
Mapping SysML to Modelica to Validate Wireless
Sensor Networks Non-Functional Requirements

Samir Berrani
Femto-ST Institute

University of Franche-Comté
Besançon, France

Email: samir.berrani@yahoo.fr

Ahmed Hammad
Femto-ST Institute

University of Franche-Comté
Besançon, France

Email: ahmed.hammad@femto-st.fr

Hassan Mountassir
Femto-ST Institute

University of Franche-Comté
Besançon, France

Email: hassan.mountassir@femto-st.fr

Abstract—Wireless Sensor Networks (WSN) have regis-
tered a large success in the scientific and industrial com-
munities for their broad application domains. Furthermore,
the WSN specification is a complex task considering to their
distributed and embedded nature and the strong interactions
between their hardware and software parts. Moreover, most
of approaches use semi-formal methods to design systems
and generally simulation to validate their properties in
order to produce models without errors and conform to
the system specifications. In this context, we propose a
Model Driven Architecture (MDA) approach to improve the
verification of the WSN properties. This approach combines
the advantages of the System Modeling Language (SysML)
and the Modelica language which promote the reusability
and improve the development process. In this work, we
specify a model transformation from SysML static, dynamic
and requirement diagrams to their corresponding elements
in Modelica. Thanks to the SysML requirement diagram
which is transformed into Modelica properties (constraints),
we propose a technique using dynamic tests to verify WSN
properties. We have used the Topcased platform to imple-
ment our approach 1 and chosen a crossroads monitoring
system which is based on wireless sensors to illustrate it.
Besides, we have verified and validated some wireless sensors
properties of the studied system.

Keywords-Specification, SysML, Modelica, Design, Virtual
verification, Model transformation, MDA, WSN.

I. INTRODUCTION

Since the beginning of 2000’s, the WSN have been
adapted to several application domains; therefore, scien-
tific and industrial actors are interested to them. However,
this kind of networks is mainly used in the observation of
physical phenomena in a restricted environment. They are
characterized by simple deployment and low production
costs. Furthermore, the WSN industry actors must develop
the modeling methods of these networks in order to
maintain the competitiveness of their products. In addition,
modeling WSN is equivalent to design distributed and
embedded system conjointly.

Moreover, formal methods are generally used in the
modeling of critical systems that require rigorous ver-
ification. This reduced application area is due to the
nature of these methods which require good skills in
mathematics. As a result, industrial actors have widely
adopted semi-formal methods to design WSN applications.
These methods are based mainly on semi-formal languages
(text or graphic) for which are defined a precise syntax

1This research is supported by the Regional Council of Franche-Comté
with the SyVad project (http://syvad.univ-fcomte.fr).

and relatively weak semantics. Besides, the semi-formal
languages are firstly simple to understand, on the other
hand they provide a rich structuring mechanism allowing
the reduction of the design time and cost.

However, in order to improve the checking of the WSN
non-functional properties which is done largely by simula-
tion in domain of industry, we propose an MDA approach
to design and check the WSN energy consumption. Our
approach is based on the SysML language which will
be extended to an executable language namely Modelica.
Considering the Modelica characteristics, we propose a
virtual verification of the properties deduced from the
SysML requirement diagram. This approach includes the
benefits of the SysML modeling and the possibility to
simulate and verify the modeled system properties by
Modelica. In other words, this modeling approach allows
us to reduce the design time, decrease the design cost and
increase the efficiency of WSN models.

This paper is structured as follows: first we discuss ex-
isting works related to the WSN modeling. Then, we give
brief introductions to WSN, SysML and Modelica. After
that, we explain our approach to design and verify the
WSN energy consumption property. Finally, we conclude
this work.

II. RELATED WORKS

As mentioned in the previews section, the WSN model-
ing and checking methods are widely studied by scientific
and industrial communities.

Concerning the modeling, N. Belloir and al. [1] carried
out a comparative study between UML2 (Unified Mod-
eling Language 2.0) and SysML related to the design
of WSN applications. Other studies have focused on
improving code reusability of WSN protocol. K. Klues
and al. [2] proposed a modeling of the MAC layer using
Component-Based Architecture (CBA). C. T. Ee and al.
[3] introduced a modular network layer to allow the co-
existing (stacking) protocols with the aim to reduce code
and consumed resources at run time. In these both works,
the authors focused on implantation techniques and not on
the system design.

In addition, I. Khemapech and al. [4] considered that
simulation is an interesting technique to study the WSN.
For this, they reviewed several researches on the de-
velopment of simulators for WSN. E. Cheong and al.
[5] developed a Framework that provides a graphical
environment for the modeling and simulating of WSN



applications using mainly TinyOS. Another similar work
was proposed by M. M. R. Mozumdar and al. [6] released
with Simulink. This Framework provides the ability to
make a performance analysis of the designed system
through simulation, and it also allows code generation
which is compatible with TinyOS. One more work was
presented by D. Riley and al. [7] defined a method to
integrate Simulink and ns-2 for the hybrid networked
control systems. However, the behavior of any node sensor
in the networks is defined closely with communication
protocols, which limits the reusability. In addition, the
verification of WSN properties is done through simulation.

Besides, M. Previstini and al. [8] proposed an approach
to design Systems On Chip (SoC) which included the
WSN. For this, they designed a SysML profile for model-
ing SoCs. Then, they carried out a model transformation
from SysML model to SystemC model according to the
MDA standard in order to make a simulation. The pro-
posed model transformation is not completely automated.
Moreover, S. Villa and al. [9] proposed an approach for
modeling WSN using UML and SystemC. They defined
two UML profiles, namely: UML-SystemC in order to
include (in UML) the SystemC specific concepts and the
UML-Marte profile which allows hardware-software mod-
eling (co-design). Then, they designed a Framework that
enables the model transformation between UML model
and SystemC model. The verification of SoC properties is
done by simulation.

Another work was presented by F. Losilla and al. [10]
proposed an MDE (Model Driven Engineering) approach
to develop WSN applications. They defined three lev-
els of abstraction; these allow designers to specify: the
domain-specific model, the component-based architecture
descriptions and finally, the plateform-specific model.
Next, the authors developed a Framework that enables
the model transformation from an UML model (using
the WSN domain-specific language) to a nesC model
that enables the simulation of this designed system. In
the same context, P. Boonma and al. [11] developed the
Framework ”Moppet” based on model-driven performance
engineering. It allows the WSN architects to design appli-
cations using the proposed WSN libraries and to estimate
their performances (energy consumption and sensor node
lifetime).

Moreover, L. Samper [12] proposed a formal approach
for WSN modeling. It is based on virtual prototyping
to reduce the system’s complexity. Therefore, the author
devised WSN applications in several abstraction levels,
namely: the application layer, the network layer, the MAC
(Media Access Control) layer, the hardware layer and
the environment layer. Then, he modeled each level by
the transition systems (automata). However, this approach
requires skills in transition systems and its appropriate
languages.

Our WSN modeling approach is based on the MDA
standard. It allows a semi-formal modeling with the
SysML language which will be extended to the Modelica
in order to make verification of the WSN energy consump-
tion. In other words, our approach offers the possibility
to design clear models and allows also the simulation

and the virtual verification of designed system properties.
Furthermore, our approach is applicable to the WSN as
shown in the case study and also to any physical system
such as the SoC. This work was presented briefly in [13].

III. DESCRIPTION OF WSN MODELING, SYSML AND
MODELICA

A. WSN modeling

The WSN modeling is influenced by many factors,
which include fault tolerance, scalability, production costs,
operating environment, sensor network topology, hardware
constraints, transmission media and power consumption.
These factors are important because they serve to direct the
design of the WSN protocols and algorithms. In addition,
they can be used to compare different WSN architec-
tures. Moreover, the prospects of WSN applications are
promising but the challenges that they present are not
less numerous and not less complex too. Among the
crucial issues, which the WSN non-functional properties
represent, we can mention the energy consumption, the
automatic configuration, the communication security, etc.

In this project, we study the WSN energy consumption
which is heavily dependent on the type of node. These
nodes are designed with the aim to maximize their life ex-
pectancy. In [14], the authors defined an energy consump-
tion model for WSN. The major feature of this model is its
accuracy in estimating the energy consumption. Therefore,
this model allows the estimation of the overall lifetime
of the WSN accurately. For this reason, we adopted this
energy consumption model in our study.

B. SysML language

The System modeling language (SysML) is based on
UML2. It replaces the class concept in modeling by
block vocabulary which is more suited to the Systems
Engineering (SE). A block includes any software, hard-
ware, data and processes concepts. The SysML does not
use all UML2 diagrams, it provides a reduced set of
diagrams adapted to the SE. The software designers have
several advantages to work with the SysML because there
are many similarities with UML2. The SysML allows
heterogeneous teams to work together for unique modeling
system by creating hardware blocks and software blocks.
Furthermore, knowledge is modeled in a single repository
that improves communication between different teams.
The SysML is based on nine diagrams, each one of them
is dedicated to represent particular concepts of studied
systems. As illustrated in figure 1, these diagrams are
divided into three main groups as follows: shared diagrams
with UML2, modified UML2 diagrams and new SysML
diagrams.

C. Modelica language

The Modelica is an object-oriented modeling language
that allows the modeling of physical systems which can
be complex and heterogeneous. It can be considered as a
multidisciplinary modeling language [16]. The Modelica
is an open language which is developed and promoted
by the Modelica Association. The Modelica models are
described mathematically in acausal way through differen-
tial equations, algebraic equations and discrete equations.



Figure 1. SysML diagrams

The Modelica solvers contain very effective algorithms
for solving equation systems which allow the handling
of complex models that are described by thousands of
equations. The main benefit of Modelica is the reusing
of model components that simplify the modeling task to
designers.

1) The motivations of the chosen language (Modelica):
In order to execute the SysML models, our choice was
made on the Modelica language for the following reasons:

• The Modelica language allows an object-oriented
modeling approach;

• The Modelica language allows a graphical represen-
tation of the model;

• The Modelica language considers at any time the
differential equations, the algebraic equations and the
discrete equations which describe the model, as single
system equations;

• The Modelica language has only one simulator that
allows automatic synchronization between discrete
and continuous parts;

• There is a close similarity between the Modelica
model and the B (B formal language) model which al-
lows formal proofs (after transformation to B model);

• H. Lundvall and al. [15] proposed an algorithm to
make transformation from the Modelica model to the
Hytech model in order to do a formal verification
(model checking).

IV. MDA APPROACH FOR MODELING WSN

The OMG (Object Management Group) has revolution-
ized the software industry by providing the MDA standard.
This standard describes a new approach for designing
computer applications. It introduces a separation between
business logic and implementation logic (technical plat-
form). This approach is defined in the Model Driven
Engineering (MDE). The designers have observed that the
business logic does not change during the time contrary to
the technical architecture. As a result, it becomes evident
to make a separation between the business logic and the
technical logic in order to reduce the system’s complexity,
maintenance cost and the technology migration cost. This
transformational approach changes the active role of the
developers in building computer systems that is defined
in the classical approach to a simplified and less involved
role thanks to automated construction. The MDA approach
proposes the definition of business models independently
of any technical platforms and it allows the code genera-
tion automatically to the chosen platform.

Figure 2. Adopted approach

A. The adopted approach

The SysML is a modeling language for system engi-
neering which doesn’t allow the model execution. There-
fore, we can’t make the verification of system properties.
For this, we propose to transform the SysML model to
an executable model, such as the Modelica model. The
methodology adopted in our project is constituted of four
steps. In the first stage, the modeler designs the WSN
application with the SysML language which is recognized
as a Platform Independant Model (PIM). In the next phase,
the designer is invited to run a check of its model in
order to refine it when there are problems reported by the
analyzer. Among the problems identified by the analyzer,
we list, the undefined elements (initialization, typing, etc.)
which are generally due to forgetfulness and the elements
which are not considered by the model transformation
(SysML model to Modelica model) rules. The objective of
this analysis is to ensure that the generated code at the end
of the transformation process is executable by the Open-
Modelica compiler. After this check, we can undertake the
third step that defines the transformation from the SysML
model to the Modelica model (PIM to Platform Specific
Model - PSM). The file resulting from this transformation
is in XMI (XML Metadata Interchange) format which
is conformed to the proposed Modelica meta-model 3.
Finally, for the last step, we transform the Modelica model
to the Modelica code (PSM to PSM). The input file of this
transformation (model to text) is the XMI file resulting
from the last transformation (SysML model to Modelica
model) and the output file is the Modelica code. Figure 2
illustrates the process followed in our project.

1) The Modelica verification and validation techniques:
The Modelica language considers all differential equa-
tions, algebraic equations and discrete equations, as a
single equation system. Synchronization between these
different types of equations is handled automatically by
the associated simulator. In addition, Modelica allows to
express in each model or sub-model (class: model, block)
the invariants and also one or more safety constraints, in



general, with the instructions ”Assert” and ”Terminate”.
The ”Assert” instruction evaluates the boolean expression
that represents the safety constraint at each elementary
cycle of simulation, if it is true the constraint is preserved,
otherwise it raises an error or a warning according to
the configuration of ”Assert” instruction. Regarding the
statement ”Terminate”, it evaluates its boolean expression
after the simulation is completed, if it is violated, an error
is generated. The reference work about the verification in
Modelica is illustrated in the approach proposed by W.
Shamai [17].

2) The SysML metamodel: The SysML modeling tool
that we have adopted is Topcased. This tool provides a
SysML meta-model which is based on a UML metamodel.
We preferred to use the SysML metamodel existing in
the Topcased because it is more complete and adequate
with all SysML model edited by this tool. However, any
SysML model represented by Topcased is consistent with
its integrated metamodel.

3) The Modelica metamodel: The Modelica language
is based on object-oriented paradigm. Any element of this
language is an instance of a class. In other words, the basic
structure in Modelica is the entity class. However, this
language is recognized by its flexibility. It defines special
keywords that replace the word class. These keywords are
used in different contexts according to special restrictions,
for example:

• The package: It is mainly dedicated to manage the
namespace. The declaration of variables and param-
eters isn’t allowed.

• The connector: It allows the specification of commu-
nication nature between objects (blocks). The equa-
tion definition isn’t authorized in the connectors.

• The block: It is used to define components. All
declared variables must be prefixed by input or output
keywords (causality). A block should not be used in
the connection definition.

• Type: It allows the definition of new types (simple or
complex) and also enumerations.

• Record: It allows the data structure specification. The
equations are not permitted in the record structure. In
addition, it doesn’t define a connection.

• Partial class: It allows the structures or the common
behavior generalization among several model entities.

The proposed metamodel recognizes all these structures,
variables and parameter constructions. Furthermore, this
metamodel includes the behavioral model description such
as equation and algorithm statements. Moreover, it allows
the depiction of the model invariants or safety constraints.
Figure 3 illustrates the proposed Modelica metamodel.

4) The model transformation tools: The used tool to
carry out model transformations is the ATL (ATLAS
Transformation Language). This language is based on the
standard QVT (Query View Transformation) defined by
OMG. It is available as a plugin in the Eclipse project.
The official website of Eclipse contains more informa-
tions about ATL language, its environment and its model
transformation libraries.

Figure 3. The Modelica metamodel

Figure 4. Crossroads system environment

B. The case study

Motorized traffic density in urban areas requires the
establishment of signaling traffic laws to improve safety
and fluidity. The toughest traffic problems are at road
intersections. In fact, the passage priority associated with
eventual changing direction could create bottlenecks. The
solution adopted by traffic operators to regulate circulation
is signalized systems(tricolor and bicolor lights).

The traffic lights installed at intersections are used to
adjust the vehicle movements. They are managed by a
system that synchronizes the color changes of the different
junction lights. The traffic-light colors are managed by a
controller which depends on the number of cars waiting to
cross the junction. The duration of a cycle lights (yellow
- red - green) and the time of each phase is defined
by the traffic center of the city. This center supervizes
all street intersections. Figure 4 illustrates the crossroads
environment.

1) hypothesis: In this work, we focused on the WSN
energy consumption. For that, we must simplify our case
study in order to concentrate on the study of this param-
eter. The retained hypotheses which allow us to identify
and simplify the studied system are as follows:

• The sensors that control traffic lights on each road
lane are powered by a battery;

• The sensors used in the lanes serve to control the
traffic lights and communicate with the controller;



• The traffic light colors are yellow, red and green;
• The system failures are not treated in order to sim-

plify the case studied here;
• The video traffic detection camera and the tricolor

signal lights are powered by the electricity network;
• The video traffic detection (camera) detects the vehi-

cles at a distance which is fixed during the equipment
installations;

• The camera sensor can estimate the vehicle numbers
waiting to cross the intersection;

• The pedestrian crossing and the communication be-
tween the controller and the traffic center aren’t
studied in order to simplify the case studied here.

2) The technical system studied in this case: We as-
sume that the intersection of our case has two roads (A
and B) in both directions. The four traffic-light units are
appointed such as: AN, AS, BO and BE, according to
figure 4. The system specifications are as follows:

• The system must be safe :
– The traffic lights AN and AS are in the same

color and it is the same for BO and BE;
– When AN and AS are green, BO and BE are

red;
– When AN and AS are red, BO and BE are green

or yellow;
– When the controller sends a command to change

color, all junction lights should change their
color simultaneously.

• The system must be efficient :
– When the light flashes on green, it changes to the

yellow color only if there are oncoming vehicles
on the other road and its light time is completed;

– The transmission between a sensor node de-
ployed in a lane and the controller is via the com-
munication protocol ZIGBEE (IEEE 802.15.04);

– All sensor messages pass through a controller;
– The duration of the traffic signal depends on the

number of vehicles waiting on each road. This
duration should be long enough for cleaning the
queue.

• The system must be economic : The energy consump-
tion should be minimized.

• The system must be compatible with traffic laws :
The control design should be according to the current
traffic laws.

C. SysML modelisation

1) The requirement diagram: This diagram is used to
represent the requirements of the designed system. From
the case study, we have identified two main requirements
which relate to the safety and the longevity of the system.
Figure 5 shows the requirement diagram of monitoring
junction system.

2) The block definition diagram: The block definition
diagram allows to give a structural description of the
studied system. The main block that represents the cross-
road monitoring system consists of a controller unit, four
extended sensor nodes that manage the traffic at the lane
and finally a phenomenon that represents the arrival of
vehicles. Figure 6 shows the global system structure.

Figure 5. Requirement diagram

Figure 6. Global system structure

Figure 7. Sensor node structure

This extended sensor node consists of a simple sensor
node, an additional sensing unit ”camera” and an actuator
”traffic lights”. The simple sensor node block consists of
a memory unit, a processing unit, a transmitter unit, a
receiver unit and a battery. Figure 7 shows the simple
sensor node structure.

3) The internal block diagram: The internal block
diagram (IBD) is a white box view of a block. It describes
the system internal structure in terms of parts, ports and
connectors. These parts are assembled by connectors that
connect their ports. In our case study, the simple sensor
node is a basic internal block diagram. This diagram
describes the sub-blocks which constitute the sensor node
block and the communication type between them and the
external blocks.

4) The parametric diagram: The parametric diagram
is a SysML specific modeling technique that allows the
integration of constraints or equations into the model in the
analysis aims. These constraints are defined by parameters
and rules which describe the evolution of these parameters



Figure 8. Transmitter parametric diagram

Figure 9. Receiver parametric diagram

Figure 10. Battery parametric diagram

related to each other. The main objective of our project
is to study the WSN energy consumption. For this, we
adopted the energy consumption model proposed in [14].
In this model we can distinguish several sources of energy
consumption, such as the processor, the memory , the
transmitter, the receiver, the sensor and the actuator. We
assume that the actuator (traffic light unit) and the sensor
unit (additional sensing unit - camera) are supplied by
the electricity networks. However, we ignore the energy
consumed by the processor because we haven’t identified
operations such as aggregations, compressions or treat-
ments done by processor. In addition, we have also ignored
the energy consumed by the memory because the sensor
node doesn’t save data at its level.

However, we retained the energy consumed by the radio,
due to the data transmission, the data reception and the
changing of the operating mode (transient energy). In
figure 8, we present the transmitter parametric diagram
which describes the energy consumed by this component.
This diagram includes also the transmitter transient energy.
Furthermore, this diagram includes the communication
model that describes the state of the transmission channel
between the sensor node and the controller. Moreover,
the parametric diagrams of the receiver, the processor,
the memory and the battery are defined as the transmitter
parametric diagram. Moreover, in figure 9, we present the
receiver parametric diagram which describes the receiver
energy consumption due to receiving data from the con-
troller. Finally, the update of the battery stored energy is
illustrated in the parametric diagram shown in figure 10.

5) The state machine diagram: The state machine
diagram describes the behaviour of the SysML block using
a finite state automaton. It shows the possible sequences
of states and actions that a block can handle during its
lifetime in reaction to discrete events (signals). The UML2
state machine properties are also available with SysML:

Figure 11. Tansmitter state machine diagram

Figure 12. Receiver state machine diagram

Figure 13. Processor state machine diagram

conditions on events, effects, sustainable activity, tran-
sitions, composite states, modularity, concurrent regions,
etc.

In our case study, we have described the operations done
by the sensor node sub-components in order to calculate
the detailed and the global consumed energy. Globally, the
controller and the sensor node sub-components have same
operations, such as: receiving, transmitting and processing
data. For example, the sensor node sends to the controller,
continuously, the lane status(number of vehicles on the
road). The sensor processing unit receives this data from
the additional sensing unit (camera). Then, the processor
forwards this data to the transmitter (radio) in order to send
its to the controller. Figure 11 illustrates the transmitter
state machine diagram. However, once the receiver (radio)
receives a message from the controller, it sends it directly
to the processor. Figure 12 illustrates the receiver state
machine diagram. After that, the processor unit extracts
the command signals from the receiving message and
sends them to the actuator (traffic lights). In our study, we
assumed that for each sending or receiving message, the
processor changes its state at least once. This hypothesis
allows us to calculate the processing unit transient energy.
which is illustrated in figure 13. Finally, in figure 14, we
illustrate the global energy consumption by the sensor
node which is updated for each sending or receiving
message.

D. Transformation rules from SysML to Modelica

In the literature, we found several attempts to define
correspondences between the SysML (or UML2) and the
Modelica languages. These works are based on the MDA



Figure 14. Battery state machine diagram

Table I
TRANSFORMATION RULES FROM SYSML TO MODELICA

Elements of SysML model Elements of Modelica model
package, block, abstract-
block

package, block, partial-class

flow-specification, value-
type

connector, type

flow-property, flow-port property, connector
connector flux(x,y) equation connect(x,y)
constraint property equation
state machine guard ’when’ statement guard
operation without a value to
return

instruction block of ’when’
statement

operation with a value to re-
turn

function

requirement boolean expression (invariant
or safety constraint)

standard that describes an approach to make model trans-
formations. For example, in [19], [18], [21] the authors
proposed model transformation from the SysML model to
the Modelica model based on the SysML static diagrams.
Otherwise, W. Shamai and al. [20] proposed graphical
language (ModelicaML) that can generate Modelica code.
In this work, they took into consideration the UML struc-
tural and dynamic diagrams (class diagram, composite
structure diagram, activity diagram and state machine
diagram). Concerning this work, we think that it is better
to keep the original UML2 semantics then to make UML2
profiles for Modelica which limite the UML2 language
expressiveness.

Our approach is based on the SysML language. It takes
into account the structural and behavioural diagrams. The
structural diagrams allow us to describe the structure of
the target model and the parametric diagrams allow us
to consider the mathematical models which represent the
behaviour of the real system. Finally, the state machine
diagrams are used to describe the behaviour of each
component of the system under study. Table I provides
a list of correspondences between the elements of the
SysML metamodel and the elements of the Modelica
metamodel.

E. Virtual verification and validation techniques

The Modelica language permits simulation and verifi-
cation through tests. In this context, the seminal work is
presented by W. Schamai and al. [17] which shows an
approach to verify the properties of the Modelica model.
This approach relies on the MBSE (Model Based Systems
Engineering). This model will be executed and checked

Figure 15. Annotation of the WSN lifetime requirement

Figure 16. The annotation of safety requirements : the traffic signals
in the junction roads are different all the time

against the system’s requirements in the early stages of the
development cycle. Furthermore, in the MBSE approach,
requirements are connected with model elements which
allows traceability. The ModelicaML [20] adopts this
approach in order to ensure the verification.

In our approach, we rely on the SysML requirement
diagrams. The test designer selects the checkable require-
ments by linking them with the boolean expression (con-
straint) that represents the invariant or safety constraint of
the system. To ensure traceability, the test designer must
connect each checkable requirement with one or more
blocks that will satisfy this requirement. In this way, we
ensure the reusability and the traceability of requirements.

For example, in figure 15 the requirement (Id=08)
expresses the longevity that specifies the WSN minimum
lifetime(05 days). In other words, the energy in each
sensor node will not be exhausted before the desired
minimum lifetime. This constraint is the invariant of the
”intersection monitoring system” block.

Furthermore, in Figure 16 we detail the safety require-
ments of the crossroads. For example, the requirement
(Id=10) expresses that the traffic lights in both roads
that form the junction are different all the time. The
constraint that represents the requirement is considered
like an invariant of the block ”ControllerProcessingUnit”.

F. Test scenarios (phenomena description)

The component which represents the phenomena (ar-
rival of cars on the lane) is the bloc ’car’. This bloc con-
tains an operation which allows the generation of integer
numbers between 0 and 7. These numbers represent the
number of cars which are on the observed lane.

1) Random tests: In figure 17, we describe the observed
phenomena with state machine diagram. For each five (05)
seconds, we generate randomly a new situation for all
junction lanes. This information will be transmitted to the
camera in order to simulate the sensing of the cars which
are on the lane and the estimation of their numbers. This
operation mode represents in our case study a random test
scenario.



Figure 17. Random test (Arrival of vehicles for each lane in intersection)

Figure 18. Worst test (Arrival of vehicles for each lane in intersection)

2) Worst tests: In addition, we have previewed the
examination of the studied system in the worst case
situations. For that, we have imagined an operating mode
which defines every five seconds one road, from the both
roads of junction, empty (from cars) and the other contain
at least one car. This operating mode must unroll in altered
and cyclic manner. In this way, our system will sent every
five seconds two messages in order to change the junction
signalisation. In figure 18, we describe the worst case
operating mode.

G. Obtained results

In our adopted modeling approach, we have designed
two test cases (random test and worst test). These test
scenarios allow us to study the designed model according
to the requirement system. Besides, the comparison of
the obtained results related to each test scenario allows
us to understand the relation between each parameter
of the designed system. Moreover, these test scenarios
aren’t realist because circulation intensity in any junction
changes according to time. Consequently, the obtained
results don’t reflect the real system lifetime.

On the other hand, these test cases provide pertinent
elements to study the WSN application. Furthermore, if
these test cases don’t allow a realistic estimation of a
system’s lifetime, we can deduce this property from the
number of exchanged messages between the controller and
sensor nodes placed on each junction lane. However, we
must mention that this problem is related to the chosen
case study.

1) Random test results: To execute the modeled system,
we must choose, firstly, the nature of the phenomena. For
that, we have decide to execute our system with random
data (random tests). In this case, the number of vehicles on
each lane will be randomly generated every five seconds.

After these steps, we specified simulation time which
must be greater than the WSN desired lifetime in order to
analyze all the critical durations of time (minimal WSN
lifetime). However, we observed in graph 19 that the
requirement ”reqId10Flag” which informs that the signal
lights in the intersection roads are different is maintained.
Otherwise, after ”19.22” hours of the simulation, the

Figure 19. Requirements tracing

Figure 20. Energy consmuption of sensor nodes

Figure 21. Sensor node energy consumption

requirement that expresses the WSN desired lifetime is
violated.

To investigate these results, we can visualize the overall
WSN energy consumption in figure 20 and the detailed
energy consumption for each sensor node. Figure 21
illustrates the energy consumption of sensor node number
one (01). We remark that the transmitter consumes more
energy relative to the receiver and this difference is due to
amplification. The processor’s energy consumption is very
small compared to the energy consumed by the transmitter
and the receiver.

In addition, we can also see the number of messages
exchanged between the controller and sensor nodes. Figure



Figure 22. The number of messages sent by the controller and received
by the sensor nodes

Figure 23. The number of messages sent by the sensor nodes and
received by the controller

22 illustrates the messages which are sent by the controller
and received by the sensor nodes. Figure 23 shows the
messages received by the controller which are sent from
the sensor nodes.

2) Comparison between random and worst test results:
In this section, we establish a comparative table of the
obtained results after execution of the studied case with
the both test scenarios (random and worst tests). The
main objective of this analysis is to deduce the relation
between system parameters. According to table II, we
remark that the safety property (reqId10Flag) is preserved.
The lifetime property (reqId8Flag), which defines the min-
imum lifetime required, is violated. We observe that the
battery energy is consumed more rapidly when applying
the worst tests to execute the designed system. We explain
this observation by the important number of exchanged
messages between controller and sensor nodes, placed on
each junction lane, related to the execution of the system
with the worst test scenario. Moreover, we deduce that the
energy consumption increases according to the exchanged
number of messages between controller and sensor nodes.
Consequently, the global lifetime of the system decreases
regarding to the rise of the exchanged number of messages
between the system’s parts.

V. CONCLUSION AND FUTURE WORKS

This paper proposes an approach to specify and verify
the WSN properties using the MDA standard. It combines
the benefits of the SysML and the Modelica languages. In
the first step, we propose rules to transform the SysML
model to the Modelica model taking into account the

Table II
COMPARISON OF OBTAINED RESULTS FOR EACH TESTS SCENARIOS

(RANDOM AND WORST)

Properties Random
tests

Worst tests

Safety property (reqId10Flag) Preserved Preserved
Lifetime property (reqId8Flag) Violated (af-

ter 19 h. and
22 m.)

Violated (af-
ter 11 h. and
11 m.)

Controller sending messages 32000 msg 175000 msg
Sensor node receiving messages 32000 msg 175000 msg
Controller receiving messages 160000 msg 87600 msg
Sensor node sending messages 40000 msg 21900 msg

static diagrams, dynamic diagrams and the requirement
diagrams of the SysML. After that, we have done virtual
verification and requirement tracing. These operations are
allowed by the mapping between the SysML requirements
and the Modelica properties (constraints). On the other
hand, we promoted the reusability of modeled components
and we also facilitated the modeling task by reducing the
design time, the coding time, the maintenance time and
decreasing their relative costs.

We plan in our future work to introduce sequence
diagrams and activity diagrams in the action descriptions
of the state machine diagrams. The purpose of this step is
to provide opportunities for designers who do not master
the Modelica programming to work with our Framework.
The correctness of the transformation should be validated
by unit testing and/or formal proofs.

ACKNOWLEDGMENT

We would like to acknowledge the support of the Re-
gional Council of Franche-Comté with the SyVad2 project.

REFERENCES

[1] N. Belloir, J.-M. Bruel, N. Hoang, and C. Pham, Utilisation
de SysML pour la modélisation des réseaux de capteurs sans
fil, Conférence sur les Langages et Modèles à Objets (LMO),
Montréal, Canada, 03/03/2008-07/03/2008, pages 171–186,
http://www.cepadues.com/, mars 2008.

[2] K. Klues, G. Hackmann, O. Chipara, and C. Lu, A
component-based architecture for power-efficient media ac-
cess control in wireless sensor networks, Proceedings of the
5th international conference on Embedded networked sensor
systems, SenSys ’07, pages 59–72, New York, NY, USA,
2007.

[3] C. T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli,
D. Culler, S. Shenker, and I. Stoica, A modular network layer
for sensornets, Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation - Volume
7, OSDI ’06, pages 18–18, Berkeley, CA, USA, 2006.

[4] A. M. I. Khemapech and I. Duncan, Simulating wireless sen-
sor networks, Technical report, School of Computer Science,
University of St Andrews, 2005.

[5] E. L. E. Cheong and Y. Zhao Joint modeling and design
of wireless networks and sensor node software, Technical
report, Univ. of California, Berkeley, 2006.

[6] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago,
and S. Olivieri, A framework for modeling, simulation and
automatic code generation of sensor network application,
SECON, pages 515–522. IEEE, 2008.

2(http://syvad.univ-fcomte.fr)



[7] D. Riley, E. Eyisi, J. Bai, X. Koutsoukos, Y. Xue, and
J. Sztipanovits, Networked control system wind tunnel (nc-
swt): an evaluation tool for networked multi-agent systems,
Proceedings of the 4th International ICST Conference on
Simulation Tools and Techniques, pages 9–18, 2011.

[8] F. o. I. Mauro Prevostini, Elena Zamsa ALaRI, Sysml profile
for soc design and systemc transformation, Technical report,
University of Lugano, 2007.

[9] J. A. S. Villa, D. Serna, Systemc code generation from uml
for wireless sensor networks design, International conference
on modeling, simulation and visualization methods, MSV
’11, pages 53–60, 2011.

[10] F. Losilla, C. Vicente-Chicote, B. Álvarez, A. Iborra, and
P. Sánchez, Wireless Sensor Network Application Develop-
ment: An Architecture-Centric MDE Approach, F. Oquendo,
editor, ECSA, volume 4758 of Lecture Notes in Computer
Science, pages 179–194. Springer, 2007.

[11] P. Boonma and J. Suzuki, Model-driven performance engi-
neering for wireless sensor networks with feature modeling
and event calculus, Proceedings of the 3rd workshop on
Biologically inspired algorithms for distributed systems,
BADS ’11, pages 17–24, New York, NY, USA, 2011.

[12] L. SAMPER, Modélisations et Analyses de Réseaux de
capteurs, PhD thesis, Institut national polytechnique de
Grenoble - France Télécom Rech. et Dev. / VERIMAG,
2008.

[13] Ahmed Hammad, Hassan Mountassir, and Samir Chouali,
Combining SysML and Modelica to Verify the Wireless Sen-
sor Networks Energy Consumption, MODELSWARD 2013,
1st Int. Conf. on Model-Driven Engineering and Software
Development, Barcelona, Spain, pages 198–201, February
2013.

[14] M. N. Halgamuge, M. Zukerman, K. Ramamohanarao,
and H. L. Vu, An estimation of sensor energy consump-
tion, Progress In Electromagnetics Research B (PIERB),
(12):259–295, 2009.

[15] H. Lundvall, P. Bunus, and P. Fritzson, Towards automatic
generation of model checkable code from modelica, SIMS
2004, the 45th Conference on Simulation and Modelling,
September 2004.

[16] P. Fritzson and P. Bunus, Modelica general object-oriented
language for continuous and discrete-event system modeling
and simulation, Simulation Symposium, 2002.

[17] W. Schamai, P. Helle, P. Fritzson, and C. J. J. Paredis,
Virtual verification of system designs against system require-
ments, Proceedings of the 2010 international conference on
Models in software engineering, MODELS’10, pages 75–89,
Berlin, Heidelberg, 2011.

[18] C. J. J. Paredis and T. Johnson, Using omg’s sysml to
support simulation, Proceedings of the 40th Conference on
Winter Simulation, WSC ’08, pages 2350–2352. Winter
Simulation Conference, 2008.

[19] R. C. Roland Renier, De sysml modelica : aide la formali-
sation de modèles de simulation en conception préliminaire,
12me Colloque National AIP PRIMECA, 2011.

[20] W. Schamai, P. Fritzson, C. J. Paredis, and A. Pop, Towards
unified system modeling and simulation with modelicaml:
Modeling of executable behavior using graphical notations,
Proc. 7th Modelica Conf., Sep. 2009.

[21] P. Vasaiely, Interactive simulation of sysml models using
modelica, Master’s thesis, Hamburg University of Applied
Sciences, 2009.


