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Abstract—Multimedia traffic is constantly increasing and will
soon dominate traffic flows in radio networks. The Multimedia
Broadcast Multicast Service (MBMS) system provides efficient
mechanisms for multimedia multicast services in mobile net-
works. We develop a flexible model to perform dynamic radio
resource allocation for MBMS service by using metaheuristics
approach. We conduct fitness landscape analysis to study the
characteristics of the proposed problem, which helps us to select
appropriate search strategy. Simulation results show thatthe
proposed algorithm provides better performance than existing
algorithms.

Index Terms—modeling; fitness landscape; multimedia multi-
cast; radio resource management

I. I NTRODUCTION

The MBMS system [6] specified by the 3GPP is considered
as a substantial and efficient platform for multicast service over
cellular network. The MBMS service over UMTS Terrestrial
Radio Access Network (UTRAN) interfaces could be carried
by PTM and PTP mode. In PTM mode, service is carried by a
forward access channel (FACH) covering the whole cell. Each
FACH needs one channel code serving large amount of users,
but may waste power when there is small number of users
or users are very close to Node B [7]. The PTP mode uses
the dedicated channel (DCH) or shared channel (HS-DSCH).
Each DCH needs one channel code serving one dedicated user
and the shared channel occupies up to 15 channel codes for
users. PTP mode controls link quality better than PTM but
the served user number is limited due to power and channel
code restriction [5]. In UTRAN where the radio resources
(power and channelization codes) are limited, the selection of
transmission mode is crucial to the allocation efficiency. The
related work on this topic are:

• MBMS Power Counting (MPC) that defined by 3GPP
[5] is to minimize power requirement. Before data trans-
fer, when the estimated power consumption of MBMS
service in a cell is under an operator-defined threshold,
network will establish PTP connections. The switch from
PTP to PTM occurs when power exceeds the threshold,
and vice versa. MPC has limited flexibility because it
only considers delivering service for all users with full
service quality.

• Dual transmission mode(DTM) allows the co-existing
usage of PTP and PTM mode for one MBMS service

[8]. For users with better link quality, FACH coverage is
adapted by changing transmission power, meanwhile the
DCH connections are released or established for the users
near the cell edge. DTM enriches the candidate transmis-
sion modes for MBMS, however, simulation concluded
that DTM is only beneficial for up to 5 users [2]. Hence
it is rather limited by only applying FACH and DCH for
co-existing of transmission modes.

• Scalable FACH Transmission(S-FACH) is a potential
power saving technology for multicast [9]. With scalable
video coding, service can be divided into single layer
(SL) and multiple layer (ML) transmission schemes. ML
service can split into several streams with lower bit rate
hence with lower QoS requirement compared with a
non-scalable stream. (e.g. 256 kbps service has two 128
kbps flows). S-FACH transmits flows through common
channels with predefined coverage [9]. the basic flow to
all subscribers (95% geographical coverage) to guarantee
service reception, the advanced flow is sent to users
within 50% coverage. The reception of advanced layers
enhances service quality on top of basic layer. Basic
flow’s transmission power is reduced with lower bit rate,
and so do the advanced flows with smaller coverages.

Although MBMS RRM in 3G network has been extensively
studied, several aspects are still not well balanced with existing
approaches. especially when transmission power or channel
codes are saturated. For example, should we transmit service
through basic quality with full coverage or through advanced
quality with smaller coverage? Should we select transmission
mode based on less power consumption or less occupation of
channel codes? To address these demands, we propose a Flex-
ible Radio Resource Management Model (F2R2M) combining
transmission mode selection and multimedia scalability. This
model could answer these questions mentioned above by using
metaheuristics approach. Two neighborhood operators and
lexicographic-order criteria are proposed to evaluate thequal-
ity of resources allocation in terms of service satisfaction and
resource consumption. Moreover, to understand the structure
of solution space and the neighborhood space to characterize
the given problem, we conducted the fitness landscape analysis
of two neighborhood functions for different scenarios. Then



the operator selection are discussed and proved with local
search.

This paper is structured as follows. The proposed model
is formulated in section II. Fitness landscape analysis of the
model are discussed in section III. The simulation result is
showed in section IV and section V is the conclusion and
perspective.

II. M ODEL DESCRIPTION

This section gives the description of the proposed model,
which allows combinational allocation of transport channel for
scalable encoded multimedia multicast service.

A. Phases of Model

As shown in Figure 1, F2R2M is implemented in each
RNC, performing radio resource allocation for simultaneous
multicast service through three phases.

Fig. 1. Three phases of F2R2M

In the first phase (collect phase), RNC periodically collects
service and user information. Any change of MBMS session
state (e.g. user mobility, new MBMS session) will trigger the
second phase (estimation phase) to search for proper allocation
scheme. In the begin of MBMS data transfer, the third phase
establishes the planned transport channel for selected users
according to the solution obtained in the previous phase.

In the collect phase, RNC receives following variables as
the input of model:

• T (c) = {t1, ...tNt}, a set of users located in cellc.
• C(c) = {(x1, y1), ..., (xNt, yNt)}, the instantaneous ge-

ometry coordinates ofT (c). With C(c), the distance of
userti from Node B (dti) is obtained.

• S(c) = {s1, ..., sNs}, A set of services is going to be
transmitted to multicast groups withinc.

• F (si) = {fsi,1, fsi,2[fsi,3]} or {fsi,0}, the flows (and
their bandwidth) of servicesi. fsi,0 indicatessi is SL
transmission, andfsi,j , (j > 0) is the sublayer of ML
scheme service.

• Dest(si) = {tn, tm, ...}, si ∈ S(c), the multicast group
of si is constructed by users inT (c).

F2R2M allows the combination of PTM and PTP modes for
each flow, hence the possible assignment of transport channel
include:

• pure PTM mode: only FACH,
• pure PTP mode: DCH or HS-DSCH,
• mix of PTP mode: DCH and HS-DSCH transfer the same

flow content to different users,
• mix of PTP and PTM mode: co-existing of FACH, DCH

or/and HS-DSCH.
Therefore, for each flowfs,j of services, we partition the

multicast groupDest(s) into four disjointed sets:
• UEfach(fs,j): users served through a FACH,
• UEdch(fs,j): users transfered through DCHs,
• UEhs(fs,j): users sharing HS-DSCH,
• UEnoch(fs,j): users not served.
Rt(fs,j) is defined to represent the users receivingfs,j :

Rt(fs,j) = UEfach(fs,j) ∪ UEdch(fs,j) ∪ UEhs(fs,j). Then the
decision of user sets follow two principles:

1) Rt(fs,j) = Dest(s),j = 0, 1,
2) Rt(fs,j) ⊆ Rt(fs,j−1), j ≥ 2.
Principle 1 is to guarantee service coverage, which means

all users in multicast group should be selected to receivef0
or f1, unless all channel codes are fully occupied. Principle 2
restricts the advanced flow is only sent to users which also
receive lower flow, that is to avoid the redundant content
transfer to the same user.

Then the partition of users forfs,j should be in accord with
channel characteristics:

1) dti ≤ dthr, ∀ti ∈ UEfach,
2) dtj > dthr, ∀tj ∈ UEdch ∪UEhs ∪ UEnoch,
3) UEchm ∩UEchn = φ, chm, chn ∈ {fach, dch, hs, noch}.
FACH is a common channel and can be listened by all

users within its coverage, constraint 1 is to guarantee that
UEfach(fs,j) includes the nearest users in multicast group, with
distance from Node B under a threshold,dthr is determined
during optimization procedure. In constraint 2, the users in
multicast group, farther than the FACH coverage, are assigned
to HS-DSCH or DCH. When there is no available channel
code for a given users, this user is switched toUEnoch(fs,j).
Constraint 3 guarantees that user sets for each flow does not
overlap. Since sending the same flow to user through more
than one channel will waste resource.

Consequently, according to UEtype(fs,j) and requested
flows bandwidth, available channel codes(s) is associated with
a nonempty user set. This allocation procedure corresponding
to the orthogonal principle of OVSF codes [1], if one code on
the OVSF tree is used, all codes underneath it are no longer
usable.

When user and channel code allocation are determined,
the power consumption of transport channels is implicitly
determined. As shown in Figure 2, the downlink transmission
power of FACH depends on its cell coverage [3], i.e.the user
distribution inUE(fach, fs,j).

The total transmission power of DCH forn users in a cell
[13] is calculated by Equation 1:

PDCHs =

Pp +
∑n

i=1 Lp,i ·
Pn+xi
W

(Eb/No)Rb,i
+p

1−
∑n

i=1
p

(Eb/No)Rb,i
+ p

(1)
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Fig. 2. Power of FACH [3]

wherePp is the power for common control channel,Pn is
the background noise,Lp,i is path loss ofith user,W is
the bandwidth in UMTS,Rb,i is user transmit rate,Eb/No

is the target experienced signal quality of user,p the orthog-
onality factor (p = 0 represents perfect orthogonality).xi is
the intercell interference observed byith user, expressed by
xi =

∑M
j=1

PTj

Lij
, PTj is the transmission power in neighboring

cell cj (j = 1...M ), Lij is the path loss fromith user tojth
cell.

The transmit power to guarantee a required HS-DSCH
throughput [12] is expressed as:

PHS−DSCH ≥ SINR× [p−G−1]
Pown

SF16
(2)

in which Pown is the own cell interference experienced by
user,G is the geometry factor defined byG = Pown

Pother+Pnoise
,

related with the user position. For a user at the cell edge,
The interference from the neighboring cells for is higher than
the interference at its own cell, thusG is expressed by a
lower value. In the macrocell (hexagonal layout with 1000 m
base station spacing), users within 80% coverage experience a
geometry factor of−2.5dB or better, within 95% a geometry
factor at least−5.2dB [10]. With the target BLER and the
channel quality information (CQI) from users, we obtain the
Signal to Interference Noise Ratio (SINR) by applying the
CQI and target BLER (i.e. 1%) from the analytic formulation
driven by link-level simulation results in [11]. The CQI is
obtained through the target bandwidth and mapping table of
MAC-hs Bit Rates versus CQI [4]. ThenPhs is calculated by
applying SINR andG into equationPHS−DSCH.

B. Fitness Values and Evaluation Criteria

F2R2M aims at finding solution to guarantee the QoS
requirement in terms of the bandwidth of allocated channels,
and minimize the transmission power while avoiding power
saturation. Fitness value of solution is defined to reflect
these aspects. The first objective is to minimize the loss of
throughput in one cell:

Th(c) =
∑

si∈S(c)

∑

fj∈F (si)

∑

tu∈Dest(si)

max [−∆j,u, 0] (3)

subject to:SFm(fsi,j) ⊥ SFn(fsi,j), fsi,j ∈ F (si)

Constraint guarantees the OVSF code orthogonality: chan-
nels’ codes are chosen to be orthogonal to each other in
the same cell.∆j,u in Equation 3 is the difference between
allocated channel bit rate (determined by its OVSF code(s)
[1]) and the bandwidth of requested service(s). For example,
user tu receivesfs,j (64 kbps) through DCH channel with
bandwidth 32 kbps (SF = 64). Then−∆j,u is:−(32−64) = 32
kbps.

The second optimization objective is to minimize the power
consumption of cell:

Po(c) =
∑

si∈S(c)

∑

fj∈F (si)

∑

chl

P (fsi,j , chl), chl ∈ {fach, dch, hs}

meanwhile,Po(c) ≤ PMBMS budget(c), which enforces the
total power consumption of one cell to simultaneous MBMS
services does not beyond its maximum transmission power.

With the two-dimensional fitness value, the comparison of
a new solutionx′ and current solutionx is conducted in
lexicographic order:x′ is evaluated as better solution when
Th(x′) = Th(x) andPo(x′) ≤ Po(x), or Th(x′) < Th(x).

C. Solution Representations and Distance Measurement

To conduct the analysis of relationship between solutions
and landscape, The distance metrics for solutions need to be
developed. We propose two mathematic representations for
solution and corresponding measurement method to represent
the distance between two feasible solutions.

1) Representation A: In the first representation, the solution
of one cell is represented as a matrix ofNt rows andNf
columns:

x(c) =














f(s1, 1) f(s1, 2) ... f(sNs, 0)

ch1,1 ch1,2 ... ch1,Nf

... ... ... ...

chi,1 chi,2 ... chi,Nf

chj,1 chj,2 ... chj,Nf

... . . . ... ...

chNt,1 chNt,2 ... chNt,Nf














,

d(ti) ≤ d(tj), i < j; chi,j ∈ {−1, 0, 1, 2, 3}

Nf is the number of flows of all services in cell.Nt is the
number of all users in cell. Element in theith row jth column
indicates the channel allocation of userti for flow fj. Values
0, 1, 2, 3 represent user is allocated to UE(noch,fach,dch,hs),
-1 means the user does not belong to the multicast group.

Hamming distance is a well-known distance in combina-
tional optimization, it corresponds to the number of different
bits between two solutions. For solution representation A,we
use hamming distancedHam to measure the distance between
two feasible solutions represented by method A.

2) Representation B: In the second mathematical represen-
tation, the solution of flowfs,j is a vector of terminals within
Dist(s):

x(fs,j) = (0, 1, 2, . . . ,
︸ ︷︷ ︸

UE(fach)

0, i, . . . ,
︸ ︷︷ ︸

UE(dch)

0, j, . . . ,
︸ ︷︷ ︸

UE(hs)

0, k, . . . , tNt
︸ ︷︷ ︸

UE(noch)

)



The four user sets are separated by0 and listed in fixed order.
In each set itself, users are ordered with increased distance
from Node B. Then the solution representation B of cellc is
a vector consisting solutions of transmitted flows:

x(c) = {x(s1), . . . , x(sNs)}

= {. . . , x(fsi,0), [x(fsi,1), x(fsi,2), . . . ], . . . , }, ∀si ∈ S(c)

3) Comparative Distance: For solution representation B,
we designed the distance with structural comparisons, named
comparative distancedcom. Assume we have two solutions
of cell based on representation B:xB(c) andx′

B(c). For the
solution of same flow inxB(c) and x′

B(c), we count the
number of users that are allocated to different channels, then
the number of counted users is this marked asdCom.

The comparative algorithm measures the exact minimum
number of applications based on insert operator. It could also
be utilized to measure the approximate distance of solutions
generated by hybrid-moves operator.dCom is essential the
same value asdHam, the latter compares the different allocated
values for all users in cell. Solution representation B as well
as the comparative distance only include the users within
multicast group for each flow, hence requiring less memory
cost, we use the solution representation B and the comparative
distance for following analysis.

D. Neighborhood Operators

At each iteration, a move is made to transform each solution
into a neighbor solution. Based on the channel characteristic
and solution representation, we defined two neighborhood
operators.

1) Hybrid-moves operator: The “Hybrid-moves” operator
δH is implemented in three steps: 1) choose one channelcho,
with non-empty user allocation,UEcho is a “output” set; 2)
select another user setUEchi as an “input” set(chi 6= cho);
3) randomly select usertk from UEcho , δH moves this single
tk or a block of users includingtk from UEcho to UEchi .
In the third step, the moved users depends on the chosenchi

andcho. For example, once we decide to movetk from UEhs

to UEfach, we will enlarge the FACH coverage totk, in that
case, all the users that nearer thantk can now hear from FACH,
thus, no matter what user sets they are currently allocated,they
need to stay or be inserted in FACH user set. Therefore, once
we choose a usertk to be moved to FACH set, we need to
first check the user distributions served by the other channels,
and pick out the users within the enlarged FACH coverage
to UEfach. By contraries, once we decide to move users out
of UEfach, i.e. reduce the FACH coverage, in that case, all
users farther thantk within UEfach should be picked out and
moved to the chosenchi.

In the following example, two steps of hybrid-moves oper-
ator are conducted, movingxh1 to xh2 then toxh3:

xh1 :(0 1 2 12 0 4 5 7 8 0 6 9 0 10 11)

xh2 :(0 1 0 2 12 4 5 7 8 0 6 9 0 10 11)

xh3 :(0 1 0 2 12 4 5 6 7 8 0 9 0 10 11)

• xh1 → xh2: cho = FACH, chi = DCH, tk = t2. FACH
coverage is reduced. Botht2 andt12 are moved to DCH
user set, becauset12 is farther thant2.

• xh2 → xh3: cho = HS-DSCH,chi = DCH, tk = t6.

2) Insert Operator: The insert operatorδI is a typical case
of δH , it moves only one user for each operator application.
When FACH is chosen aschi or cho, tk is determinately
selected: the nearest user withinUEhs ∪ UEdch ∪ UEnoch,
or the farthest user withinUEfach.

Considerxh1 andxh3 in previous example, three steps of
insert operator are needed:

xi1(xh1) :(0 1 2 12 0 4 5 7 8 0 6 9 0 10 11)

xi2 :(0 1 2 0 12 4 5 7 8 0 6 9 0 10 11)

xi3(xh2) :(0 1 0 2 12 4 5 7 8 0 6
:

9 0 10 11)

xi4(xh3) :(0 1 0 2 12 4 5 6
:

7 8 0 9 0 10 11)

• xi1 → xi2: cho = FACH, chi = DCH, the farthest user
t12 in UEfach is moved toUEdch.

• xi2 → xi3: cho = FACH, chi = DCH, t2 is determined.
• xi3 → xi4: cho = HS-DSCH,chi = DCH, t6 is selected.

III. F ITNESSLANDSCAPE ANALYSIS BASED ON MODEL

Fitness landscape was originally proposed in a study of
evolutionary theory [15]. This notion was then applied to
characterize a combinatorial optimization problem [14]. To
study the behavior of the flexible MBMS RRM problem, we
implemented fitness landscape analysis based on the proposed
model.

In order to get insight in the given problem, we designed six
problem instances with different service parameter setting and
user distribution as in Figure 3. The simulation parametersare
listed in Table I. Consider one cell in a hexagonal structure
of 19 cells, only multicast services are transmitted in thiscell,
then the maximum power for MBMS in one cell is 19 w (total
transmission power minus the power for common channel).

TABLE I
SYSTEM SIMULATION PARAMETERS

Parameters Value Parameters Value

Node B transmit power 43 dBm Background noise -100 dBm
Power of neighbor cell 37 dBm Propagation models Cost 231
Common channel power 30 dBm COI’s CQI 1-6

Three couples of instances (e.g.3s-80u-snn and3s-80u-ssn)
have the same multicast groups and traffic load, but service
s2 is transmitted as one 128 kbps flow and two 64 kbps flows
respectively.

In F2R2M, two fitness landscapesLhy andLin are defined
by neighborhood functionsδH and δI . In this paper, we
focus on the following properties of a fitness landscape: 1)
the distribution of feasible solutions within search space; 2)
the distribution of fitness space; and 3) the links between
distance and fitnesses of solutions. To perform these analysis,
two populations of solutionsSini andSlo are required.Sini
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Fig. 3. User Distribution of Problem Instances

is composed of 600 initial solutions randomly chosen from
solution space.Slo is the population of local optima solutions
found by applying hill climbing (HC) toSini. From solution
x, HC evaluates all the feasible neighbors ofx and replaces
x by the neighbor which has the best fitness. HC stops when
all neighbors are worse thanx.

A. Analysis of Search Space

To study the distribution of feasible solutions in each
space, we calculated two kinds of distance:dini and dlo
are the distances among any two solutions inSini and Slo,
respectively. Tables II(b) and II(a) present the minimum, the
maximum and the median values (first and third quartile are
also given) of these distances.

TABLE II
ANALYSIS OF SEARCH SPACE: SOLUTION DISTANCE

(a) Distance between solutions ofLin

Scen. dini in Sini,in dlo in Slo,in

Min MedQ1,Q3 Max Min MedQ1,Q3 Max

s1 15 6254,72 109 17 6254,71 108
s2 20 6455,74 114 20 6555,75 117
s3 20 6455,73 116 20 6455,74 116
s4 26 6656,76 148 20 6656,76 148
s5 10 5344,63 92 12 5445,63 99
s6 21 6455,73 130 19 6555,76 180

(b) Distance between solutions ofLhy

Scen.
dini in Slo,hy dlo in Slo,hy

Min MedQ1,Q3 Max Min MedQ1,Q3 Max

s1 19 6253,71 108 0 3423,45 109
s2 23 6454,73 121 0 3322,46 127
s3 21 6554,73 115 0 4330,57 138
s4 20 6455,73 116 0 3524,49 156
s5 24 5564,73 114 0 6339,86 157
s6 21 6455,73 129 0 3823,56 194

The statistics ofdini shows that the random initial solutions
for both search spaces are homogeneous. But the space of
local optima are different for two landscapes. InSlo,hy, the
minimum value of 0 indicates that there are same local optima
found from different initial solutions. While inSlo,in, no local
optima solution is the same. The quartiles (median, Q1 and
Q3) show the space ofSlo,hy is more concentrated thanSlo,in.
Therefore, from the population of local optima,Lhy appears
closer thanLin.

B. Analysis of Fitness Space

The fitness value represents the quality of a solution. Fig-
ure 4 shows the distribution of fitness values ofSini andSlo

for 3s-100u-snn.
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Fig. 4. Comparison of two fitness spaces for 3s-100u-snn

We can observe that the fitness values ofSini is well
diversified, according to the similarity of the statistics in Sini

for all scenarios (Table II), we verify that the random initial
populations are normally distributed. Then, all the fitnessof
local optima for both operators are better than the associated
random initial solutions.

Moreover, in the first and third subfigures of Figure 4,
the fitness of local optima for two operators are not flat,
actually the quality ofSlo,hy is better than that ofSlo,in

(Thhy < Thin), the same situation for the other scenarios
are shown in Table III, which shows the statistics of solution
fitness of local optima in two landscapes, hence gives global
information about the quality ofSlo determined by neighbor-
hood operators.δI gets many local optima with bad qualities
that may easily block the search. Therefore, the probability to
obtain the best solution by usingδH is greater.

C. Analysis of Links between Distance and Fitness

Step length is the number of moves from an initial solution
to its associated local optima. In F2R2M, the step length is
defined as the number of implemented operator applications
by using hill climbing method.

Table IV presents the statistics of the step lengths to find
local optima throughδH andδI . Generally,δI moves shorter
distance thanδH , which may makesδI walks nearby the initial
solution without exploring to much better solution. Therefore,
Lin seems “shallower” thanLhy, which explains that in Table



TABLE III
ANALYSIS OF FITNESS SPACE

(a) Fitness values ofSlo,in

Scenarios Min MedQ1,Q3 Max Mean

s1 Th(c) % 4.5 57.552.25,62 69 56.21
Po(c) w 1.5 6.535.03,8.33 18.54 6.44

s2 Th(c) % 0 58.7554,62 69.5 10.74
Po(c) w 1.69 6.244.69,7.93 16.3 6.44

s3 Th(c) % 37 87.582,92 99 86.61
Po(c) w 2.10 6.564.96,8.21 18.96 6.74

s4 Th(c) % 20.5 8883.5,91.5 99 86.34
Po(c) w 2.1 6.564.96,8.21 18.96 6.75

s5
Th(c) % 20.5 8883.5,91.5 99 86.34
Po(c) w 2.1 6.564.96,8.21 18.96 6.75

s6
Th(c) % 15.88 75.8872.64,77.94 82.35 74.4
Po(c) w 1.37 65.364.82,8.24 18.95 6.65

(b) Fitness values ofSlo,hy

Scenarios Min MedQ1,Q3 Max Mean

s1
Th(c) % 0 00,0 58 1.7
Po(c) w 7.08 14.8912.95,18.18 19.0 15.28

s2
Th(c) % 0 00,0 62.5 0.94
Po(c) w 5.81 14.6314.36,15.02 16.58 14.57

s3 Th(c) % 0 40,15 91.5 9.43
Po(c) w 5.543 17.2915.92,18.79 18.99 17.2

s4 Th(c) % 0 10,2 93.5 3.8
Po(c) w 6.38 17.5717.22,17.63 19.0 17.2

s5 Th(c) % 0 10,2 93.5 3.8
Po(c) w 6.38 17.5717.22,17.63 19.0 17.2

s6 Th(c) % 1.76 4.124.12,5.88 78.24 7.29
Po(c) w 5.67 18.3818.25,18.41 18.99 18.11

TABLE IV
STEP LENGTHS OF TWO LANDSCAPES

Scen.
step length inLin step length inLhy

Min Med Max Mean Min Med Max Mean

s1 1 7 80 9.70 1 18 57 25.97
s2 1 7.5 126 10.74 1 21 62 26.93
s3 1 6 85 8.78 2 43 100 42.69
s4 1 7 127 11.1 1 61 114 67.61
s5 1 7 126 8.94 1 19.5 93 99.88
s6 1 11 181 12.62 5 105 166 99.88

II(a) the search space ofSlo,in does not concentrate theSini,in.
Besides, local search withδI may be faster, since the descent
is deeper on landscapeLhy.

To investigate how the population of local optima is dis-
tributed in the search space relative to the optimum solution,
we present fitness distance scatter plots to of all scenariosin
Figure 5 and Figure 6.

These plots provide the fitness between local optima and
the best found solution against their distances. The plots
determines how closely fitness and distance to the nearest
optimum in search space are related. When the distance to
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Fig. 5. Fitness-distance plots with local optima

the best found solution becomes smaller, if fitness difference
is decreased, then search procedure is expected to be easy to
explored.

As the plots in Figure 5 reveal, all local optima are concen-
trated on a small region of the search space. The local optima
found byδH are more closer to the found best solution than the
local optima found byδI . When points located in the different
distance from the best found solution, their fitness difference
are varied, that means both search space are rugged. But in
the search space ofδI , the fitness and the distance to the best
found solution of the local optima is less correlated than in
the search space ofδH . The same situation appears for the
other instances (Figure 6), hence the problem difficulty with
Lin is harder thanLhy. Meanwhile, scenarios 1, 2 (6(a) and
6(b)) have higher correlation than in scenarios 5 and 6, that
indicates the difficulty of search space is increased with the
increasing scenario complexity.

The study of fitness landscape revealed that local optima
in Lhy are closer to each other than inLin, δH can explore
larger neighborhood space to achieve better solution thanδI .
ThereforLhy outperformsLin.



IV. COMPARISON RESULTS

To prove the influence of landscape on optimization perfor-
mance, 500 trails of greedy local search is implemented for
two neighborhood operators on F2R2M.

TABLE V
COMPARISON RESULTS WITH CONVENTIONAL APPROACHES

MPC DTM S-FACH S-MPC F2R2M-in F2R2M-hy

s1
0%
27.19

0%
30.45

65% 28% 4.5% 0%
10.23 21.51 18.5 10.19

s2
47% 16% 0% 0%
15.4 18.4 15.58 13.06

s3
0%
32.47

0%
37.68

25.4% 44.6% 25.4% 0%
26.95 21.51 16.9 15.0

s4
36.2% 47.4% 15.4% 0%
22.63 18.37 16.5 14.4

s5
0%
37.73

0%
37.69

59.41% 0% 36.47% 1.76%
5.95 31.1 18.82 18.39

s6
51.18% 0% 15.9% 1.76%
15.9 31.79 18.12 17.5

two-dimensional cost: lost throughput in percentage, power consumption in watts

The found best solutions of F2R2M with greedy local search
are shown in Table V. Competing allocation approaches are
implemented on the same platform. To prove the advantage of
layer based channel allocation, we applied MPC for each flow
(S-MPC). We can observe that when services are transmitted in
non-scalable mode, neither MPC nor DTM can obtain feasible
solutions. S-FACH solves the power saturation problem of
MPC and DTM for three scenarios. It reduces coverage for
advanced flows hence consuming less power and provides
service coverage (all service can be transmitted). However,
in S-FACH, the trade-off between service quality and power
is not efficient with fixed coverages. When most users are
far from Node B, (e.g.3s-80u) S-FACH achieves power
saturation.

The results of S-MPC reveal that scalable transmission
costs less power than non-scalable scheme thus has higher
possibility to obtain feasible solution. From the results of S-
MPC for 2s-50u-sn/ss or 3s-80u-snn/ssn, with the same user
distribution and total traffic load, the scalable transmission of
s2 consumes less power. However, for scenarios having more
users (3s-100u), S-MPC increases the possibility of power
saturation because it allocates only pure transmission mode
for each flow.

The F2R2M with local search outperforms the other algo-
rithms. For the scenario that could be allocate radio resources
properly by the conventional algorithms, F2R2M avoids un-
needed QoS decrease. Comparing with existing algorithms,
F2R2M-in with greedy local search can find feasible solutions
with lessTh(c), hence improves the balance between power
and channel codes. However, with increased complexity of
scenario, the quality of its solution is reduced sinceTh(c) is
higher. While F2R2M-hy found the best solution among all
approaches, it always obtain feasible solution with much less
Po(c) and almost achieve 100% bandwidth requirement.

TABLE VI
PERFORMANCE OF LOCAL SEARCH WITHδI AND δH

Scen.
F2R2M-in F2R2M-hy

best mean std. best mena std.

s1
4.5% 56.2% 8.12 0% 1.7% 8.18
18.5 6.4 8.12 10.19 15.28 2.56

s2
0% 57.29% 7.82 0% 0.94% 6.46
15.58 6.44 2.27 13.06 14.57 0.9

s3
25.4% 66.62% 5.53 0% 7.25% 11.77
16.9 6.73 2.29 15 17.12 2.0

s4
15.4% 66.42% 6.73 0% 2.9% 11.26
16.5 6.75 2.45 14.4 17.2 1.23

s5
36.47% 74.98% 4.5337 1.76% 19.57% 12.61
18.82 6.58 2.3244 18.39 18.03 1.5856

s6
15.9% 74.4% 7.13 1.76% 7.29% 11.93
18.12 6.65 2.55 17.5 18.12 1.4

The statistics of fitness values of found solutions are
computed in Table VI, which proves the feasibility of all
solutions obtained with F2R2M.δH can always offer good
enough solutions: higher QoS with less power consumption
than competing approaches. Besides, the performance ofδH
is better thanδI , which proves the discussion in section III that
δH has capacity of “jump” from bad solutions, whileδI can
only stay in basins. In Table VII, the average consuming time
of search procedure for two operators are both acceptable,δH
costs almost double time thanδI , that is becauseδH can move
further thanδI .

TABLE VII
T IME COST (S) OF F2R2MWITH GREEDY LOCAL SEARCH

F2R2M-in F2R2M-hy F2R2M-in F2R2M-hy

s1 0.062 0.160 s2 0.122 0.259
s3 0.18 0.322 s4 0.117 0.279
s5 0.196 0.368 s6 0.313 0.773

V. CONCLUSION AND PERSPECTIVE

In this paper, we present a mathematical model describing
the allocation of radio resource for simultaneous MBMS
services. This model integrates scalable transmissions and
dynamic power setting along with transmit mode selection. We
propose lexicographic order evaluation criteria to guide solu-
tion satisfying two objectives: to achieve the QoS requirement
of multicast service and to minimize the power consumption.

In order to understand the problem behavior differentiated
by the proposed two neighborhood functions, we developed
the mathematic solution representation and the distance mea-
surement between two feasible solutions, based on which, the
fitness landscapes analysis is conducted. The fitness distance
plot shows both search space are rugged, and theδH is more
powerful thanδI in terms of escaping from bad solution.
Following by that, comparison simulations are carried out with
a variety of scenarios. Both operators in our model are capable
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Fig. 6. Fitness-distance plots with local optima

of producing high quality solutions with a preferable balance
between radio resource consumption, service coverage and
service quality. In particular, the hybrid-moves operatoris able
to find near optimum solutions a few percent below the best-
found solutions, and the search procedure is sufficient to find
the sub-optimal solutions of all problem instances.

However, the quality of solutions with F2R2M based on
greedy local search highly depend on the initial solution, in
other word, the greedy local search method does not reach the
best found solution in each trial because the algorithm termi-
nates when it reaches a state where no further improvement
can be found. In the future work, we are interested in applying
effective metaheuristics to our model (e.g. Tabu search) to
obtain solutions with higher stability.
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