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Abstract. This paper introduces two mechanisms for computing over-
approximations of sets of reachable states, with the aim of ensuring
termination of state-space exploration. The first mechanism consists in
over-approximating the automata representing reachable sets by merg-
ing some of their states with respect to simple syntactic criteria, or a
combination of such criteria. The second approximation mechanism con-
sists in manipulating an auxiliary automaton when applying a transducer
representing the transition relation to an automaton encoding the initial
states. In addition, for the second mechanism we propose a new approach
to refine the approximations depending on a property of interest. The
proposals are evaluated on examples of mutual exclusion protocols.

1 Introduction and Problem Statement

Reachability analysis is a challenging issue in formal software verification. Since
the reachability problem is in general undecidable in most formalisms, several
ad-hoc approaches have been developed, such as symbolic reachability analy-
sis using finite representations of infinite sets of states. Regular model checking
(RMC for short) – a symbolic approach using regular sets to represent sets of
states – tackles undecidability in either of two ways: pointing out classes of
regulars sets and relations for which the reachability problem is decidable (see
for instance [21]), or developing semi-algorithmic and/or approximation-based
approaches (see for instance [15,16]) to semi-decide the reachability problem.

In this paper we present new approximation techniques for RMC, with the
aim of providing quite efficient (semi-)algorithms. The first technique consists in
over-approximating the automata representing reachable sets by merging some
of their states with respect to simple syntactic criteria, or a combination of
such criteria (Section 2). The second approximation technique consists in using
an auxiliary automaton when applying a transducer representing the transition
relation to an automaton encoding the initial states (Section 3). Moreover, for the
second technique we develop a new approach to refine the approximations, close
to the well-known CEGAR technique (Section 4). The proposals are evaluated on
examples of mutual exclusion protocols (Section 5). Omitted proofs are available
online1.
1 http://disc.univ-fcomte.fr/~adreyfus/ciaa13/version_longue.pdf
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Related Work. Regular model-checking remains an active research domain in
computer science (see [14] and [4] for a thorough overview). In [23] the authors
propose to use regular sets of strings to represent states of parametrized arrays
of processes, and to represent the effect of performing an action by a predi-
cate transformer (transducer). In this work only transducers representing the
effect of a single application of a transition are considered, and consequently
the reachability analysis does not terminate for a lot of protocols. To bypass this
problem and still reach a fixpoint, the principal methods are acceleration (provid-
ing exact computations) [22,11,15,16,3,8], widening (extrapolating) [11,25,24],
and automata abstraction [10]. Recently, new results in RMC have been ob-
tained for specific protocols (i.e., CLP [19], communicating systems [20], tree
language [1,12], or relational string verification using multi-track automata [26]),
using domain-specific techniques [7]. Our contributions aim at improving the
generic method in [10] by giving means to build over-approximations by merg-
ing abstract states of the system (and not of the transducer, which is never
modified). Unlike [11,10], our proposals do not require the subset-construction,
minimization and determinization of the obtained automaton at each RMC step.

Formal Background. We assume the reader familiar with basic notions of lan-
guage theory. An automaton A on an alphabet Σ is a tuple (Q,Σ,E, I, F ) where
Q is the finite set of states, E ⊆ Q × Σ × Q is the set of transitions, I ⊆ Q is
the set of initial states and F ⊆ Q is the set of final states. We define the size
of A by |A| = |Q| + |E|. An automaton is deterministic [resp. complete] if I
is a singleton and for each (q, a) ∈ Q × Σ there is at most [resp. at least] one
p ∈ Q such that (q, a, p) ∈ E. A path in A is a (possibly empty) finite se-
quence of transitions (p1, a1, q1) . . . (pn, an, qn) such that for each i, qi = pi+1.
The integer n is the length of the path and the word a1 . . . an is its label. A
path is successful if p1 is initial and pn is final. A word w is accepted by A
if w is the label of a successful path. The set of words accepted by A is de-
noted L(A). If A is deterministic and complete, for every state q and every word
w, there exists a unique state of A, denoted q ·A w reachable from q by read-
ing a path labeled by w. If there is no ambiguity on A, it is simply denoted
q · w. By convention, q · ε = {q}. A state q is accessible [resp. co-accessible] if
there exists a path from an initial state to q [resp. if there exists a path from
q to a final state]. An automaton whose states are all both accessible and co-
accessible is called trim. If A is not a trim automaton, removing from A all
states that are not both accessible and co-accessible together with all related
transitions provides an equivalent trim automaton. Let A1 = (Q1, Σ,E1, I1, F1)
and A2 = (Q2, Σ,E2, I2, F2) be two automata over the same alphabet, the prod-
uct of A1 and A2 is the automaton (Q1 × Q2, Σ,E, I1 × I2, F1 × F2), denoted
A1 × A2, where E = {((p1, p2), a, (q1, q2)) | (p1, a, q1) ∈ E1 ∧ (p2, a, q2) ∈ E2}.
By definition, L(A1 × A2) = L(A1) ∩ L(A2). Let Â = (Q̂,Σ, Ê, Î, F̂ ) be the
trim automaton obtained from A, given an equivalence relation ∼⊆ Q × Q,
A/∼ denotes the automaton (Q̂/∼, Σ,E

′, Î/∼, F̂ /∼) where E′ = {(p̃, a, q̃) | ∃p ∈
p̃ and ∃q ∈ q̃ s.t. (p, a, q) ∈ Ê}. One can easily check that L(A) ⊆ L(A/∼).
For instance, given the automata of Fig. 1 and the relation ∼exe whose classes
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Fig. 1. Illustrating examples

are {(1, 4), (2, 4), (1, 3)} and {(2, 3)}, the automaton T (A1)/∼exe
is depicted on

Fig. 1. Two automata A1 = (Q1, Σ,E1, I1, F1) and A2 = (Q2, Σ,E2, I2, F2)
are isomorphic if there exists a one-to-one function f : Q1 → Q2 satisfying
(p, a, q) ∈ E iff ((f(p), a, f(q)) ∈ E, and f(I1) = I2, f(F1) = F2 when lifted
to sets. Informally, two automata are isomorphic if they are equal up to state
names.

Let Σ1 and Σ2 be two alphabets, a transducer on Σ1, Σ2 is an automaton
on Σ1 × Σ2. Each transducer T on Σ1, Σ2 induces a relation RT on Σ∗1 × Σ∗2
defined by: for the ai’s in Σ1 and the bj ’s in Σ2, (a1 . . . an, b1 . . . bm) ∈ RT iff
n = m and the word (a1, b1) . . . (an, bn) is accepted by T . The reflexive transitive
closure of RT is denoted R∗T . Let A = (Q1, Σ,E1, I1, F1) be an automaton on
Σ1, and T = (Q2, Σ1 × Σ2, E2, I2, F2) a transducer on Σ1 × Σ2, we denote
by T (A) the automaton (Q1 × Q2, Σ2, E, I1 × I2, F1 × F2) on Σ2 where E =
{((p1, p2), b, (q1, q2)) | (p1, a, q1) ∈ E1 ∧(p2, (a, b), q2) ∈ E2}. An example is
depicted on Fig. 1. By definition, L(T (A)) is the set of words v satisfying (u, v) ∈
RT for some words u ∈ L(A). If T = (Q2, Σ1×Σ2, E2, I2, F2) is a transducer, we
denote by T −1 the transducer (Q2, Σ2×Σ2, E

′
2, I2, F2) with E′2 = {(p, (a, b), q) |

(p, (b, a), q) ∈ E2}. One can check that (u, v) ∈ RT iff (v, u) ∈ RT −1 .

Regular Reachability Problem. The following regular reachability problem – cen-
tral for RMC – is known to be undecidable in general; its variants have been
addressed in most of the papers in Sect. 1.

Input: Two finite automata A and B on a same alphabet Σ, and a transducer
T on Σ ×Σ.
Output: 1 if R∗T (L(A)) ∩ L(B) = ∅, and 0 otherwise.

Since the problem is concerned with the reflexive-transitive closure, we may
assume without loss of generality that for every u ∈ Σ∗, (u, u) ∈ RT . In the rest
of the paper, all considered relations contain the identity.
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2 Quotient-based Approximations

This section introduces the first mechanism for computing over-approximations
of sets of reachable states, which consists in over-approximating the automata
representing reachable sets by merging some of their states. For doing this, basic
elementary policies as well as their combinations are introduced.

Given an automaton A, we define an approximation as a function mapping
each automaton A to an equivalence relation ∼A over the states of A. The
approximation function F is isomorphism-compatible if for every pair of automata
A1 and A2, every isomorphism ϕ from A1 to A2, p ∼A1

q iff ϕ(p) ∼A2
ϕ(q). We

denote F[A] the automaton Â/F(Â), where Â is the trim automaton obtained
from A. We inductively define Fn[A] by F0[A] = A, and Fn[A] = F[Fn−1[A]] for
n > 0.

Let us now introduce two isomorphism-compatible approximation functions.
They are easily computable, and represent simple criteria naturally used by the
specifier, as for example in [10] for computing equivalence relations, or in [5] for
monitoring LTL properties.

– Left, mapping each automaton (Q,Σ,E, I, F ) to the reflexive-transitive
closure of the relation Rleft, defined by pRleftq iff L(Q,Σ,E, I, {p}) ∩
L(Q,Σ,E, I, {q}) 6= ∅.

– Right, mapping each automaton (Q,Σ,E, I, F ) to the reflexive-transitive
closure of the relation Rright, defined by pRrightq iff L(Q,Σ,E, {p}, F ) ∩
L(Q,Σ,E, {q}, F ) 6= ∅.

Let us consider the example of the token ring protocol for which the automata
are depicted on Fig. 2. LetAtr1 be the automaton obtained by trimming Ttr(Atr).
The relation Right[Atr1] is the identity relation, therefore Right[Atr1] = Atr1.
However, for the relation Left, the states (1, 4) and (2, 3) are equivalent since
they can be reached from the initial state by reading b. The automaton Left[Atr1]
is depicted on Fig. 2(a) (up).

Proposition 1. For each automaton A, if F is an isomorphism-compatible ap-
proximation function, then the sequence (Fn[A])n∈N is ultimately constant, up to
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Semi-Algorithm FixPoint
Input: A, T , B, F

If L(CF(T (A))) ∩ L(B) 6= ∅ then
return Inconclusive

EndIf
If L(CF(T (A))) = L(A) then

return Safe
EndIf
Return FixPoint(CF(T (A)), T ,B,F)

(a) FixPoint

Semi-Algorithm FixPointT
Input: A, T , B, C
Variable: k

k:=0
While (L(T k+1

C (A)) 6= L(T k
C (A))) do

k := k + 1
EndWhile
If (L(T k

C (A)) ∩ L(B) = ∅) then
Return Safe

Else
Return Inconclusive

EndIfElse
(b) FixPointT

Fig. 4. Fixpoint algorithms

isomorphism. Let CF(A) denote the limit of (Fn[A])n∈N. Moreover, if for each
automaton A and each pair of states p, q of A, one can check in polynomial time
whether p ∼A q, then CF(A) can be computed in polynomial time as well.

In the FixPoint algorithm depicted in Fig. 4(a), given a finite automa-
ton A (state of the system), a transducer T (transition relation), a finite au-
tomaton B (bad property), and an isomorphism-compatible function F (approx-
imation criterion), the first check (emptiness) can be performed in polynomial
time. Then, unfortunately, the equality of the languages cannot be checked in
polynomial time, since the involved automata are not deterministic. Neverthe-
less, recently developed algorithms [17,2,9] allow solving this problem very ef-
ficiently. Note also that the equality test can be replaced by another test –
e.g., isomorphism or (bi)simulation – implying language equality or inclusion, as
L(A) ⊆ L(CF(T (A)))) by construction.

Proposition 2. The FixPoint semi-algorithm is correct: if it returns Safe, then
R∗T (L(A)) ∩ L(B) = ∅.

The approach can be illustrated on the example in Fig. 2 with F = Left:
CLeft(Ttr(Atr)) = Left(Atr). One can check that CLeft(Ttr(CLeft(Ttr(Atr)))) and



CLeft(Ttr(Atr)) are isomorphic. Therefore FixPoint stops after one recursive call
and returns Safe.

From now on, given two approximation functions F and G, we denote F.G
the approximation function defined by (F.G)(A) = F(A) ∩ G(A) for every au-
tomaton A. In addition, the approximation function F + G is defined by: for
every automaton A, (F + G)(A) is the smallest equivalence relation containing
both F(A) and G(A). Then using several approximation functions and combin-
ing them allow us to obtain new – stronger or weaker – approximations. Section 5
gives experimental results for the Left, Right approximations together with the
In and Out approximations, and for their combinations.

3 Transducer-based Approximations

This section introduces another approximation mechanism consisting in reason-
ing about the application of k copies of a transducer representing the transition
relation to an automaton representing the initial states. The states reached in
the transducers are encoded as a finite word, and an additional automaton is
used for specifying what are the combinations of transducer states that have
to be merged. This technique is inspired by an automata theoretic construction
in [11], with the difference concerning the equivalence relation, and the use of
automata at step k (the transducer is never modified).

Let A = (Q,Σ,E, I, F ) be a finite automaton, T = (QT , Σ ×Σ,ET , IT , FT )
a transducer, and C = (QC , QT , EC , {qinit}, ∅) a deterministic complete finite
automaton on QT (i.e., the transitions of C are labeled with states of T ). Let
ϕk be a one-to-one mapping from the set (((Q×QT )×QT ) . . .×QT ) of states
of T k(A) to Q × Qk

T , where Q
k
T is the set of words of length k on QT . We

set a relation ∼C on states of T k(A) as follows: if p and q are states of T k(A)
such that ϕk(p) = (p0, wp) and ϕk(q) = (q0, wq), then p ∼C q iff p0 = q0 and
qinit ·wp = qinit ·wq. The automaton T k(A)/∼C is denoted T k

C (A). One can easily
check that ∼C is an equivalence relation.

Let us consider again Atr and Ttr from Fig. 2. We consider the automaton
C depicted in Fig. 5(a). The automaton T 2

tr(Atr) (after trimming) is depicted
in Fig. 5(b). The automata Ttr(Atr)/∼C and T 2

tr(Atr)/∼C are depicted in Fig. 6.
For instance, in T 2

tr(Atr) states (1, 3, 4) and (1, 4, 3) are ∼C-equivalent since they
have both 1 as the first element, and qinit · 34 = qinit · 43 = 5.

Proposition 3. An automaton isomorphic to T k(A)/∼C can be computed in
polynomial time in k and in the sizes of A, T and C.

Now, given a finite automaton B, we can use the computed automata when
applying the FixPointT semi-algorithm described in Fig. 4(b). It may provide an
over-approximation of reachable states: if FixPointT stops on a not too coarse
approximation we can deduce that R∗T (L(A)) ∩ L(B) = ∅. The proof of Propo-
sition 4 is similar to this of Proposition 2.

Proposition 4. The FixPointT semi-algorithm is correct: if it returns safe then
R∗T (L(A)) ∩ L(B) = ∅.



qinit

©

�

5

4

3

3

3, 4

4

3, 4

(a) C

1, 3, 3 2, 3, 3

1, 3, 4

1, 4, 3

a b

b

b
a

a
a

(b) T 2
tr(Atr)

Fig. 5. Token ring: Transducer-based approximation (1)

1,©

1,� 2,�

ab

b
a

(a) Ttr(Atr)/∼C

1, qinit

2, qinit

1,5a a
b

b
a

(b) T 2
tr(Atr)/∼C

Fig. 6. Token ring: Transducer-based approximation (2)

4 Refining Transducer-based Approximations

In this section we propose to refine transducer-based approximations when the
approximate iteration is inconclusive. Intuitively, this happens when the se-
quence of approximations is too coarse: the result intersects with the set of bad
states after k steps while the backward iteration of k copies of the transducer
from the bad states does not intersect with the initial states. Our algorithm can
be seen as a kind of CEGAR algorithms – the paradigm introduced in [13] and
intensively studied during the last decade (see for example [10,6]), with the aim
of obtaining finer approximations/abstractions by exploiting counter-examples.

Proposition 5. If L(T k
C (A)) ∩ L(B) 6= ∅, then either L(A) ∩ L(T −k(B)) 6=

∅, or there exists j, 0 ≤ j ≤ k such that L(T j
C (A)) ∩ L(T j−k(B)) 6= ∅ and

L(T (T j−1
C (A))) ∩ L(T j−k(B)) = ∅.

Assume that L(T j
C (A))∩L(T j−k(B)) 6= ∅ and L(T (T j−1

C (A)))∩L(T j−k(B)) =
∅. As it is classically done in the CEGAR framework, one can compute a relation
≡ on T j

C (A) such that ≡⊆∼C and L(T j
C (A))/≡∩L(T k−j(B)) = ∅. The existence

of ≡ is trivial since the results hold for the identity relation. However, when
using the CEGAR approach, our goal is to compute a relation ≡ as large as
possible, with the aim of ensuring termination of state-space exploration.

To achieve this goal, several heuristics may be used. Instead of computing
the ≡ relation, building the corresponding T j

C (A)/≡ automaton, and then per-
forming the fixpoint computation, we propose to use a dynamic approach. More
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Algorithm Split
Input: S = (QS , QT , ES , {q0}, ∅) a deterministic automaton, p, q ∈ QS and α, β ∈ QT

such that p ·S α = q ·S β
Q′S := QS ∪ {r} where r /∈ QS

I ′S := {q0}
E′S := ES \ {(q, β, q ·S β)}
E′S := E′S ∪ {(q, β, r)} ∪ {(r, a, s) | (p · α, a, s) ∈ ES and s ∈ QS \ {p ·S α}}
E′S := E′S ∪ {(r, a, r) | (p · α, a, p · α) ∈ ES}
Return (Q′S , QT , E

′
S , I
′
S , ∅)

Fig. 8. Algorithm Split

precisely, we prefer to modify C according to ≡ to avoid similar states merging
which may lead to a coarser over-approximation. To modify C according to ≡, we
propose to use the algorithms in Figs. 8 and 10. The Split algorithm modifies
the given deterministic automaton to provide a weaker abstraction. Its idea is
quite natural: if two equivalent states must be distinguished, the automaton C
is refined to take this constraint into account. For example, Figure 9(a) displays
the automaton C′ resulting from Split(C,©,�, 3, 4), where C is the automaton
from Fig. 5(a). The Split algorithm dissociating two states, can be used so far
as necessary to obtain the refined approximation in the Refine algorithm in
Fig. 10.

Proposition 6. The Refine algorithm always terminates.

For example, let us consider the≡ relation whose classes are {1,�, 4}, {(2,�, 3)},
{(1,©, 3), (1,©, 4)} and {(1,�, 3)}. We apply the Refine algorithm to the au-
tomata Ttr (Fig. 2(b)), C (Fig. 5(a)), Ttr(Atr)/∼C (Fig. 6(a)). Since (1,©, 3) ∼C
(1,�, 4),∼C 6⊆≡. Therefore, the algorithmmay compute C′ = Split(C,©,�, 3, 4)
as depicted in Fig. 9(a). Then one can check that ∼C′⊆≡. The automaton
Ttr(Ttr(Atr)/∼C )/∼C′ is depicted in Fig. 9(b).
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Algorithm Refine
Input: T (transducer), C a deterministic automaton, S = (QS ×QC , Q,E, {q0}, FS) a
finite automaton, a relation ≡ such that ≡⊆∼C and L(TC(A))/≡ ∩ L(T −1(B)) = ∅

While (∼C 6⊆≡) do
Choose (p, q, α) and (p, q′, α′) states of T (S) such that

(p, q, α) ∼C (p, q′, α′) but (p, q, α) 6≡ (p, q′, α′)
C :=Split(C, q, α, q′, α′)

EndWhile
Return C

Fig. 10. Algorithm Refine

If L(T k
C (A)) ∩ L(B) 6= ∅ and L(A) ∩ L(T −k(B)) = ∅, then we denote by

J(A,B, C, T , k) the maximal integer j such that 0 ≤ j ≤ k and L(T j
C (A)) ∩

L(T j−k(B)) 6= ∅ and L(T (T j−1
C (A)))∩L(T j−k(B)) = ∅. Now, the Reach-CEGAR

semi-algorithm in Fig. 11 encodes the whole approach: each time a too strong
approximation is detected, it is refined. This semi-algorithm may terminate by
returning Safe if an over-approximation of accessible states that does not contain
any bad states. It may also terminate by returning Unsafe if it detects a reachable
bad state. It may also diverge if the computed approximations have to be refined
again and again.

5 Experimental Results

Thanks to a prototype tool, the present paper’s proposals have been evaluated
on the well-known examples of the Bakery algorithm by Lamport, the token ring
algorithm, Dijkstra’s, and Burns [25] protocols.

For the quotient-based approximations (Sect. 2), the results are displayed
in Fig. 13. In addition to Left and Right, two additional simple isomorphism-
compatible approximations are examined:
– In, mapping each automaton (Q,Σ,E, I, F ) to the reflexive-transitive closure
of the relation Rin, defined by pRinq iff {ap ∈ Σ | ∃p′ ∈ Q, (p′, ap, p) ∈ E} =
{aq ∈ Σ | ∃q′ ∈ Q, (q′, aq, q) ∈ E}; and
– Out, mapping each automaton (Q,Σ,E, I, F ) to the reflexive-transitive closure



Semi-Algorithm Reach-CEGAR
Input: A,B finite automata, T (transducer), C a deterministic automaton, an integer `
Variables: integers j, k, and equivalence relation ≡

k := `
While (L(T k

C (A)) ∩ L(B) = ∅ and L(T k+1
C (A)) 6= L(T k

C (A)) ) do
k := k + 1

EndWhile
If (L(T k+1

C (A)) = L(T k
C (A)) and L(T k

C (A)) ∩ L(B) = ∅ ) then
Return Safe

EndIf
If L(A) ∩ L(T −k(B)) 6= ∅ then

Return Unsafe
EndIf
j := J(A,B, C, T , k)
Let ≡ be such that ≡⊆∼C and L(T j

C (A))/≡ ∩ L(T
k−j(B)) = ∅

Return Reach-CEGAR(A, T −k(B), T , Refine(T , C, T j(A),≡), j)

Fig. 11. Semi-algorithm Reach-CEGAR

of the relation Rout, defined by pRoutq iff {ap ∈ Σ | ∃p′ ∈ Q, (p, ap, p′) ∈ E} =
{aq ∈ Σ | ∃q′ ∈ Q, (q, aq, q′) ∈ E}.
In Fig. 13, the first column describes the protocol to verify: its name, the size (i.e.,
|Q| + |E|) of the initial automaton, and that of the transducer. The remaining
columns give the results for each specific criterion: the first line gives the step
of the language equality, or No when not reached; the second line indicates the
step when the intersection with the bad-property language is non empty, or ∅ if
it remains empty; the third line gives the size of the last obtained automaton. If
a step of the languages equality occurs while having the empty intersection with
the bad-property language (cf. values highlighted in bold), the protocol is safe.

For the refinement method, the above mentioned protocols have been studied
using different kinds of C-automata: either a one-state C, or a specific C. When
starting the refinement with a one-state C in Fig. 12(a), all the states are obvi-
ously considered as C-equivalent. On the contrary, a specific C models a property
of interest. For example, if two consecutive a are forbidden, and there is a tran-
sition (p, (x, a), q) in the transducer of the considered protocol, then the specific
C is like in Fig. 12(b). The two token ring protocols are shown to be safe in
four steps using the refinement approach with a one-state automaton. Dijkstra’s
protocol was proved safe without refinement in 15 steps using a specific automa-
ton. The Bakery and Burns protocols are proved safe in respectively 6 and 14
steps, by using the refinement and specific automata. For all these protocols, the
obtained automata have sizes similar to the sizes of the input automata: there is
no state explosion. To conclude, the experiments show that our techniques work
for all the considered cases, and that they are complementary.
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Fig. 12. Different kinds of C automata

In Out In + Out In.Out Left Right L + R L.R (L + R).(In + Out)
Token ring Step 3 Step 3 Step 3 Step 4 Step 3 Step 2 Step 2 Step 3 Step 3
size I : 4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
size T : 6 8 8 5 12 8 5 5 8 5
Token ring Step 3 Step 3 Step 3 Step 4 T.o(Step 10) Step 2 Step 2 T.o(Step 10) Step 3
size I : 4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
size T : 9 8 8 5 12 109 5 5 109 5
Dijkstra Step 6 Step 6 Step 5 Step 7 T.o(Step 10) Step 5 Step 5 T.o(115 hours) Step 5
size I : 5 ∅ ∅ ∅ ∅ ∅ ∅ ∅ T.o(115 hours) ∅

size T : 62 49 118 20 246 745 11 10 T.o(115 hours) 15
Bakery Step 7 No No Step 10 T.o(Step 10) No No T.o(Step 10) No
size I : 2 ∅ Step 7 Step 6 ∅ ∅ Step 3 Step 3 ∅ Step 6

size T : 24 43 75 89 97 368 31 31 1253 101
Burns No Step 6 No No No No No No No

size I : 2 Step 5 ∅ Step 3 Step 7 Step 4 Step 3 Step 3 Step 4 Step 3
size T : 22 100 46 53 365 22 18 18 50 53

Fig. 13. Results with syntactic criteria

6 Conclusion

Developing efficient approximation-based techniques is a critical challenging is-
sue to tackle reachability problems when exact approaches do not work. In this
paper two new approximation techniques for the regular reachability problem
have been presented. Our techniques use polynomial time algorithms, provided
that recent algorithms for checking automata equivalence are used; the only ex-
ception being language inclusion testing as in [17,2,9]. As a future direction, we
plan to upgrade our refinement approach, both on the precision of the approx-
imations and on computation time. Another possible direction is to generalize
our approximation mechanisms and to apply them to other RMC applications,
e.g., counter systems or push-down systems.
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