
Efficient simulation environment of wireless radio
communications in MEMS modular robots

Nicolas Boillot, Dominique Dhoutaut and Julien Bourgeois
Institut FEMTO-ST (UMR 6174) / Université de Franche-Comté (UFC) / Centre National de Recherche Scientifique (CNRS)

1 Cours Leprince-Ringuet - 25200 Montbéliard, FRANCE
Email : {nicolas.boillot, dominique.dhoutaut, julien.bourgeois}@femto-st.fr

Abstract—Modular robots needs networking for coordination and it
is particularly true for MEMS microrobots. A promising communication
technology is nanowireless networking which could be integrated directly
into MEMS microrobots, in our case, the catoms of the Claytronics
project. A first step towards this objective is to design a wireless simulator
able to deal with modular robots. This simulator called Vouivre is
integrated in DPRSim a modular robot simulator developed by Intel
Research. This paper describes Vouivre and its integration in DPRSim
which is an interesting case of integrating different timelines in one
simulator. Experiments validate our design and show the interest of using
wireless communication in modular robots.

I. INTRODUCTION

Modular robots exist in various sizes and shapes but always rely
on a supporting network to allow either centralized or distributed
control. Due to their nature and design, modular robots are often
unable to act or to move by themselves alone, but instead have
to collaboratively interact with their immediate neighbors, thus in-
creasing the importance of the network. This is even more important
for MEMS modular micro-robots and more generally for distributed
intelligent MEMS projects [1].

Within the Claytronics project [2], [3], a new type of modular
MEMS micro-robots have been designed for realizing programmable
matter [4]. Each MEMS micro-robot is a sphere called catom (i.e.
Claytronics atom) that can stick to and move around its neighbors. An
individual unit has very few possibilities but an ensemble of catom
is able to act collectively. The communication is therefore of the
uttermost importance. As an example, one could take an ensemble
of catoms that is required to take a given shape. Individual catoms
have to move around and attach to their neighbors, with which they
can communicate directly. Intermediary and final positions of the
catoms can be predetermined or can be computed on the fly. The
structure will hold as long as the current positions and binding allow
a fair distribution of the physical forces. If direct communications
with the neighboring catoms is possible, all the others robots are
potentially reachable trough a routing protocol. As the 3D shapes are
built for various concrete purposes (mechanical resistance, motions),
they are rarely optimal from the point of view of the routing and
network layer. In fact the network topology is constrained by the
physical structure. Some nodes may occupy a central position and
act as bottlenecks in the communication scheme. On the other hand,
communication capabilities of other network nodes may be under-
exploited. This is also the case of most modular robots where designs
make use of standard wired network layers, such as I2C, CAN or
SPI buses. Depending on objectives and design choices, those buses

This work has been funded by the Labex ACTION program (contract ANR-
11-LABX-01-01) and ANR/RGC (contracts ANR-12-IS02-0004-01 and 3-
ZG1F) and ANR (contract ANR-2011-BS03-005)

can be shared directly between all the individual elements, or can be
only common to a few neighboring components.

In fact, wired networks are facing other problems when applied to
modular robots. They are unable to reach a unit that is not in contact
with the ensemble and convergence of distributed algorithm can be
difficult to achieve when unit are moving, and therefore constantly
restructuring the entire logical topology.

Our long-term objective is to integrate a wireless network inside
the catoms to overcome the limitations of the wired communications.
There have been some progresses [5], [6] in the design of a wireless
device that could be integrated within catoms but there are still
many challenges to reach this goal. The first one, is to be able to
design a modular robot simulator enabling wireless communications.
The second one, is to define a propagation model tailored for the
Claytronics environment. Finally, given the constraints of nano-
wireless networking, communication layers have to be tailored for
the Claytronics applications or any other IoT (Internet of Things)
applications, as it is envisioned that IoT applications will be among
the the first usage of nanowireles networking [7]

The objective of this paper is to present the progresses made in
the design of a wireless communication module within the DPRSim
simulator [8], [9].

II. WIRELESS NETWORK SIMULATION FOR MODULAR ROBOTS

There are many network simulators that are proposing wireless
network simulations. The two most used in the research community
are NS3 [10] and OMNeT++ [11]. They offer support for mobility
and this characteristic could enable their usage for network simulation
of modular robots. Unfortunately, these simulators don’t offer physics
and real-world modelling: mobile network nodes are only 2D objects
with no support for collision and so on. However, it would be possible
to plug an external simulator which could take care of the physics
but the network simulation is too detailed for our needs which limits
the scalability to thousands of node. The same comments apply to
other simulators like SSFNet [12], OPNET [13], QualNet [14] or
J-Sim [15].

Many modular robots simulators have been designed over the
years. Very first works are simulators which are dedicated to specific
hardware like Molecubes[16] or CrossCube [17] and therefore lack
of genericity. More recently, there have been more generic simu-
lators proposed like Player/Stage [18], gazebo [19], USSR [20] or
MORSE [21] but network access is not sufficiently detailed, as focus
is made on the robots themselves. The most interesting initiative is
ARGoS [22] which includes its own network simulator or that could
be plugged to NS2 or NS3 [23]. ARGoS is fast and can simulate up

to 100,000 of robots. However, the target of ARGoS is swarm robots
and not really modular robots.

Finally, DPRSim appears to be unbeatable for the scalability as
the most efficient simulators report 100x less simulated number of
nodes.

III. CLAYTRONIC’S CATOMS AND DPRSIM, THEIR

TIMESLICING BASED SIMULATOR

In the Claytronics project, MEMS micro-robot called ”catoms”
(prototype photo 1) are covered with structures called ”features”.
Those features are used as mean of both attachment (by electromag-
netic or electrostatic force [24]) and direct communication.

Fig. 1: Claytronics catom prototypes (left one with magnetic actua-
tion, right one with electro-static actuation)

By actuating features, catoms are able to move arround their direct
neighbors similarly as a stepper motor (see figure 2).

Fig. 2: Actuating the catoms like a stepper motor (2 dimensional
motion example)

Dynamic Physical Rendering Simulator (DPRSim) [8], [9] has
been developed by Intel since 2006 for the Claytronics project of the
Carnegie Mellon University.

The simulator is designed to support a potentially very large
number (up to several millions) of Claytronics micro-robots called
”‘Catoms”’. DPRSim internally makes use of ODE (Open Dynamics
Engine, a rigid body dynamic library) and can provide detailed
physical simulation for its virtual world (albeit activating physical
simulation significantly reduces the number of simulated elements).
An optional 3D graphical interface is also provided through Draw-
stuff, the default 3D environment visualization tool included in ODE.
For performance considerations, DPRSim is written in C++ and can
also work in mono or multi-threaded mode.

In DPRSim, each catom is individually represented by an object
instance, and the code running on a catom is called a ”CodeModule”
which is also individually instantiated. Someone designing a new
Claytronics application has to write its own CodeModule and then
load it into the simulated catoms.

CodeModules can be written in C++ but, part of the claytronics
project, is also the Meld language. Meld is a declarative language aim-
ing at easing the development of large scale distributed applications.
One can thus write Meld programs that are automatically converted
into CodeModules able to run in DPRSim.

To reach the simulator large scale objectives, necessary simplifica-
tions have to be done, and understanding their implications is manda-
tory to both a correct use of DPRSim and a correct interpretation of
the results it produces. DPRSim uses of a time-slicing approach, with
an atomic duration step (called a ”tick”), and processes the whole
simulation step by step. A tick is not a divisible duration and this has
many repercussions, especially on the messaging system.

If activated, the physical simulation (ODE library) uses its own
time-slicing - which is independent but has to be configured conjointly
with the main DPRSim’s time-slicing.

Each Catom owns a MailboxManager in which several mailboxes
are registered. In the MailboxManager, for each CodeModule of the
catom, a specified Mailbox can be linked to a callback function.
DPRSIM messages are exclusively designed to be sent through a
Catom feature and don’t have a catom recipient address. They only
have a recipient mailbox and feature. Because their recipient is a
low level feature interface, they can be considered as low level
messages. But, at the same time, they are directly processed by
CodeModules. This effectively makes them also belonging to the
application layer. As we will see, this will be challenging to overcome
when implementing wireless communications.

Figure 3 graphically shows how the DPRSim’s main simulation
loop works. All the catoms and their network interfaces are referenced
in a ”CatomWorld” object which has to be initialized first. Before
starting the main loop, the simulator calls to the simulationStart()
method of each CodeModule. Then, for each simulation tick, specific
callback functions from all catoms and network interfaces will be
called sequentially by the main loop. Each tick processing is thus
effectively divided into a few sequential steps denoted A to D on
Figure 3:

• Step A: Getting the current position of all catoms from the ODE
library and computing the neighboring lists.
• Step B: Individual processing of each catom (detailed later).
• Step C: Updating the states of the magnets depending on the
actions undertaken in step B.
• Step D: Advancing the physical simulation by calling ODE (catoms
may move only during this step). ODE may use multiple physical
steps, but their sequence is then uninterruptible and no message or
CodeModule processing can happen during step D.

Step B involves the sequential processing of each catom, this
processing itself being a sequence of sub-steps. All sub-steps for a
given catom (denoted from 1 to 5 on Figure 3) have to be finished
before going to the next catom. This is of utmost importance for the
messaging model as we will see by detailing the sub-steps:

• Sub-step 1: Calling the newTick() method of each NetworkAdapter
of the current catom. This essentially reset the capacity counter (the
number of bytes this Adapter will be able to send during the current
tick).
• Sub-step 2: Calling the newTick() method of each CodeModule of

the current catom. Those are user-defined functions that traditionally
decides to start movements or communications.
• Sub-step 3: If outgoing messages have been enqueued during
sub-step 2, then the system try to send them (the capacity counter is
reduced of the size of the messages until not enough capacity is left;
eventual remaining messages are kept in queue for a sending in the
next tick). The messages which could be sent during a tick are stored
in a special queue. Their reception will NOT be processed during
the current tick, but during the next one (delayed mechanism).
• Sub-step 4: If messages have been sent during the PREVIOUS
tick, then a callback function, defined by the user, is called on
the corresponding mailboxes. This is the place a CodeModule
traditionally reacts to the messages it receives.
• Sub-step 5: Calling the endTick() method of each CodeModule.
An application programmer can put here any code he wants to be
executed AFTER all incoming messages for this tick have been
processed.

The order in which the catoms are processed (step B) is important.
Should the same order be used every tick, we would get a strong
bias on the communications (the firsts catoms to be processed would
always send their data before those at the end of the list, potentially
depriving them of network access). To prevent this bias, DPRSim
implement a basic randomization of the catom processing order. This,
coupled with the time-slicing mechanism, acts as synchronization
barriers. The catoms have to wait for all the others to have been
processed in the B step before advancing further.

For the message-passing system, this synchronization means that,
whatever their size, messages are received at best during the next
tick. The capacity counter for an interface is reduced by the amount
of bytes sent. Should it reach zero, any message not already sent
would be kept in the transmission queue and further processed in the
next tick. A very big message could correctly capture the link as its
transmission would also continue over as many ticks as necessary.

The delaying mechanism - the fact that messages are received at
the earliest during the next tick - exists to prevent a potential problem.
Should the transmission be ”immediate”, the callback method on the
receiving catom would be called from the sending method of the one
transmitting. But, if this receiver callback starts a transmission, we
could have a chain of calls that do not care anymore about scheduling,
synchronization or duration of other messages. Forcing the reception
at the earliest in the next tick solves the problem, but implies that a
duration of, at least, one tick is necessary to react to any incoming
message.

IV. RADIO SIMULATION IN DPRSIM

Most of current modular robots and especially Claytronic’s
catoms have been designed to communicate exclusively through
”contact” interfaces. Those ”wired” interfaces, should be seen as
full-duplex dedicated communications links. As each pair does not
share the medium with other interfaces, those links can be simulated
independently. With such networks, the arrival date of a message
depends mostly of its expedition date, its size, and the eventual
presence of other messages in the transmission queue. In Claytronics,
as already seen on figure 2, Features are used to allow catoms to stick
together (either using magnetic or electro-static forces [24]). DPRSIM
is able to simulate two or more remote Features physically attracting
each others and attaching themselves.

world
creation

CodeModule::simulationStart()for each Catom for each CodeModule

DPRSim Tick
Neighbors lists

updatingA

for each
CatomB

Individual catom processing

NetworkAdapter::newTick()

CodeModule::newTick()

for each
NetworkAdapter1
for each
CodeModule2

Magnets
updatingC

Advancing
physical sim.D

for each
NetworkAdapter3 NetworkAdapter::send()

for each
NetworkAdapter4 User callback upon reception

for each
CodeModule5 CodeModule::endTick()

end of
simulation

ODE (and DrawStuff)
- physics computation

D
PR

Si
m

 ti
m

el
in

e

CodeModule::simulationEnd()for each CodeModule

Fig. 3: DPRSIM timeline & internal principle : For each stage,
callbacks are executed sequentially for all catoms

But Features are also used for communications and thus incorpo-
rate low-level communication interfaces (called NetworkAdapter in
DPRSIM). The final physical communication process remains unclear
and multiple possibilities have been envisioned. This is still quite
important as it may change the nature of the links from a network
point of view. By modulating the current of an electric field at a high
frequency, it becomes possible to use its variations to transmit data.
In this case, this network connection behaves as a wireless connection
potentially able to reach multiple distant NetworkInterfaces. The link
may not be a simple peer-to-peer and full duplex link anymore,
and would require a much more complex medium access control
mechanism. The actual range and number of reachable interfaces
would depend on the physical and geometrical properties of the
caroms. In a radically different approach, communications could be
made trough conductive surfaces smaller than the feature itself. This
surface would act as a connector socket and its position and shape
would constrain the link to a peer-to-peer nature. Although a feature
of this type would be physically binding, it would prevent connecting
three separate catoms on the same ”connector”. This would lead to
indirectly consider two types of ”features” : one for physical motion,
the second for communication.

Also, as more than 2 features can attract each other, from the net-
working code point of view, it is possible to associate more than two
NetworkInterfaces together. In that case, as the available bandwidth
is calculated as the sum of the individual reception capabilities, the
more features sharing a link, the higher the bandwidth ! Hopefully,
this situation is usually prevented by the physical geometry of the
catoms, that does not leave enough space for more than two features
to be in contact.

Regarding the simulation of the simpler peer-to-peer communi-
cations, as they are independent from each others, they can be more
easily processed by a time-slicing simulator such as DPRSim.

However DPRSim display very strong synchronism barriers be-
cause of its ”Ticks”. All messages sent during one tick will be
received - and processed - at the earlier during the next tick. This
can radically change the execution chronology in case of very small

messages designed to trigger immediate reaction of the neighboring
catoms.

Simulating a shared medium at the usual time-scale of DPRSim
(the ticks) cause problems, as the events and actions undertaken by
network interfaces are usually of a much smaller time-scale. Some
actions may take a few micro-seconds or less, whereas some other
may take hundreds of milli-seconds. If large time-slices are used,
many small scale actions will take place at the exact same time,
ignoring their real chronology. If much smaller time-slices are used,
the correctness of the simulation improves at a cost of a lot more
computation overhead (affecting the maximum size of the simulation)

Communications through shared wired bus (such as the CAN bus)
or through radio waves requires the implementation of a network
medium access layer (MAC), a suit of protocols and mechanisms
supervising concurrent access. In order to exhibit realistic latency
delays and errors transmissions to the application layer, it is necessary
to simulate the time in a continuous manner, enforcing anteriority
and real duration on all the actions. We thus must simulate the time
independently of DPRSIM and with a much greater precision than its
usual ticks.

The current design of DPRSim comes from the need to simulate
very large numbers of catoms (millions of them), and time-slicing
helps a lot as it eases the parallelization of each catom processing.
On the other and, much more realistic network simulators tend to
not scale that much by multiple orders of magnitudes. Simulating
all the independent events and their interactions on a shared medium
is computationally excessively complex as the number of interfaces
increases.

To preserve the potential scalability of DPRSim and its current
timeslicing operating mode, we decided to develop as a library a
new network simulator called Vouivre. This independent simulator
is based on the discreet-events paradigm, can be easily bound to
DPRSim or other simulators, and implements a suitable tradeoff
between complexity and realism of the network. Going for millions
of nodes sharing a medium is not possible at this time, but it is still
possible to tune it to go largely over the few thousands most dedicated
and detailed network simulators can do.

To link DPRSim with our new network simulator, 3 majors
changes have been brought to DPRSim:

The first one is to invoke at each Tick, a progression of the
simulated network time (see figure 4). From the point of view of
Vouivre, the duration of a DPRSim’s tick is defined as constant. It
is important to configure this time jumping duration to be the same
as the duration of the intra-tick time interval defined for the physics
engine ODE. Consequently, in the figure 4, the duration between t0
and t1 is the same for Vouivre and ODE. Failing to do so, the network
time would flow slower or faster than the physics time and the data
rates of network interfaces would not have sense anymore. During
each tick processing, DPRSim lets Vouivre process the discrete
events which have been scheduled for this time interval. From a
different perspective, we should consider that the network simulation
is periodically stalled to allow DPRSim to simulate CodeModules of
catoms and to allow ODE to simulate physics.

The second change brought to DPRSim concerns the deactiva-
tion of the previous algorithm dedicated communications on wired
interfaces. The existing mailbox system of DPRSim has still been
preserved to keep compatibility with already existing CodeModules

and Meld applications. To avoid the synchronism barrier induced by
the time-slicing operating mode, the existing mailbox callback system
have to be used in ”live mode” instead of ”delayed” mode. The figure
7 shows the Vouivre core calling back, in live during the network
simulation progress, the receiving function attached to the mailbox
of a given catom. This allows for multiple small messages to be
exchanged back and forth during the same DPRSim tick. A new
type of interface has been added, as the WirelessNetworkAdapter,
which enables access to a shared radio channel. NetworkAdapters
corresponding to the normal wired interfaces have also been modified
to be managed by our network simulator. allowing simulations of
wired communication over shared mediums such as wired buses.

The last important change is a mapping between DPRSim struc-
tures representing catoms and the corresponding Vouivre network
nodes. Each network node can have several network interfaces. They
can be wired or wireless interfaces. This mapping is build at the
creation of the DPRSim simulation universe called ”CatomWorld”.

To be realistic enough, is is necessary to simulate the packets
collisions that can occur on shared medium such as wired buses or
radio medium. Collision occurs when multiple transmitters send a
message at the same time. But depending on the medium type (wired
or radio), the collision may or may not be detected by the transmitters
themselves. On a wire, when two transmitters try to send data, they
can see that the signal they try to put on the wire is altered by another
transmitter doing the same thing. But with the radio medium, the
signal attenuation with the distance is much more important. The
signal a given transmitter is sending is thus, from its point of view,
many magnitudes stronger and completely mask any other concurrent
signal. The collision can only occur at the receiver, if multiple signal
with comparable strength are received at the same time. This translate
into erroneous bits received, which are detected by a CRC and the
whole frame is tagged as failed. But the transmitters can not be
aware of this directly, and only a missing acknowledgment indicate
the collision. In our implementation, an erroneous packet will not be
put in the receiver mailbox.

Figure 5 exposes a specificity of radio communications related
to other types of shared medium communications: the radio coverage
area. Indeed, although the medium is shared, collisions can be located
in space. Supposing catoms A and C of the figure 5 are both
simultaneously transmitting a message. The range of the radio signal
is represented by circles. D will receive the message from A. E will
receive the message from C but B will get nothing because from its
point of view, the two messages collides and cannot be decoded.

A B C
D

E

Fig. 5: Collision due to the space position of catoms and the wireless
range

More precisely, for each receiver, the attenuation of each signal
has to be computed and compared to the others. If a signal is above the
reception threshold while being strong enough to mask any concurrent

DPRSIM
Internal

processing
(newTick…)

DPRSIM
Internal

processing
(endTick…)

Advancing network
time (Vouivre).

Advancing physics
time (ODE).

Tick X
DPRSIM
Internal

processing
(newTick…)

DPRSIM
Internal

processing
(endTick…)

Advancing network
time (Vouivre).

Advancing physics
time (ODE).

Tick X+1

DPRSim timeline

Vouivre
timeline

ODE timeline

t0

t0

t1

t1 t1

t2

t2

t1

Fig. 4: Imbrication of Vouivre inside the DPRSIM and timelines

signal, then it is received. We chose, for its simplicity, to implement
the FRIIS (Figure 6) free-space radio propagation model. The model
of FRIIS takes only in account the position of catoms in space.
This position is refreshed from ODE by our network simulator via
a callback function. This simple propagation model could easily be
replaced by a more complex one.

Pr

Pt
= Gt ×Gr ×

(
λ

4× π ×R

)2

(1)

Fig. 6: Friis transmission equation. Pr and Pt are the received and
transmit power in Watt. The wavelength λ and R the distance between
antennas are in meter. Gr and Gt are the gain of receiving and
transmitting antennas in dBm.

Standards and high level network protocol stacks such TCP/IP,
IPX/SPX, WiFi or protocols close to hardware equipment such as
CAN or I2C do, for several obvious reasons, a strong distinction
between network messages, packets and frames. There is a fragmenta-
tion and encapsulation of data which brings many advantages from the
point of view of the network. The network model that we developed
is simple and aims to simulate the lower network layers avoiding to
fragment and reassemble messages as it would be costly to simulate.

To reduce the risk of collision, we adopted a simple system
based on CSMA / CA (carrier sense multiple access with collision
avoidance). Before sending a message, a random delay called backoff
is chosen by the radio interface (this delay is based on a random
number generator independently seeded for each interface). This
waiting period is expressed in time-slots of fixed duration. At each
time-slot, radio interface listen to detect if another radio transmissions
is already present. If another transmission is detected, the current
interface postpone its own transmission (deferring period). When
the medium is free again, it resumes the decreasing. When the
backoff successfully expires, the transmission begins. This mechanism
reduces the number of collisions by ensuring fair access to the
communication medium. Most collisions are avoided but still possible.

The lower part of the figure 7 shows an example of a network
simulation in which three catoms named A, B and C are communi-
cating together without radio coverage difficulties. We can see that
timeslots are skipped one after another by network interfaces of
catoms before to send messages. ”message 1” is sent and received
correctly after is backoff period. The backoff for ”message 2” started
before the transmission of ”message 1”, but is delayed (deferred)
and then resumes after the transmission of ”message 1”. However,

by coincidence, the end of its backoff coincides with the end of that
of ”message 3”. Their transmissions start at the same time and a
collision occur.

As previously explained, Vouivre internally use a discreet event
simulator. This allows for an almost arbitrary precision, along with
the ability to be very fast when no events have to be processed.
Events represent actions such as starting to send or receive a message,
but also more detailed mechanisms such as backoff-slots mentioned
earlier.

Once instanciated, events are stored in a date ordered list, where
they await their processing. Events can be created outside of the
Vouivre simulator as shown by arrows labeled ”External schedul-
ing” in figures 7 and 8. This is the usual way for applications to
initiate communications, where their data are encapsulated into a
”Message” object which is then serialized and processed by Vouivre.
On successful reception, the message is de-serialized and handled
back to applications through the mailbox mechanism. A strong point
of Vouivre is the ability for an event to trigger the scheduling of one
or more other events. This allows for very tight causality chains to
be created (such as very small messages triggering almost immediate
responses and new messages from other catoms). This is illustrated
in figures 7 and 8 with arrows labeled ”Internal scheduling”. Note
that the duration of DPRSim ticks does not impact the chronology
anymore.

The upper part of the figure 7 illustrates the scheduling and
processing of events corresponding to the transmission of multiple
messages. We can see ”Message 1” entering the TX spooler of a
network interface. After that, a chain of backoff decrementation events
takes place and the effective transmission start. At the same time
the backoff decrementation of ”Message 2” is deferred and resumes
later. On Figure 7 we also present how collisions are handle, with
the backoff of ”message 3” unluckily ending at the exact same time
as the one of ”message 2”. Vouivre detects this situation and fails
the reception of those messages wherever their reception level is too
similar according to the radio propagation model. Still during the
same DPRSim tick starts the transmission of ”message 4”, which is
too long to be completely transmitted during this tick. This is not a
problem, as its transmission will correctly continue during the next
tick. ”Message 4” will be received at the correct date, only dependent
on the time the transmission started, the message size and the network
bitrate.

As presented on Figures 7 and 8, three different timelines co-
exist in the modified version of DPRSim. The first one is the program
running inside catoms (CodeModule). At each DPRSim tick, special

Catom A : backoff
expired ; Starting to
write «Message1»

on the medium.

Vouivre timeline
DPRSim interruption

Catom B is receiving data;
Backoff deferred;
Transmission of

«Message2» delayed.

Catom A is
queueing
«Message

1» for
sending.

DPRSim interruption

(External
scheduling)

Catom A

Catom B

Catom C

Message 2

Message 3

(External
scheduling)

Message 4 (end)
End of backoff at the same time B and C start sending.

C start sending a message taking
longer than remaining Tick’s time.

Message
finally
received
on the
next tick.

Transmission failure due to collision.
Message 2 and 3 are both lost.

Transmission
by feature
failed on
Catom X.

(External
scheduling)

Running user’s
mailbox callbacks for
Catom B and C.

Discrete
events :

processing
and

scheduling

Network
layer and
messages

transmission
progress

Legend

Timeslot
Vouivre
event

Internal
event

scheduling

Event
processing

Data writing
Vouivre

timeline is
stalled

User event
scheduling

Message 4 (beginning)

Message 1

Catom A has 1 message to
send ; Loading «Message 1»

from TX spooler ;
Starting to decrease backoff.

Catom A is
decreasing backoff.

Catom C is receiving data.

Catom A finished to
write «Message 1».

Catom C received
«Message 1».

Catom B received
«Message 1» ;
Restarting to

decrease backoff.

... ...

Catom B has to wait
because Catom A started

to write before...

Features of
catoms X and

Z are
disconnected.

Backoff deferring

Fig. 7: Discrete events and their effects on the network layer : communication examples

Processing chronology overview

...
...

ODE
worldStep

ODE
worldStep......

endTick
X-1 for

Catom A

endTick
X-1 for

Catom C ...
newTick

X for
Catom A

newTick
X for

Catom C

Catom A
send

«Msg1». ...
Catom C

send
«Reply».

Catom B
received
«Msg1».

Mailbox
callback
catom B

Catom C
received
«Msg1».

Mailbox
callback
catom C

...
Catom A
received
« Reply »

ODEDPRSIM VOUIVREDPRSIM

DPRSIM TICK

Internal
scheduling

Calling user
function

External
scheduling

Legend

Fig. 8: Global processing overview and mailbox callbacks

function of the CodeModule are still executed one time for each catom
(newTick() and endTick(), as on Figure 3).

The second domain is the physics, simulated by ODE. ODE
internally operates iteratively. Its internal ”world-steps” have to be
equal or smaller than DPRSim ticks. Their duration affect the behavior
of the physic as the faster the motions, the smaller the ”world-steps”
have to be in order to prevent unrealistic behaviors.

The last domain is the network, simulated through Vouivre.
Vouivre makes use of Watt, Hertz and bytes/seconds units. As previ-
ously stated, as calls to Vouivre and ODE are included into DPRSim
ticks, it is of utmost importance for them to simulate the exact same
duration. A strong advantage of having multiple time-scales is that
now, computation, communication and physic are independent from
each other.

V. TEST SCENARIOS

In addition to wired contact connection already existing, wireless
radio communications can bring benefits and increase networks
abilities. This section highlights some situations and problems which
can be optimized by addition of wireless communications. Please note
that in order do simplify the development of illustrative applications,
2D catoms have been used, but the benefits would old in 3D.

A. Converging walkers

Situations exist where catoms are not able to communicate
through wired connections. In fact it is quite possible to have isolated
catoms or groups of catoms. Many applications would still require
those catoms to regroup and assemble despite the fact that truly
isolated catoms cannot even move by themselves. A full explanation
of the model we developed would be out of the scope of this paper, but
obtained results are still very relevant to this section. Using wireless
communications and appropriate - multi-layered - control algorithm, it
is indeed possible to allow the detection of isolated groups of catoms.
They are then able to collectively decide for a convergence point
(such as a barycenter for example) where they will regroup. Also,
isolated catoms can announce their presence and small groups of other
catoms can come to their ”rescue”. This is illustrated on Figure 9. The
name ”walker” comes from the ability of a small group (3 or more
catoms) to progressively move by iteratively adjusting the position of
its constitutive elements.

B. Multi hop flooding

In many scenarii, because of their broadcast nature, wireless
communications have a strong advantage in term of information
propagation velocity. In the following scenario, an initial catom will
send a 53 bytes packet to its neighbors. This packet will then be

Fig. 9: All walkers send their position via wireless and converge to
the on-the-fly computed barycenter

retransmitted hop by hop. To better grasp the behavior of the protocol,
receiving this packet will trigger the coloring of the catom on the
screenshots. The color itself will depend on the last re-transmitter.
To prevent an everlasting flooding, the message contains a sequence
number and can by re-transmitted only one time per catom.

Figure 10 shows 6 phases of retransmission on a square area
covered by catoms. In this scenario, in order to further reduce the
number of retransmissions, only black catoms (best seen on the upper-
left screenshot) are allowed to retransmit. From phase to phase, we
easily see how multiple catoms are reached at each retransmission.
Please note that the number of catoms and the wireless range are
voluntary kept small to enhance the readability of the pictures, but
the benefits from wireless retransmission would only grow with
increasing range and proper retransmission management.

Fig. 10: Simulation 7 : A radio asynchronous flooding starting from
the lower right corner

More irregular structures would also benefits from punctual
wireless transmission capabilities. Much time can sometime be gained
by directly crossing a gap instead of taking the long way around.
This is illustrated with the scenario presented on Figure 11 and
simulation results shown on Figure 12. Scenario T3 makes only use
of wired neighbors communications. It takes the longest time from
the initial transmitter until all catoms have received the message.
Scenario T1 uses wired communication, but 4 catoms near the center
of the cross also have wireless capabilities that enable the message
to ”jump” and propagate in the others branches. This ”jump” is quite
visible on Figure 12 around time=14s. After that, as copies of the
message propagates in parallel in the branches, it takes less time to
be received everywhere. Scenarii T2 and T4 are similar but also use
some wireless transmitters on the branches themselves, thus speeding
the propagation through the network.

We also conducted more experiments on the denser (20x20
catoms) macro-structure described on Figure 10. The parameters used

Fig. 11: Layout for simulations T1,T2,T3 and T4 with the ”cross”
macro-structure. The left picture shows the position of the radio relays
for simulation T1.

Fig. 12: Progression of the colorization wave the ”cross” macro-
structure

are presented in Figure 13 and the corresponding results on Figure 14.
Scenario 6 with its much smaller backoff and increased troughput
obviously sees the fastest propagation. Scenario 2 is wired only and
takes the longer time to reach a full coverage of the network with
the data packet. Scenario 3 has catoms with a larger radio coverage,
propagation is faster, but collision rate is also higher and impact the
time required to reach the full coverage. Scenarii 4 and 5 are similar,
except for the density of radio transmitters. Propagation is initially
faster in scenario 4 where every catom re-transmits, but then suffer
from collisions; scenario 5 and its regularly spaced re-transmiters
achieves the full coverage earlier. Scenario 7 behaves very well with
its hand-picked transmitters (chosen in order to minimize collisions
and maximize surface covered by each retransmission). Scenario 8
behaves very well also by using regularly spaced radio transmitters
complemented by wired communications that mitigate the effect of
collisions on the radio network.

Fig. 14: Progression of the colorization wave in the time in the macro-
structure ”checkerboard 20*20”

Simulation identifier 1 2 3 4 5 6 7 8
Type of interface used W W R R R R R W+R
Radio transmitting power - - 2mW 1mW 1mW 1mW 1mW 1mW
Choice of relaying catoms all all all all RG RG HP all wired, RG radio
Backoff range (for radio) - - 30 30 30 30 30 30
Timeslot duration (for radio) - - 4ms 4ms 4ms 1.5µs 4ms 4ms
DataRate of wired interface 6 kbs 6 kbs - - - - - 6 kbs
DataRate of radio interface - - 6 kbs 6 kbs 6 kbs 6 mbs 6 kbs 6 kbs

Fig. 13: Parameters used in simulations with the checkerboard structure. Legend: HP for hand-picked selection; RG means regular in grid; W
means wired only; R means radio only; W+R for hybrid that means using both interfaces; kbs=kilo bits per second; mbs=mega bits per second

VI. CONCLUSION

We have presented the integration of a wireless simulator called
Vouivre in DPRSim, a simulator for modular robots. The major
challenge we faced was the difficulty to integrate three parts that have
different timing requirement: physical (ODE), DPRSim and Vouivre.
This has been solved by using and managing three timelines. Vouivre
has been designed as a library and can therefore be integrated in
others simulators. Furthermore, integrating it in DPRSim gave us
an experience which can be reused. Experiments have shown that
Vouivre is easy to use and that wireless integration in MEMS modular
robots could be useful for various kind of applications either for
extending the communication possibilities, with the distributed walker
scenario, or by optimizing communication times, with the broadcast
algorithm. Our next step will now be to integrate in Vouivre the
nanowireless channel model developed in [25].

REFERENCES

[1] J. Bourgeois and S. Goldstein, “Distributed intelligent mems: Progresses
and perspectives,” in ICT Innovations 2011, ser. Advances in Intelligent
and Soft Computing, L. Kocarev, Ed. Springer Berlin / Heidelberg,
2012, vol. 150, pp. 15–25.

[2] S. C. Goldstein, J. D. Campbell, and T. C. Mowry, “Programmable
matter,” IEEE Computer, vol. 38, no. 6, pp. 99–101, June 2005.

[3] S. C. Goldstein, T. C. Mowry, J. D. Campbell, M. P. Ashley-Rollman,
M. De Rosa, S. Funiak, J. F. Hoburg, M. E. Karagozler, B. Kirby, P. Lee,
P. Pillai, J. R. Reid, D. D. Stancil, and M. P. Weller, “Beyond audio
and video: Using claytronics to enable pario,” AI Magazine, vol. 30,
no. 2, July 2009.

[4] M. E. Karagozler, A. Thaker, S. C. Goldstein, and D. S. Ricketts, “Elec-
trostatic actuation and control of micro robots using a post-processed
high-voltage soi cmos chip,” in IEEE International Symposium on
Circuits and Systems (ISCAS), 2011.

[5] J. C. Pujol, J. M. Jornet, and J. Sol-Pareta, “Phlame: A physical layer
aware mac protocol for electromagnetic nanonetworks,” in Proc. of
the 1st IEEE International Workshop on Molecular and Nano Scale
Communication (MoNaCom), 2011.

[6] J. M. Jornet and I. F. Akyildiz, “Low-weight channel coding for
interference mitigation in electromagnetic nanonetworks in the terahertz
band,” in Proc. of IEEE International Conference on Communications
(ICC), 2011.

[7] B. D. Rister, J. Campbell, P. Pillai, and T. C. Mowry, “Integrated
debugging of large modular robot ensembles,” in ICRA, 2007, pp. 2227–
2234.

[8] M. P. Ashley-Rollman, P. Pillai, and M. L. Goodstein, “Simulating
multi-million-robot ensembles,” in ICRA, 2011, pp. 1006–1013.

[9] T. Henderson, S. Roy, S. Floyd, and G. Riley, “ns-3 project goals,” in
Proceeding from the 2006 workshop on ns-2: the IP network simulator.
ACM, 2006, p. 13.

[10] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and
systems & workshops, ser. Simutools ’08. ICST, 2008, pp. 60:1–60:10.

[11] D. M. Nicol, B. Premore, and A. Ogielski, “Using simulation to under-
stand dynamic connectivity at the core of the internet,” in Proceedings
of UKSim 2003, Cambridge University, England, April 2003.

[12] “http://www.opnet.com/products/modeler/.”
[13] “Qualnet simulator,” http://web.scalable-networks.com/content/qualnet.
[14] J. Kačer, “J-Sim – a Java-based tool for discrete simulations,” in

Proceedings of the 23rd International Autumn Colloquium ASIS-2001:
Advanced Simulation of Systems. Náměstı́ Msgre Šrámka 6, 70200
Ostrava, Czech Republic: MARQ, September 2001, pp. 135–141.

[15] V. Zykov, P. William, N. Lassabe, and H. Lipson, “Molecubes extended:
Diversifying capabilities of open-source modular robotics,” in IROS-
2008 Self-Reconfigurable Robotics Workshop, 2008.

[16] Y. Meng, Y. Zhang, and Y. Jin, “Autonomous self-reconfiguration of
modular robots by evolving a hierarchical mechanochemical model,”
Computational Intelligence Magazine, IEEE, vol. 6, no. 1, pp. 43 –54,
feb. 2011.

[17] B. Gerkey, R. Vaughan, and A. Howard, “The player/stage project: Tools
for multi-robot and distributed sensor systems,” in Proceedings of the
11th international conference on advanced robotics, vol. 1. Portugal,
2003, pp. 317–323.

[18] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Confer-
ence on, vol. 3. IEEE, 2004, pp. 2149–2154.

[19] D. Christensen, D. Brandt, K. Stoy, and U. Schultz, “A unified simulator
for self-reconfigurable robots,” in Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008, pp.
870–876.

[20] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
open robots simulation engine: Morse,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, may 2011, pp. 46
–51.

[21] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. Caro, F. Ducatelle, M. Birattari,
L. Gambardella, and M. Dorigo, “Argos: a modular, parallel, multi-
engine simulator for multi-robot systems,” Swarm Intelligence, vol. 6,
no. 4, pp. 271–295, 2012.

[22] M. Kudelski, M. Cinus, L. Gambardella, and G. Di Caro, “A framework
for realistic simulation of networked multi-robot systems,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, 2012, pp. 5018–5025.

