
Fast Scalar Multiplication on Elliptic Curve
Cryptography in Selected Intervals Suitable For

Wireless Sensor Networks

Youssou Faye1, Herve Guyennet1, Ibrahima Niang2, and
Yanbo Shou1

1Femto-st DISC, Franche-Comte University, France,
yfaye@femto-st.fr,hguyenne@femto-st.fr,yshou@femto-st.fr

2Department of Mathematics and Computer Sciences, UCAD University, Senegal
iniang@ucad.sn

Abstract. In Wireless Sensor Networks (WSNs), providing a robust
security mechanism with limited energy resources is very challenging be-
cause of sensor node’s limited resources (computation, bandwidth, mem-
ory). Asymmetric-key can fulfill the requirement, but if the number of
nodes is large, symmetric-key cryptography is the best natural method
because of its scalability. Asymmetric-key cryptography is power-hungry;
nevertheless, Elliptic Curve Cryptosystems (ECC) are feasible and more
flexible for sensor nodes. Scalar multiplication is the most widely used
operation on ECC. Various methods for fast scalar multiplication exist,
but they are based on the binary/ternary representation of the scalar.
In this paper, we present a novel technique to make fast scalar multipli-
cation on Elliptic Curve Cryptosystems over prime field for light-weight
embedded devices like sensor nodes. Our method significantly reduces
the computation of scalar multiplication by an equivalent representation
of points based on point order in a given interval. Since our technique can
act as a support for most existing methods, after an analytical and effi-
ciency analysis, we implement and evaluate its performance in different
scenari.

Keywords: Elliptic Curve Cryptography, Fast Scalar Multiplication,
Wireless Sensor Networks

1 Introduction

Security in Wireless Sensor Networks has attracted more and more attention in
recent years. Symmetric cryptography is the most suitable application in con-
strained platforms such as sensor devices. For a large number of devices, the
natural method employed is the asymmetric key cryptography algorithm be-
cause of its scalability. Compared to other asymmetric cryptosystems like RSA,
Elliptic Curve Cryptography is an emerging favorite due to its shorter key length
requirements for the same level of security strength [1]. The mathematical hier-
archy of elliptic curve involves three arithmetic levels: scalar arithmetic, point

arithmetic and field arithmetic [2]. Point operations involve points addition and
doubling, tripling or quadrupling (or similar operations). Scalar multiplication
denoted by kP where P represents a point on the ellipic curve and k represents
a scalar. The scalar multiplication is the central and most time-consuming op-
eration in ECC because it is used for key generation, encryption/decryption of
data and signing/verification of digital signatures. To perform fast computation
of scalar multiplication, which is the major computation involved in ECC, much
research has been devoted to the point arithmetic level and the scalar arith-
metic [3,4,5,6,7,8]. On the scalar arithmetic level, the double-and-add technique
is the traditional binary algorithm which is based on points operations, namely
doubling of a point and addition of points. Also, well-known algorithms, such as
Non-Adjacent Form (NAF), window NAF, and sliding window [3], can effectively
reduce the number of point operations. Again, some other algorithms, such as
double-base chains, have been developed to compute faster scalar multiplication
by using binary and ternary representation[4],[5],[6]. Thus, algorithms, based on
the aforementioned algorithms, optimize faster scalar multiplication[7],[8].
In addition, on point arithmetic, some schemes use algebraic substitutions of the
multiplication operations with squaring operations and other cheaper field op-
erations such as addition, subtraction and multiplication or division by a small
constant [9].
Recently, a new concept of using multiprocessor architectures to process several
operations of scalar multiplication simultaneously has been developed. At the
point arithmetic level, some algorithms parallelize ECC formulas to reduce the
time complexity of scalar multiplication [9]. At the scalar arithmetic level, the
algorithm in [10] parallelizes the series of doubling and addition operations of a
point on the binary algorithm with two processor architectures. For other solu-
tions, parallelization is done by partitioning the scalar into n equal-length bit
substrings on multiprocessor architectures [11],[12]. In very recent research, this
partitioning technique is used on the sensor nodes in [13].
In this paper, we propose a method to accelerate scalar multiplication. For a
given scalar multiplication kP, we replace it with an equivalent representation
dP where the scalar d <k . Our technique is based on point order and the neg-
ative of point. Current research shows this is the first method based on this
technique. All the above mentioned algorithms can basically use our technique
to perform faster computation on scalar multiplication.
The rest of this paper is organized as follows: Section 2 describes some prelim-
inaries about ECC over prime fields; in Section 3, we present our new scalar
reduction. After outlining the context of our first contribution (Section 3.1),
we describe the new scalar reduction (Section 3.2), and make respectively, an
analytical evaluation and efficiency analysis (Section 3.3) and (Section 3.4). In
order to verify our claims we implemented a simulator in Java and analyze its
performance (Section 3.5). Finally, Section 4 is related to our conclusions and
perspectives.

2 Preliminaries on Elliptic Curves over prime fields

In this section, a brief background description about ECC over finite prime fields
is given. An elliptic curve E over finite field F (of order n) denoted by E(F) can
be defined by the long Weierstrass equation [2]:

E : y2+ a1xy+a3y=x3+a2x
2+a4x+a6 . (1)

where a1, a2, a3,a4 and a6 are elements in F.
The field generally used in cryptography relates to the prime field denoted by Fp

where p= qm and q a prime number called the characteristic of Fp. If qm=p, Fp

is called a prime field. In this paper, we work with a prime field Fp , where p >3.
For prime fields, if the characteristic is more than 3, the Weierstrass equation
can transform to:

E : y2=x3+ax+b . (2)

where a and b ∈ Fp.
To be used for cryptography, the necessary condition is the discriminant of poly-
nomial:

f(x) = x3 + ax+ b,� = 4a3 + 27b2 �= 0. (3)

The points (x, y), where integer coordinates x, y satisfy the above equation
and the point at infinity denoted by ∞ is also a point on the curve and form
an abelian group. The group law mainly consists of two basic operations: point
doubling (2P) and point addition (P+Q) where P and Q are two different points
on the curve.
Given P=(xp,yp) and Q=(xq,yq) two points (�= ∞) which are on the elliptic
curve over Fp denoted by E (Fp). The points addition P+Q=(xpq,ypq) or point
doubling 2P=P+Q=(xpq,ypq) if P=Q can be calculated as:

�
xpq = λ2 − xp − xq

ypq = λ(xp − xp+q)− yp
(4)

λ =
yq − yp
xq − xp

, ifP �= Q

λ =
3x2

p + a

2yp
, ifP = Q

(5)

The negative of a point only involves the change of at most one of its coor-
dinate values in the point representation. For example, the negative of a point
P = (xp,yp) is its reflection in the x -axis: the point -P is (xp,-yp). Notice that
for each point P on an elliptic curve, the point -P is also on the curve.

3 New scalar reduction method

3.1 Context

In this section, we present a new improvement in the scalar arithmetic level. This
improvement is based on specific reduction of the scalar in a selected interval.

Assume that Fp has a characteristic greater than 3. Let E (Fp) be an elliptic
curve over a prime field. Let #E (Fp) denotes the number of points of the elliptic
curve over E (Fp). #E (Fp) is also called the order of group of points. A well-
known theorem of Hasse states that [2]: |#E (Fp) - p - 1 ≤ 2

√
p |. Let G be a

cyclic group of E (Fp) of order n generated by a base point P (namely generator
point). The points in G are expressed as multiples of P : G=�P�={∞, P, 2P,,
(n-2)P, (n-1)P}⊆ E (Fp) with nP=∞. The order of point P (denoted by #P) is
n.

3.2 Description of our new scalar reduction method

In our approach, we replace the point, namely kP, in the main scalar multipli-
cation operation by an equivalent representation point dP (k and d two scalars
and k > d) in the interval [�n/2�+1, n-1], where �n/ 2� denotes the integer-part
function of n/ 2. As the negative of a point is obtained freely, we use it to make
fast computation. Given the point P=(xp, yp) in affine coordinates, to compute
the negative (inverse) of the point kP=(xkp, ykp), we can compute kP=(xkp,
ykp) and then change the sign on the y-coordinate (ykp). Notice that for each
point P on an elliptic curve, the point -P is also on the curve. Thus, we can
replace the point kP by an equivalent point representation dP utilizing the neg-
ative of point. For a secret scalar k (integer number), by the point kP, we get
an equivalent points representation dP by following the equations, in a general
case:

a. If k > n , kP = dP where d = (k− �k/2�.n);
b. If k ∈]�n/2�, n-1], kP = dP where d = (k− n);

c. If k ∈]0, �n/2�], kP = dP where d = k;

d. If k=n or 0 or -n, kP = ∞;

e. If k ∈ [-(n-1), -�n/2�[, kP = dP where d = (n+ k);

f. If k ∈ [-�n/2�, 0[, kP = dP where d = k;

g. If k <- n, kP=dP where d=k+n.�|k|/2�.

(6)

In Elliptic Curve Cryptography k ∈]0, (n-1)], we get an equivalent representation
for point dP by equations (6.b) and (6.c) following:�

(b) If k ∈]�n/2�, n-1], kP = dP where d = (k− n);

(c) If k ∈]0, �n/2�], kP = dP where d = k.

We use an example of the above description in order to better express our re-
duction method.

Example: We choose the prime number p =23. Note that this process mainly
reflects our new protocol. In real cases, the p is much bigger than this. If we con-
sider the elliptic E over F23 defined by E (F23): y2=x3+x+1, then # E (F23)=28,
E (F23) is a cyclic group. Let P(0,1) be a generator point. The points in E (F23)
are shown below:

P=(0, 1) 2P=(6, -4) 3P=(3, -10) 4P=(-10, -7)
5P=(-5, 3) 6P=(7, 11) 7P=(11, -3) 8P=(5, -4)
9P=(-4, -5) 10P=(12, 4) 11P=(1, -7) 12P=(-6, 3)
13P=(9, -7) 14P=(4, 0) 15P=(9, 7) 16P=(-6, 3)
17P=(1, 7) 18P=(12, -4) 19P=(-4, 5) 20P=(5, 4)
21P=(11, -3) 22P=(7, -11) 23P=(-5, -3) 24P=(-10, -7)
25P=(3, 10) 26P=(6, 4) 27P=(0, -1) 28P=∞

For this example, the general and elliptic curve cryptography cases can be
shown respectively in Figure 1 and Figure 2. On one hand, we can see the

Fig. 1. General elliptic curve case

general case from Figure 1 that the points -34P, -6P, 22P, 50P have the same
coordinates. To process the point -6P (the negative of 6P), we compute the
point 6P and affix the minus sign to the y-coordinate. Thus, computation of -6P
is free and almost equal to computing 6P . The scalar multiplication using our
method in the the general case would be computed as follows:

to calculate 50P, we compute -6P by applying formula; (6.a)
to calculate 22P, we compute -6P by applying formula; (6.b)
to calculate -34P, we compute -6P by applying formula. (6.g)

On the other hand, for the special case of ECC, we can see from Figure 2 that
computing the points from [15P,16P,.........26P, 27P] can be replaced respectively
by [-13P, -12P,.........,-2P, -P]. In this case, computing 27P can be replaced by
-P and is almost free.

Fig. 2. Elliptic Curve Cryptography case

3.3 Analytical evaluation

Since sensor nodes are in low-power energy, replacing computation kP by com-
putation dP using formula (6.b) in [�n/2�+1, n-1] can help us deduce faster
computation on scalar multiplication. Meanwhile, the scalar k can be chosen
only in this interval for computation in WSNs. From formula (7), we can scan
all scalars in a given interval:

n−1�

k=1

kP =

�n/2�−1�

k=1

kP + �n
2
�P +

n−1�

k=�n/2�+1

kP (7)

where
n−1�

k=�n/2�+1

kP=

�n/2�−1�

k=1

kP+ 2

�n/2�−1�

k=1

kP

By using our method, if we replace respectively [15P,16P,.........26P, 27P] by
[-13P, -12P,.........,-2P,-1P] in the interval [�n/2�+1, n-1] the expression :

n−1�

k=�n/2�+1

kP can be replaced by

�n/2�−1�

k=1

|k|P , see formula (9).

n−1�

k=1

kP = 2

�n/2�−1�

k=1

kP + �n
2
�P + 2

�n/2�−1�

k=1

kP (8)

By using our method, the equation (8) can be replaced by equation (9):

�n/2�−1�

k=1

kP +

�n/2�−1�

k=1

|k|P + �n
2
�P. (9)

By scanning all scalars k for computation of kP in the interval [�n/2�+1, n-1

],we can see from formulas (8)-(9), that we gain a rate of
��n/2�−1

k=1 2kP . The
speed-up for a given scalar kP is 2(k-(n/2)). For example, in Figure 2, computing
kP=22P, is equal to computing 6P, the speed-up is 2(22-(14/2))= 16P since
16P+ 6P= 22P. In fact, the complexity of scalar multiplication is determined
by the length bit of k which is equal to�log2(k)�+1 or log2(k) if k=2x, where x
is an integer. In binary representation, log2(k) can be replaced in our method
by:

log2(k − 2(k − n

2
)) = log2(k) + log2(k +

n− 2k

k
) (10)

Thus, the speed-up in length bit is:

|log2(k +
n− 2k

k
)| = |log2(

|d|
k
)|, where log2(k +

n− 2k

k
) < 0.

Since our reduction method is not possible for n=1, from Figure 3, we can see
in interval [�n/2�+1, n-1] the sum of all scalars. For a scalar in [2, �n/2�] ,

Fig. 3. Sum of all k values function of order n in [�n/2�+1, n-1]

our method is not used since its design is only for the interval [�n/2�+1, n-1].
Consequently, it is very efficient in Figure 3,in which we only consider scalars in
this interval. From formula (11), we make the average computation of all scalar
k in interval[�n/2�+ 1, n− 1], where our technique can be applied

1

n− 1− �n/2� (
n−1�

k=�n/2�+1

kP) =
1

n− �n/2� (
�n/2�−1�

k=1

kP). (11)

The average of scalar k can be found in Figure 4, where we can also apply our
technique in the interval[�n/2�+1, n-1].

Optimization can be done in the interval [�n/2�+1, n-1] by using only even
numbers for order n.
If the order n >2 is an even number:

�n−1
k=�n/2�+1 kP=3

��n/2�−1
k=1 kP

Fig. 4. Average of all k values function of order in [�n/2�+1, n-1]

If the order n ≥3 is an odd number: 3
��n/2�−1

k=1 kP >
�n−1

k=�n/2�+1 kP ≥ 2
��n/2�−1

k=1 kP .
Figure 5 shows the speed-up between even and odd numbers. We can see that

Fig. 5. Speed-up rate between even and odd order

if n is even, the speed-up curve is a horizontal line whose equation is y=3. But
if n is odd, the line y=3 is a horizontal asymptote for the speed-up curve. If we
work with even order, the speed is three times faster. If the order is odd, the
enhancement is > 2, and < 3.

3.4 Efficiency analysis

The unit of this speed-up can be the length bit or the number of doubling/addition
operations. For example, NAF needs log2(k) doubling and log2(k)/3 addition.
In the interval [�n/2�+ 1, n− 1], three cases are possible for the speed-up:

– If log2(n)=x, where x is an integer, our method can speed up the scalar
multiplication in interval [�n/2�+ 1, n− 1] by reducing the length bit of k.

– If log2(n)=x, where x is not an integer, our method can speed up the scalar

multiplication only in interval [2
�log2

n

2
�+1

, n− 1]
– If k= (n-1), we reach the maximum speed-up, the length bit of the scalar k

is maximum (equal to log2(n− 1), where it is equal to one bit for d. In this
case, our method does not require computation.

From Table 1 and Table 2, we can see the speed-up in length bit for some
values of the scalar k.

Table 1. Speed-up S for some values of k for x integer.

Values of k �n/2� + 1 >=(�n/2� + 1) (n-1)

Speed-up(bits) 1 1 < S < log2(k) log2(k)

Table 2. Speed-up S for some values of k for x not integer.

Values of k 2
�log2

n

2
�+1

>= 2
�log2

n

2
�+1

(n-1)

Speed-up(bits) 1 1 < S < log2(k) log2(k)

3.5 Performance Evaluation

To test the performance of our solution, we have implemented a simulator in
Java. The program is then run on an Intel Core i5-2520 processor taking into
account the computing power difference between this processor and a MSP 430
MCU. During the test, we choose an elliptic curve over Fp using NIST-192 rec-
ommended parameters which are given in Table 3. p is the size of prime field Fp,
and a, b are coefficients of the simplified Weierstrass form of our curve. P (xP , yP)
is chosen as the generator point, and its order equals n.

As indicated in equation (6.b), when we need to perform a scalar multiplica-
tion kP for cryptographic purpose, we choose k < n where n is the order of the
generator point P , which means nP = ∞. In addition, theoretically our method
works only when k ∈]�n

2 �, n−1]. To prove this property, we have chosen 6 values
of 192 bits for k which are distributed uniformly in]0, n− 1] (see table 4).

We have tested our method using both affine and jacobian coordinates, the
scalars are represented respectively in binary and NAF form combined with the
proposed scalar reduction method. The test results are given in tables 5 and 6,
and illustrated graphically in figure 6 and 7.

Parameter NIST-192 recommended values

p 2192 − 264 − 1
a −3
b 0x 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

xP 0x 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

yP 0x 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

n 0x ffffffff ffffffff ffffffff 99def836 146bc9b1 b4d22831
Table 3. NIST-192 recommended elliptic curve parameters

k Value in hexadecimal

n/6 0x 2aaaaaaa aaaaaaaa aaaaaaaa 99a5295e 58bca19d 9e2306b2

n/3 0x 55555555 55555555 55555555 334a52bc b179433b 3c460d65

n/2 0x 7fffffff ffffffff ffffffff ccef7c1b 0a35e4d8 da691418

2n/3 0x aaaaaaaa aaaaaaaa aaaaaaaa 6694a579 62f28676 788c1aca

5n/6 0x d5555555 55555555 55555555 0039ced7 bbaf2814 16af217a

n− 1 0x ffffffff ffffffff ffffffff 99def836 146bc9b1 b4d22830
Table 4. Values of k chosen for performance evaluation

NAF SR n/6 n/3 n/2 2n/3 5n/6 n− 1

6579 6572 7604 6555 6931 7471√
6282 6326 5317 6239 6698 5114√
6578 6573 7600 6416 6600 27√ √
6279 6325 5320 6445 6556 28

Table 5. Running times (ms) using affine coordinates (SR: Scalar reduction)

Fig. 6. Running times (ms) using affine coordinates

In both cases, we can notice that, firstly when the scalar is in NAF form, the
computation is faster than the one using binary form. Secondly when k ∈]0, n

2],
we cannot apply the proposed scalar reduction method. However, if k ∈]n2 , n−1],

we may accelerate slightly the computation by reducing the scalar. Especially
when the value of k is close to n−1, the computation can be done instantaneously
since (n− 1)P = −P .

NAF SR n/6 n/3 n/2 2n/3 5n/6 n− 1

3066 3102 3621 3072 3202 3520√
3053 3074 3592 3071 3189 3541√
3070 3100 3622 3030 3107 9√ √
3050 3075 3597 3194 3136 9

Table 6. Running times (ms) using jacobian coordinates (SR: Scalar reduction)

Fig. 7. Running times (ms) using jacobian coordinates

When we use jacobian coordinates, as we don’t need to repeat the modular
inverse (see equation (5)), the computation is obviously faster than the first
case. Same as the results obtained using affine coordinates, our scalar reduction
method can be used during the computation only when k ∈]n2 , n− 1]. When it’s
applied, the scalar is reduced, and the computation can run faster.

According to the results of performance evaluation, our scalar reduction
method does speed up the computation of scalar multiplication on a standard
NIST-192 elliptic curve. The acceleration rate strongly depends on the value of
the scalar used. The scalar k can be reduced if k ∈]n2 , n− 1], and once applied,
the computation task can be simplified and carried out more quickly.

4 Conclusion

In this paper, we have proposed a novel method based on point order and the
negative of point to speed up the computation of scalar multiplication on elliptic

curve cryptosystems. On one hand, the proposed method will significantly reduce
the computation time in the interval [�n/2�+1, n-1]. On the other hand, we show
that the usage of even order is more efficient than odd order. Our method is a
very suitable tool for embedded devices such as WSNs. Also, it can be easily ap-
plied to almost all existing fast scalar multiplication methods as shown in NAF.
Thus, that’s comparisons are nor required regarding some existing schemes. Ad-
ditionally, a thorough analysis and simulation based on evaluations will show
that the proposed solution does speed up the computation of scalar multiplica-
tion on a standard NIST-192 elliptic curve. Our future research plans will be
oriented towards experimenting our current technique on real sensor nodes with
elliptic curves over finite prime fields.

References

1. M.J.B. Robshaw, and Y.L.Yin, Elliptic Curve Cryptosystems, An RSA hbomtories
Technical Note, Revised June 27, 1997.

2. D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography,
Springer-Verlag, 2004.

3. D. M. Gordon, A Survey of Fast Exponentiation Methods, Journal of Algorithms,
Academic Press, 1998, pp. 129-146.

4. V. Dimitrov V., L. Imbert, and P. K. Mishra, Efficient and secure elliptic curve
point multiplication using double-base chains, Lectures Notes in Computer Science,
3788, 59-78 (2005).

5. M. Ciet, M. Joye, K. Lauter and P.L. Montgomery,Trading inversions for multiplica-
tions in elliptic curve cryptography, Designs, Codes, and Cryptography, 39, 189-206
(2006).

6. N. Meloni and M. A. Hasan, Elliptic curve scalar multiplication combining Yaos
algorithm and double bases, in CHES 2009, 2009, pp. 304316.

7. M. Tian, Y. Wang, S. Xu, ”An Efficient Elliptic Curves Scalar Multiplication Algo-
rithm Suitable for Wireles Network” Second International Conference on Networks
Security, Wireless Communication and trusted Computing, 2010, pp. 95-98, IEEE
Computer Society 2010

8. V. Imai, E. Masato, Faster Multi-Scalar Multiplication Based on Optimal Double-
Base Chains, World Congress on Internet Security (WorldCIS-2012), pp 93-98, IEEE
2012

9. P.LongaandA.Miri,Fast and Flexible Elliptic Curve Point Arithmetic over Prime
Fields, in IEEE Transactions on Computers, Vol. 57, No 3, pp. 289-302, 2008.

10. B. Ansari, H. Wu ”Parallel Scalar Multiplication for Elliptic Curve Cryptosys-
tems” Communications, International Conference on Circuits and Systems, 2005.
Proceedings. IEEE 2005 , pp 71-73, vol 1, 2005.

11. K. Wu, D. Li, H. Li, C. Yu, ”Partitioned Computation to Accelerate Scalar Mul-
tiplication for Elliptic Curve Cryptosystems”, 15th International Conferance on
Parallel and Distributed Systems, 2009, pp. 551-555

12. Lim, C., Lee, P.: More flexible exponentiation with precomputation. In: Advances
in Cryptology - CRYPTO94, Springer (1994) 95107

13. Y. Shou, H. Guyennet, and M. Lehsaini, ”Parallel Scalar Multiplication on Elliptic
Curves in Wireless Sensor Networks”, 14th Int. Conf. on Distributed Computing
and Networking (ICDCN), LNCS 7730,pp 300-314, Bombay, India, Jan 2013.

