software is a test generator that takes as input a test
model, written with a subset of UML (called UML4MBT [4]),
which captures the behaviour of the SUT. More concretely,
a UML4MBT model consists of (i) UML class diagrams to
represent the static view of the system (with classes, associa-
tions, enumerations, class attributes and operations), (ii)) UML
Object diagrams to list the concrete objects used to compute
test cases and to define the initial state of the SUT, and (iii)
state diagrams (annotated with OCL constraints) to specify the
dynamic view of the SUT.

Such UML4MBT models have a precise and unambiguous
meaning, so that the of those models can be understood
and computed by the Certifylt technology. OCL expressions
indeed provide the expected level of formalization necessary
for MBT modelling. This precise meaning makes it possible
to simulate the execution of the models and to automatically
generate test cases by applying predefined coverage strategies.
Each generated test case is typically an abstract sequence
of high-level actions from the UMLAMBT models. These
generated test sequences contain the sequence of stimuli to
be executed, but also the expected results (to perform the
observation activity), obtained by resolving the associated
OCL constraints.

Section III describes, in a detail manner, each of these
activities and illustrate them using a running example, which
is introduced in the next subsection.

B. Presentation of the DVWA example

In order to evaluate the effectiveness and efficiency of our
approach, we have applied it on a Web application called
DVWAS. The objective of this open-source Web application
test bed, based on PHP/MySQL, is to provide an aid for
security professionals, web developers and teachers/students to
learn, improve, and test their skills in vulnerability discovery.
It can also be used to test web security testing tools, like
vulnerability scanners for instance.

Shttp://www.smartesting.com
SDamn Vulnerable Web Application - http://www.dvwa.co.uk/

DVWA embeds several vulnerabilities, notably vulnerabil-

ities of the kind SQL Injection and Blind SQL Injection, and
Reflected and Stored XSS. These vulnerabilities are commonly
used to attack current Web applications ”.
Each vulnerability has a dedicated menu item leading to a
dedicated page. DVWA also embeds three security levels:
low, medium, and high. Each level carries different security
protections: the lowest level has no protection at all, the
medium level is a refined version but is still quite vulnerable,
and the highest level is a properly secured version. Users can
choose which level they want to work with by specifying it
through the application. It is also possible to view and compare
the source code of each security level.

C. Perimeter and objectives of experimentations

Our approach allows testing an application among the four
types of attack mentioned earlier (Blind and Not Blind SQL In-
jection, Reflected/Stored XSS). To ease the understanding, we
focus this presentation on the Reflected XSS attack (RXSS).
It is one of the major breach because it is highly used and
because its exploitation leads to severe risks (such as identity
spoofing).

An RXSS attack targets end-users. This kind of attack happens
when a user input field is used by the server to produce
a response sent back to a end-user. A pirate injects mali-
cious data (such as a script, typically written in JavaScript,
which will be executed by an end-user browser) in the Web
application through a user input field. Lack of user input
validations leads to unsecured applications. An XSS attack
is either Reflected (the response containing malicious data is
immediately produced and sent back to the end-user) or Stored
(the malicious data is saved in the application’s database, and
retrieved later, in another context). Our presentation deals with
vulnerabilities of the kind Reflected XSS.

For each security level, our objective is to apply our MBVT
approach in order to compute and execute test cases allowing
discovery of RXSS vulnerabilities.

III. DETAILS OF OUR APPROACH

In this section, we detail each main activity of the MBVT
process. For each activity, we present its objectives as well as
its behaviours, and we use the DVWA example to illustrate
our statements.

A. Formalizing Vulnerability Test Patterns into Test Purposes

Vulnerability Test Patterns (VIP) are the initial artefacts
of our approach. A VTP expresses the testing needs and
procedures allowing the identification of a particular breach
in a Web application. There is as much vIP as types of
application-level breaches. The ITEA2 Diamonds research
project has already studied vTP, and provide a first definition
as well as a first listing of vIP 8. The characteristics of a
Vulnerability Test Pattern are: its name, its description, its
testing objectives (precising the addressed testing objectives),
its prerequisites (precising the conditions and knowledges

"These vulnerabilities appears in the top three most frequently used types of
attack listed by the OWASP project - Open Web Application Security Project
- cf www.owasp.org.

8hittp://www.itea2-diamonds.org

Name Reflected XSS

Description This pattern can be used on an application which doesn’t
checks user inputs. A Reflected XSS attack can redirect
users to a malicious site, or can steal users’ private
information (cookies, session, ...).

Objective(s) Detect if a user input can embed malicious datum en-
abling a Reflected XSS attack.

Prerequisites N/A

Procedure Identify a sensible user input field, inject the malicious

datam <script>alert(rxss)</script>.

Observation & Oracle Check if a message box ’'rxss’ appears.

Variant(s) - malicious data variants: character encoding, Hex-
transformation, comments insertion

- procedure variants: attack can be applied at the HTTP
level; in this case, malicious data are injected in the
parameters of the HTTP messages send to the server, and
we have to check if the malicious data is in the response
message coming from the server

Known Issue(s) Web Application Firewalls (WAF) filter messages send to
the server (black list, clac regEx, ...); variants allows to

overcomes these filters

Affiliated vTP Stored XSS

Reference(s) CAPEC: http://capec.mitre.org/data/definitions/86.html
WASC: http://projects.Webappsec.org/w/page/13246920/
CrossSiteScripting

OWASP: https://www.owasp.org/index.php/Cross-site\ _
Scripting\ _(XSS)

Fig. 2. vTP of Reflected XSS attacks

required for a right execution), its procedure (precising its
modus operandi), its observations and its oracle (precising
which information have to be prone in order to identify the
presence of an application-level breach), its variants (precising
some alternatives regarding the means in use, or the malicious
data, or what is observed), its known issues (precising any
limitation or problem (eg., technical) limiting its usage), its
affiliated vTP (listing its correlated vTP), its references (to
public resources dealing with application-level vulnerability
issues, such as CVE, CWE, OWASP, CAPEC, ...). Figure 2
presents the Vulnerability Test Pattern of Reflected XSS attack.

For this vTP, variants of malicious data are defined during
the modelling activity, variants of the procedure are defined
during the adaptation and execution activity. The initial pro-
cedure is defined in a test purpose. A fest purpose is a high
level expression that formalizes a test intention linked to a
testing objective to drive the automated test generation on the
behavioural model. In the MBVT context, we propose to use
test purposes to formalize vTP. We propose test purposes as a
mean to drive the automated test generation.

The test purpose language we are presenting is called Smartest-
ing Test Purpose Language [5]. This is a textual language
based on regular expressions [6], allowing the formalization
of vulnerability test intention in terms of states to be reach
and operations to be called. The language relies on combining
keywords, to produce expressions that are both powerful and
easy to read.

Basically, a test purpose is a sequence of important stages
to reach (last three lines in Figure 3). A stage is a set
of operations or behaviour to use, or/and a state to reach.
Transforming the sequence of stages into a complete test
case, based on the model behaviour and constraints, is left
to the MBT technology (more details comes in the section
III-C). Furthermore, at the beginning of a test purpose, the
test engineer can define iferators (three first lines in Figure 3).
Iterators are used in stages, in order to introduce context
variations. Each combination of possible values of iterators
produces a specific test case.

for_each literal SsensiblePage from #FALL_SEMSIBLE_PAGES,

for_each literal SmaliciousRxssDatum from #ALL_MALICIOUS_RXSS DATA,
for_each literal Ssecuritylvl from #ALL_SECURITY_LEVELS,

use any_operation any_number_of times to_reach

"current_page = $sensiblePage and

security_level = SsecurityLvl” on_instance sut

then use sut.injectAllFields(SmaliciousRuxssDatum)

then use sut.checkRXSSAttack(SmaliciousRxssDatum)

Fig. 3. test Purpose formalizing the vTP of Figure 2 on DVWA

Example (DVWA): Figure 3 shows the test purpose
formalizing the vTP of Figure 2, applied on the DVWA case
study. This schema precises that for all sensible web pages,
for all malicious data enabling the detection of RXSS breach,
and for all security levels of DVWA, it is required to do the
followings: (i) use any operation to activate the sensible page
with the required security level, (ii) inject the malicious data
in all the user inputs of the page, (iii) check if the page is
sensible to the RXSS attack. The three keywords ALL_* are
enumerations of values, defined by the security test engineer,
allowing him/her to master the final amount of test cases.

We use a second test purpose, similar to the presented one,
enabling to precisely target which user input fields have to be
injected. This test purpose gives ways of control to the security
engineer. Modifications are: (i) one added iterator targeting
sensible fields, and (ii) the use of the operation injectField
instead of the operation injectAllFields.

B. Modelling

The modelling activity produces a model based, on one
hand, on the functional specifications of the application, and
on the other hand on the test purposes which will be applied
on it (keywords used in test purposes have to be modelled).
We present in the following the used UML diagrams (classes,
objects, state diagrams), and their respective usages in the
context of our MBVT approach.

Class diagrams specify the static aspect of the model, by
defining the abstract objects of the SUT. Class diagrams of
our approach share many similarities with traditional MBT.
Classes model business objects (notably, the SUT class models
the system under test, and defines the points of control and
observation). Associations model relations between business
objects. Enumerations model sets of abstract values, and
literals model each value. Class attributes model evolving
characteristics of business objects. Class operations model
points of control and observation of the SUT (we found
here navigations between pages). Nevertheless, our MBVT
approach differs from the traditional MBT by (see Figure 4):

e two additional classes (page and field) and their rela-
tions, which respectively model the general structure
of the application and the user input fields potentially
used to inject malicious data;

e some additional operations, coming from the test
purposes, which model means to exercise and observe
the attack

e one additional enumeration which model malicious
data injected in user input fields.

| pvwa
[Eg message : MSG
[Cf security_level : SECURITY_LEVEL
4 «setup» setup () 0.1
§% «teardown» teardown ()
3 @ checkMessage ()
§2 login ()
&2 logout ()
§ setSecurityLevel ()
§2 goToHomePanel ()
&2 goToReflectedXssInjPage () 0.1
{fé «malicious» injectInAllTxtFields () 0.1
2 «malicious» setField ()
£ checkRXSSAttack ()

- dvwa knows

- registered_users

*

Q User

[Eg login : LOGINS
[Eg password : PASSWORDS

- current_user

- system has

Fig. 5. Class diagram of DVWA

The UML state diagram graphically specifies the be-
havioural aspect of the SUT, modelling the navigations be-
tween pages of the Web application. States model Web pages,
and transitions model the available navigations between these
Web pages. Triggers of transitions are the UML operations
of the SUT class. Guards of transitions (specified in OCL)
precisely define the context of firing. Effects of transitions (also
specified in OCL) precisely define the modifications induced
by the execution of transitions.

The UML object diagram models the initial state of the
SUT, by instantiating class diagram elements. Thus, instances
model business entities available at the initial state of the SUT,
and links model relations between these entities. In our MBVT
approach, the object diagram model the Web pages of the
application and the user input fields of these pages.

Example (DVWA): Figure 5 presents the class model of
the DVWA example (Page and Field classes are not shown).

Note that: (i) the additional class User models the potential
users of the application; (ii) class attributes message and
security_level respectively model application feedbacks and
security level; (iii) the five first operations model the necessary
and sufficient functional subset of the application allowing
the access to the tested pages with the relevant level of
security; (iv) operations injectAllFields and injectField, which
are keywords coming from test purposes, model the injection
of malicious data on all or part of the user input fields of Web
pages; (v) operation checkMessage models the observation of
the message attribute; operation checkRXSSAttack models the
observation of the attack, and serves as oracle.

Moreover, regarding the static aspect of the model,
some enumeration literals model malicious data variants:
RXSS_DUMMY 1is a basic variant, RXSS COOKIEI and
RXSS_COOKIE? are two variants allowing to retrieve private
user information, and RXSS_WAF_EVASION models a variant
allowing to bypass some web application firewall techniques
(see section III-D for their translation into concrete values).

Figure 6 presents the state diagram, which models the
behaviour of DVWA. It defines precedences between pages:
identification is required before reaching any other page of
the application. Finally, Figure 7 presents the initial state of
the DVWA model. It specifies: (i) one user, with its credentials,
and (ii) the pages and user input fields of DVWA.

browses

- system_session
[O..l
Q System Under Test
[Eg attr : MSG

- webapp

- pages

- current_page
S

0.1

Q Page -page - fields Q Field

[Eg name : PAGES

&2 behaviouralOp () 0.1 navigable_through

£ ObservationOp ()
g2 «malicious» AttackOp ()

Fig. 4. Class diagram of the SUT structure, for our MBVT approach

login(in_login,in_password)...

*

[Cg id : FIELD_ID

0.1 contains *

= type : FIELD_TYPES

goToReflectedInjectionPage()

init
[~ LOGIN_PAGE

Transitions internes logout()

Fig. 6. State diagram of DVWA example

Q HomePanel : Page
[Eg; name = HOME_PANEL

- pages

- dVWA
Q userl : User
[Eg login = LOGIN_1
[CF password = PASSWORD_1

- dvwa

- registered_users

Fig. 7. Object diagram of DVWA

C. Test generation

The main purpose of the fest gemeration activity is to
produce test cases from both the model and the test purposes.
Three phases compose this activity. The first phase transforms
the model and the test purposes into elements usable by the
Smartesting Certifylt MBT tool. Notably, test purposes are
transformed into fest targets, a test target being a sequence
of intermediate objectives used by the symbolic generator.
Hence, the sequence of stages of a test purpose is mapped
to a sequence of intermediate objectives of a test target.
Furthermore, this first phase manages the combination of
values between iterators of test purposes, such that one
test purpose produces as many test targets as possible
combinations of iterators values.

The second phase produces the abstract test cases from
the test targets. This phase is left to the test case generator.
An abstract test case is a sequence of steps, where a step
corresponds to a completely valued operation call. An opera-
tion call represents either a stimulation or an observation of
the SUT. Each test target produces one test case (i) verifying
the sequence of intermediate objectives and (ii) verifying the
model constraints. Note that an intermediate objective (and
hence, a test purpose stage) can be transformed into several
steps. Figure 8 presents a test cases obtained from the test
purpose of Figure 3. The five first steps of this test case
correspond to the first stage of the test purpose.

& sut: pywa
[Eg message = NONE
[S security_level = HIGH

=1 HOME_PANEL

v v

& RXSS_INJECTION_PAGE

— setSecurityLevel()

goToHomePanel()

‘2] reflected xss_injection field : Field
[Egy id = REFLECTED_XSS_INJECTION_FIELD
5, type = TEXT_INPUT

- fields

- page

gnxl P)

[Cg name = REFLECTED_XSS_INJECTION_PAGE

- dVWA - pages : Page

Finally, the third phase exports the abstract test cases into the
execution environment. In our case, it consist on (i) creating a
JUnit test suite, where each abstract test case is exported as a
JUnit test case, and (ii) creating an interface. This interface
defines the prototype of each operation of the SUT. The
implementation of these operations is in charge of the test
automation engineer.

Example (DVWA): We are using two test purposes and
have defined four malicious data, in order to test one page
with one user input field. Each test purpose produces 12 test
targets, where each test target produces exactly one abstract
test case, for a total amount of 24 abstract test cases.

Figure 8 presents one of the generated abstract test cases. It
has to be interpreted this way: (i) it logs in the application
with valid credentials; (ii) it sets the security level; (iii)
it loads the targeted Web page; (iv) it verifies the correct
execution of the functional part of the test case (using the
checkMessage observation); (v) it injects the malicious datum;
(vi) it verifies if there exists an application-level breach or not
(using the checkRXSSAttack observation). This last step assigns
the verdict of the test case.

Regarding the test purpose focusing on precise user input
fields, test cases only differ at step #6, where the injectField
operation replaces the injectAllFields operation.

sut.login(LOGIN_1,PASSWORD_I)
sut.checkMessage() = WELCOME
sut.setSecurityLevel MEDIUM)
sut.goToReflectedXssInjPage()

sut.checkMessage() = REFLECTED_XSS_MESSAGE
sut.injectAllFields(RXSS_DUMMY)
sut.checkRXSSAttack(RXSS_DUMMY)

NN R W=

Fig. 8. Abstract test case example

D. Adaptation and test execution

During the modelling activity, each page, user input field,

malicious datum, user credentials, etc. ... in summary, all data
used by the application, are modelled in a abstract way. Hence,
the test suite can’t be executed as it is. The gap between
abstract keywords used in abstract test cases and the real API
of the SUT must be filled. To ease the understanding of our
approach, we only present an adaptation of the kind 1«1, but
tables with multiple values are also used for a mapping of the
kind 1<%,
Stimuli must also be adapted. When exporting the abstract
test cases, the MBT tool provides an interface defining the
signature of each operation. The test automation engineer is in
charge to implement the automated execution of each operation
of this interface. Because we are testing Web applications, we
have studied two ways of automation:

e at the GUI level: we stimulate and observe the ap-
plication via the client-side GUI of the application.
Even if this technique is time consuming, it could be
necessary when the client-side part of the application
embeds JavaScript scripts. For this technique, we use
the Selenium framework.

e at the HTTP level: we stimulate and observe the
application via HTTP messages send to (and received
from) the server-side application. This technique is
extremely fast and can be used to bypass HTML and
JavaScript limitations. For this technique, we are using
the Apache HTTPClient Java library.

The last but not the least activity of the MBVT is to
execute the adapted test cases in order to produce a verdict.
We introduce a new terminology fitting the characteristics of
a test execution:

e Artack-pass: the complete execution of the test reveals
that the application owns a breach, unlike in MBT
where a complete execution of a test indicates a valid
implementation;

o Attack-fail: the failure of the execution of the last step
reveals that the application is robust to the attack,
unlike MBT where such a failure indicates a invalid
implementation;

e [nconclusive: in certain circumstances, it is not sure
that a breach is discovered (eg., due to technical
issues). An abnormal event happens, but no breach
has been observed.

Example (DVWA): The model defines four malicious
data dedicated to Reflected XSS attacks. These values are
defined in an abstract way, and must be adapted. Each of them
is mapped to a concrete value:

RXSS_DUMMY <+ <>
RXSS_COOKIE!I <+ <script>alert(document.cookie)</script>

RXSS_COOKIE2 «

RXSS_WAF_EVASION <+ <scr<script>ipt>alert(document.cookie)</script>

Operations of the SUT can be adapted in two ways:
using Selenium or HTTPClient. However, we mainly use the
HTTP-based approach (HTTPClient), because this techniques
dramatically saves time on DVWA, for the same results. Based
on the execution of the test suite, 50% of the test cases have
been identified as Attack-pass: the two first malicious data
with a low security level, the third malicious datum with
the low and medium security level, and the fourth malicious
datum with the medium security level. These results fit our
manual experiments on DVWA. This concordance gives a first
validation of our approach with regards to the addressed subset
of vulnerabilities, and the DVWA context.

IV. STATE OF THE ART

The tool landscape in web application security testing is
structured in two main classes of techniques:

1) Static Application Security Testing (SAST), which
are white-box approaches that include source, byte
and object code scanners and static analysis tech-
niques;

2) Dynamic Application Security Testing (DAST),
which includes black-box web applications scanners,
fuzzing techniques and emerging model-based
security testing approaches.

In practice these techniques are complementary, addressing
different types of vulnerabilities. For example, SAST tech-
niques are good to detect buffer overflow and other badly
formatted string, but not so good to detect XSS or CSRF vul-
nerabilities. So, in this section, we focus on DAST techniques
and provide a state of the art of emerging model-based security
testing techniques.

Fuzzing techniques relate to the massive injection of invalid
or atypical data (for example by randomly corrupting an
XML file) generally by using a randomized approach [7].
Test execution results can therefore expose various invalid
behaviours such as crash effects, failing built-in code assertions
or memory leaks.

Web application vulnerability scanners aim to detect vul-
nerabilities by injecting attack vectors. These tools generally
include three main components [8]: a crawler module to follow
web links and URLs in the web application in order to
retrieve injection points, an injection module which analyses
web pages, input points to inject attack vectors (such as
code injection), and an analysis module to determine possible
vulnerabilities based on the system response after attack vector
injection. As shown in a recent comprehensive study [9],
corroborated by research papers [10], [11] and confirmed by
our own experience with tools such as IBM AppScan’, these
tools suffer from two major weaknesses that highly decrease
their practical usefulness:

9See www.ibm.com/software/awdtools/appscan/

e Limitations in application discovery As black-box
web vulnerability scanners ignore any request that can
change the state of the web application, they miss
large parts of the application. Therefore, these tools
test generally a small part of the web application due
to the ignorance of the application behavioural “intel-
ligence”. Due to the growing complexity of the web
applications, they have trouble dealing with specific
issues such as infinite web sites with random URL-
based session IDs or automated form submission.

e Generation of many false positive results The
already-mentioned benchmark shows that a common
drawback of these tools is the generation of false
positives at a very important rate either for Reflected
XSS, SQL injection or Remote File Inclusion vulner-
abilities. The reason is that these tools use brute force
mechanisms to fuzz the input data in order to trigger
vulnerabilities and establish a verdict by comparison
to a reference execution trace. Therefore, they lack
precision to assign the verdict, as they do not compute
the topology of the web application to precisely know
where to observe.

These strong limitations of existing web vulnerability scan-
ners lead to the key objectives of model-based vulnerability
testing techniques: better accuracy in vulnerability detection,
both by better covering the application (by capturing the
behavioural intelligence) and by increasing the precision of
the verdict assignment.

Model-based security testing are emerging techniques aim-
ing to leverage model-based approaches for security test-
ing [12]. This includes:

e Model-based test generation from security pro-
tocol, access-control or security-oriented models
Various types of models of security aspects of the
system under test have been considered as input to
generate security test. For example, [13] proposes
a method using security protocol mutation to infer
security test cases. [14] develops a model-based se-
curity test generation approach from security models
in UMLSec. [15] presents a methodology to exploit
a model describing a Web application at the browser
level to guide a penetration tester in finding attacks
based on logical vulnerabilities.

e Model-based fuzzing This approach applies fuzzing
operator in conjunction with models; For example,
[16] proposes an approach that generates invalid mes-
sage sequences instead of invalid input data by ap-
plying behavioural fuzzing operators to valid message
sequences in form of UML sequence diagrams.

e Model-based test generation from weakness or
attack models In these types of approaches, test cases
are generated using threat, vulnerability or attacker
models, which reflects the common steps needed to
perform an attack, and the required associated data.
For example, [17], threats to security policies are
modeled with UML sequence diagrams, allowing to
extract event sequences that should not occur during
the system execution.

Our approach allows to generate vulnerability tests from a
model that mixes functional behavioural features of the system
under test and aspects that model the possible attacks, which is
modelling aspects of the environment of the system. Moreover,
contrary to functional MBT, the test generation process is
driven by the vulnerability test patterns, so that the behavioral
model is restricted to the only elements that are needed to
compute the vulnerability test cases.

V. CONCLUSION AND FUTURE WORKS

Web application vulnerabilities fall into two categories:
Technical vulnerabilities include cross-site scripting, injection
flaws and buffer overflows. Logical vulnerabilities relate to
the logic of the application to get it to do things it was never
intended to do. They often are the result of faulty application
logic. Logical vulnerabilities are specific to the functionality
of particular web applications, and, thus, they are extremely
difficult to characterize and identify. For example, an important
security breach have been discovered and disclosed in 2012
in the Paypal payment module of Magento'® eCommerce
framework, due to the capability to falsify the payment amount
after concluding the deal [18].

This paper proposes a Model-Based Vulnerability Testing
approach from a behavioral model and test patterns, which
aims to address both technical and logical vulnerabilities.
Technical vulnerabilities are managed by the composition of
a navigational behavioral model and related test patterns; and
logical vulnerabilities may be address through more complete
modeling and adequate patterns. The main drawback of model-
based vulnerability testing echoes the one of MBT in general:
the needed effort to design models, test purposes, and adapter.
We are following several research directions to reduce this
effort, which consist in identifying the reusability potential of
the three artifacts from one project to another: test purposes
can be made generic to their affiliated vulnerability type, model
parts can be made generic to a web development framework
(like Magento for e-commerce solutions) and also automati-
cally generated, at least partially, using crawling techniques,
and the adapter of those model parts can also be made generic
to the associated framework.

Therefore, our future work leads in two main research
directions: (1) extending the method by covering more vul-
nerability classes, both technical (such as CSREF, file dis-
closure and file injection) and logical (such as the integrity
of data over applications business processes). We will also
study (2) how the various MBVT artifacts may be made
generic and reusable from one project to another project. In
this context, we will focus on eCommerce applications, and
more particularly eCommerce applications build on the top
of the Magento framework. Indeed, eCommerce applications
built with Magento have good properties because they rely
to custom development and use of add-ons, both being well-
known to introduce security vulnerabilities.

ACKNOWLEDGMENT

This work is supported by the French FSN project
DAST (dast.deptinfo-st.univ-fcomte.fr) and the FEuropean
ITEA2 project (http://www.itea2-diamonds.org).

10http://www.magentocommerce.com/

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

M. Utting and B. Legeard, Practical Model-Based Testing - A tools
approach, Morgan and Kaufmann, Eds. San Francisco, CA, USA:
Elsevier Science, 2006.

A. Dias-Neto and G. Travassos, “A Picture from the Model-Based
Testing Area: Concepts, Techniques, and Challenges,” Advances in
Computers, vol. 80, pp. 45-120, July 2010, iSSN: 0065-2458.

F. Bouquet, C. Grandpierre, B. Legeard, and F. Peureux, “A test
generation solution to automate software testing,” in Proceedings of the
374 Int. Workshop on Automation of Software Test (AST’08). Leipzig,
Germany: ACM Press, May 2008, pp. 45-48.

F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and
M. Utting, “A subset of precise UML for model-based testing,” in
Proceedings of the 3" Int. Workshop on Advances in Model Based
Testing (A-MOST’07). London, UK: ACM Press, July 2007, pp. 95—
104.

J. Botella, F. Bouquet, J.-F. Capuron, F. Lebeau, B. Legeard, and
F. Schadle, “Model-based Testing of Cryptographic Components
Lessons Learned from Experience,” in Int. Conf. on Software Testing,
Verification and Validation (ICST’13). Luxembourg: IEEE CS, March
2013.

J. Julliand, P.-A. Masson, and R. Tissot, “Generating security tests in
addition to functional tests,” in Proceedings of the 3"% International
Workshop on Automation of Software Test (AST’08). Leipzig, Germany:
ACM Press, May 2008, pp. 41-44.

A. Takanen, J. DeMott, and C. Miller, Fuzzing for Software Security
Testing and Quality Assurance. Norwood, MA, USA: Artech House,
Inc., 2008.

J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the Art:
Automated Black-Box Web Application Vulnerability Testing,” in Pro-
ceedings of the 31*" Int. Symposium on Security and Privacy (SP’10).
Oakland, CA, USA: IEEE Computer Society, May 2010, pp. 332-345.

“Web site on Price and Feature Comparison of Web Application
Scanners,” http://www.sectoolmarket.com/, December 2012, last access
January 2013.

A. Doupé, M. Cova, and G. Vigna, “Why Johnny can’t pentest: an
analysis of black-box web vulnerability scanners,” in Int. Conf. on
Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’10). Bonn, Germany: Springer, July 2010, pp. 111-131.

M. Finifter and D. Wagner, “Exploring the relationship between web
application development tools and security,” in Proc. of the 2"¢
USENIX Conference on Web Application Development (WebApps’11).
Portland, OR, USA: USENIX Association, June 2011, pp. 99-111.

1. Schieferdecker, J. Grossmann, and M. Schneider, ‘“Model-based
security testing,” in Proceedings of the Tt International Workshop on
Model-Based Testing (MBT’12), ser. EPTCS, vol. 80. Tallinn, Estonia:
Open Publishing Association, March 2012, pp. 1-12.

F. Dadeau, P-C.Héam, and R. Kheddam, “Mutation-Based Test Gen-
eration from Security Protocols in HLPSL,” in Proc. of the 4" IEEE
Int. Conf. on Software Testing, Verification and Validation (ICST’11).
Berlin, Germany: IEEE Computer Society, March 2011, pp. 240-248.
J. Jiirjens, “Model-based Security Testing Using UMLsec: A Case
Study,” The Journal of Electronic Notes in Theoretical Computer
Science (ENTCS), vol. 220, no. 1, pp. 93-104, December 2008.

M. Buchler, J. Oudinet, and A. Pretschner, “Semi-Automatic Security
Testing of Web Applications from a Secure Model,” in Proc. of the
6t" IEEE Int. Conf. on Software Security and Reliability (SERE’12).
Gaithersburg, MD, USA: IEEE Computer Society, June 2012, pp. 253—
262.

M. Schneider, “Model-based behavioural fuzzing,” in Proceedings of
the 9" International Workshop on Systems Testing and Validation
(STV’12), Paris, France, October 2012, pp. 39-47.

L. Wang, E. Wong, and D. Xu, “A threat model driven approach for
security testing,” in Proceedings of the 374 Int. Workshop on Software
Engineering for Secure Systems (SESS’07). Minneapolis, MN, USA:
IEEE Computer Society, May 2007.

“NBS System - Vulnerability in Magento’s implementation of PayPal,”
http://www.nbs-system.com/wp-content/uploads/Advisory_Magento_
Paypal.pdf, 2012, last access January 2013.

