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This paper proposes an approach to verify SysML models consistency and to validate the transformation of

SysML models to VHDL-AMS code. This approach is based on two main solutions: the use of model-to-model
transformation to verify SysML models consistency and writing unit tests to validate model transformations.
The translation of SysML models into VHDL-AMS simulable code uses MMT (Model to Model Transforma-
tion) ATL Atlas Transformation Language and M2T (Model To Text) Acceleo tooling. The test validation of
the model transformations is performed using EUNIT framework.

1 CONTEXT AND MOTIVATION

Critical heterogeneous systems design is a complex
activity since such systems are often composed of
mixed hardware and software components. This com-
plexity makes it difficult to validate the conception
of the entire system in regards of its requirements.
Moreover, strengthened by the growing complexity
and intensive use of such systems, the validation ac-
tivity still defines a key challenge for engineering
practices. It is then crucial to set up a process in order
to verify and simulate the system model at the earliest
stage of the design process. In this context, the Ob-
ject Management Group (OMG) promotes the SysML
language (Friedenthal et al., 2009) to model heteroge-
neous systems, while the IEEE association proposes
the standard VHDL-AMS (Christen and Bakalar, 1999)
to describe and simulate hardware components. In
this paper, we propose an approach based on Model-
Driven Engineering (MDE) techniques to verify and
transform SysML models into VHDL-AMS code.

The first goal of this approach was to define a
subset of the SysML meta-model and to design the
VHDL-AMS meta-model addressed by the SysML sub-
set. The transformation between these meta-models,
called SysML2VHDLAMS, was introduced in (Gau-
thier et al., 2012). The second goal is to verify the
SysML model consistency in regards of design rules.
The third goal is to validate the transformation pro-
cess using unit testing techniques. These last two
goals define the contributions of this paper.

The paper is decomposed into five main parts.
Section 2 introduces some backgrounds about lan-
guages and MDE techniques. Section 3 describes the
approach we used to verify the SysML model con-
sistency in regards of design rules. In Section 4,
we present white-box testing method to validate the
transformation. Finally, Section 5 and 6 give some
related works, conclude and outline our future work.

2 PRELIMINARIES

This section introduces languages, tools and con-
cepts of model-driven engineering in order to generate
VHDL-AMS code from SysML models.

2.1 SysML Language

SysML (Friedenthal et al., 2009) is a profile of UML
2.0 (Rumbaugh et al., 2004) standardized by the Ob-
ject Management Group (OMG) and the International
Council on Systems Engineering (INCOSE). SysML
consists of several diagrams, which are requirement,
use case, sequence, activity, block, internal block,
constraint blocks, parametric, state machine and al-
location. It supports the specification, design, verifi-
cation and the validation of a broad range of systems.
We use a subset of SysML expressiveness to repre-
sent requirements and to model components of a sys-
tem with their interactions. Therefore, we use ele-
ments that are part of the Requirements, Block Defi-
nition, Internal Block and Parametric Diagrams.



2.2 VHDL-AMS Language

VHDL-AMS (Christen and Bakalar, 1999) is the IEEE
standard modeling language created to provide com-
patibility and capability in an open language for
modern analog, mixed-signal and multi-domain de-
signs. It provides both continuous-time and event-
driven modeling semantics. VHDL-AMS also facili-
tates modeling of multi-domain systems that can in-
clude (among others) a combination of electrical, me-
chanical, thermal, hydraulics, and magnetic models.
This allows the entire system to be modeled, simu-
lated, analyzed, verified and optimized.

2.3 The ATL Language

ATL (ATL, ) is a model transformation language and
toolkit initiated by the AtlanMod team (previously
called ATLAS Group). In the field of MDE, ATL pro-
vides ways to produce a set of target models from a set
of source models. An ATL transformation program is
composed of rules that define how source model ele-
ments are matched and navigated to create and ini-
tialize the elements of the target models. An ATL
transformation can be decomposed into three parts:
a header, helpers and rules. Rules are the heart of
ATL transformations because they describe how out-
put elements (based on the output meta-model) are
produced from input elements (based on the input
meta-model). They are made up of bindings, each one
expressing a mapping between input and correspond-
ing output element.

2.4 Acceleo Language

Acceleo (Acceleo, ) is a language specialized on code
generation based on Eclipse Modeling Framework
(EMF) models. The Acceleo language defines tem-
plates to control the output generation. Most of the
time, the output is a programming language. Acceleo
requires the definition of EMF meta-models and one
or more templates that translate the model into text.

2.5 EUnit Framework

EUnit (Garcia-Domnguez et al., 2011) is a unit testing
framework based on the Epsilon platform. It is de-
signed for testing model management tasks, such as
model-to-model transformations, model-to-text trans-
formations or model validations. It notably pro-
vides convenient tools for testing ATL transformation.
Moreover, EUnit unit tests can be executed automati-
cally in a continuous integration process.
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Figure 1: EUnit workflow.

Figure 1 shows the workflow of the EUnit test-
ing framework. Before writing a rule, the engineer
creates a SysML model (test case) and a VHDL-AMS
model (expected result of the transformation). These
two models are next used by EUnit (by calling ATL).
Finally, EUnit compares the result of the ATL transfor-
mation with the expected result: if they are equal, the
verdict is true, false otherwise.

3 MODEL VERIFICATION

This section concerns the verification of the model
consistency before generating VHDL-AMS code. The
issue of the verification raises two questions:

e How to ensure that the generated VHDL-AMS code
does not contain syntactic and semantic errors?
For instance, the naming of a component with re-
served words of the VHDL-AMS language (syntac-
tic error) or the connection of two ports with dif-
ferent types (semantic error).

e How to provide to the final user, i.e. system en-
gineer, a SysML modeling guideline to generate
correct VHDL-AMS code?

To answer these questions, we provide a verifica-
tion approach based on the ATL technology by gener-
ating a list of problems written in a XMI file. This file
is then parsed in order to show problems in an user
interface. As ATL provides a model-to-model trans-
formation based on meta-model, we define the meta-
model that allows to represent a problem.

3.1 The Problem meta-model

The problem meta-model of the Figure 2 is the target
of a transformation, which is called SysML2Problem.
The meta-class Problem represents a problem with
its location in the SysML file, its description and its
severity. The severity of the problem is represented
by the enumeration Severity, which could be warning,
error or critic.

BEProblem < <enumeration>>
I location : EString £ Severity
P description : EString — warning
P severity : Severity - error

— critic

Figure 2: Problem meta-model.



3.2 SysML to Problem Transformation

To illustrate this transformation, we propose to study
the case of reserved words. We wish to forbid the
naming of SysML elements with reserved words of
VHDL-AMS. A rule named uncorrectNameReserved-
Word is defined in the ATL file. This rule, see Figure 3,
generates a problem only if the precondition um-
[Element.isReservedWord() is evaluated to true. This
precondition uses an ATL helper named isReserved-
Word(), whose aim is to compare the name of umlEle-
ment with a set of reserved words.

rule uncorrectNameReservedWord f{
from
element: MMuml!NamedElement (
element.isReservedWord ()
)
to
problem: MMproblem!Problem(
severity <- ferror,
description <- ’Invalid identifier’,
location <~ 'root::’+element.getQualifiedName ()

)

Figure 3: ATL rule for reserved words.

3.3 Results

The SysML2Problem transformation is implemented
as an Eclipse plug-in for the Topcased modeler (TOP-
CASED, ). It includes 31 rules with 24 helpers, and
provides a way to check that, for instance, identi-
fiers are well formed, properties are typed or constants
are always initialized. This kind of approach is well
suited to check SysML models consistency in order to
generate correct code. Indeed, it provides a way to
write rules that automatically browse and check the
SysML elements that can potentially bring errors in
the generated VHDL-AMS code. Moreover, different
levels of severity help the system engineer to adopt a
specific methodology for modeling.

4 VALIDATION USING EUNIT

This section is about the validation of the
SysML2VHDLAMS and SysML2Problem transforma-
tion with the framework EUnit. It also introduces a
tool chain, which provides a transformation process
applying a Test-Driven Development (TDD) strategy.
The TDD approach advocates writing unit tests of
a function before writing its code. TDD, and more
generally unit testing, ensures that what is developed
remains functional, and allows a very early detection
of bugs in the development cycle.
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Figure 4: BDD of the chirp signal generator.

4.1 SysML Model to VHDL-AMS Code

This subsection explains the transformation of SysML
model into VHDL-AMS code using MDE technolo-
gies. The SysML model typically uses the Block Def-
inition Diagram (BDD), in the Internal Block Dia-
gram (IBD) and in the parametric diagram. To illus-
trate this transformation, we introduce the model of a
chirp signal generator, i.e. a system which generates a
chirp signal. A chirp signal has frequency and/or am-
plitude that changes over time. The purpose of such
a generator is to enable the activation of systems such
as Inter Digital Transducer (IDT).

Figure 4 shows the BDD of this system. The block
Vchirp represents the generator. It is linked by com-
position to the Resistor, VCVsin, PolySource2 and
RampSource blocks. The block Resistor receives the
chirp signal in order to display it during the simula-
tion. The block VCVsin generates a sinusoidal signal.
The component RampSource enables the amplitude
of the signal to change over time, whereas the com-
ponent PolySource2 enables the frequency to change
over time. Finally, the block VSignal contains VHDL-
AMS statements to initialize the simulation time.

The proposed MDE approach is based on two con-
secutive model transformations: the first one, called
MMT (Model to Model Transformation), transforms
SysML models into VHDL-AMS model representation
using ATL, while the second one, called M2T (Model
To Text), transforms the obtained VHDL-AMS mod-
els into VHDL-AMS source code using Acceleo. All
the ATL and Acceleo transformation rules are avail-
able in (Gauthier et al., 2012).



As instance, Figure 5 shows the ATL transforma-
tion of SysML block into VHDL-AMS entity and ar-
chitecture. A SysML block is transformed only if the
precondition in the from section is true.

rule Block2Entity { (i)
from
block: MMsysml!Block (
block.generalization->size() = 0 and
block.notParentGeneralization() and
not block.oclIsTypeOf (MMsysml!ConstraintBlock)
)
to
entity: MMvhdlams!Entity(
name <- block.name,
owner <- block.owner
)
architecture: MMvhdlams!Architecture (
name <- ’behav’,
owner <- block.owner,
entity <- entity
)

Figure 5: ATL rule Block2Entity.

The ATL transformation result takes thus the form
of a VHDL-AMS model, which is then translated into
VHDL-AMS code by the Acceleo engine. Figure 6
shows the main concept of Acceleo with the dedicated
keyword template.

[template generateEntity(du :
ENTITY [entity.name/] IS

Sequence (DesignUnit)) ]

END ENTITY [entity.name/];
[generateArchitecture (entity.architecture)/]
[/template]

[template generateArchitecture (archi :
ARCHITECTURE [archi.name/] OF [archi.entity.name/] IS

Architecture)]

BEGIN
END ARCHITECTURE [archi.name/];
[/template]

Figure 6: Acceleo templates.
4.2 Validation of Transformations

We now illustrate the validation of three kinds of ATL
rules. The first kind of rules (Figure 5) only contains a
helper: notParentGeneralization(), which verifies that
the block is not a generalization of another block. If
the precondition of the from section is true, the section
to of the rule is automatically executed by the ATL en-
gine. In other words, if the precondition is true, the
section 7o is covered. To test this rule, it is necessary
to cover its associated control flow graph given in Fig-
ure 7. Note that squared nodes of this graph represent
boolean OCL expressions.

(@)

sysmiBlock.generalization->size() = 0 and
sysmiBlock.notParentGeneralization() and
not ocllsTypeOr il

(b)

transformation

Figure 7: Control flow graph of the rule (i).

To create a test case, we create a SysML model
(test input) and its expected transformation result (ex-
pected test result). This test case, which contains a
block without generalization link, is therefore suffi-
cient to cover the Block2Entity rule: path ab of the
associated control flow graph.

The second category of rules contains if state-
ments. For instance, the Figure 8 shows a rule with
two if statements and the Figure 9 depicts its associ-
ated control flow graph. Note that diamonded nodes
of this graph represent decision nodes.

rule Constraint2ConcurrentialStatement{ (ii)
from sysmlConstraint: MMuml!Constraint (
if (d) then ...
if (g) then true
else false
endif
else false
endif
)
to
vhdlamsCS: MMvhdlams!ConcurrentialStatement (
[transformation]

)

Figure 8: ATL rule with an "if” statement.

o

(a)

(d) if sysmiConstraint.owner.oclisTypeOf(MMsysmitBlock) and
;mIConstraint. ion.ocllsUndefined() then

{sysmIConstra\nt.spec\ﬁcatlon.ocllsTypeOf(MMuml)}

(b) else

(h)
(© (:) ®

no transformation

(g) if not sysmiConstraint.specification. body->
first().ocllsUndefined() then

(e) else

transformation

Figure 9: Control flow graph of the rule (ii).



According to (Myers et al., 2004), the decision
coverage usually can satisfy statement coverage. In
our case, this criterion is sufficient (even if it is rather
weak) because no variable is modified during the ex-
ecution of ATL rules. Thus, we have to write enough
test cases to ensure that each condition in decision has
a true and a false outcome, and that each statement is
executed at least once. From this point of view, we as-
sess that decision coverage can be met by three SysML
models covering paths abc, adef and adgh.

The last rule, given in Figure 10, has an or state-
ment. It comes from the SysML2Problem transforma-
tion and prohibits the use of out and inout direction.
Its control flow graph is shown in Figure 11. In this
case, the decision coverage can be met by two SysML
models covering paths abed and abef.

rule outInoutDirection{ (iii)
from
parameter: MMuml!Parameter (
not parameter.uncorrectIdentifier() and
(parameter.direction=#inout or
parameter.direction=#out)
)
to
problem: MMproblem!Problem(
severity<-#error,
description<-'Direction not supported’
location<-"root::’+parameter.getQualifiedName ()
)

Figure 10: ATL rule with an “or” statement

(@)

{ not sysmiParameter.uncorrectidentifier() }

(b)

(d)

‘m

Figure 11: Control flow graph of the rule (iii).

-

transformation

4.3 Results

This section has presented a white-box testing method
to validate ATL transformation from SysML to VHDL-
AMS. We have created 41 unit tests (SysML mod-
els) to validate 34 ATL rules and 23 helpers of the
SysML2VHDLAMS transformation. Concerning the
SysML2Problem transformation, we wrote 41 unit
tests which validate 31 rules and 24 helpers.

The use of decision coverage enables the complete
coverage of our ATL rules both for SysML2Problem
and SysML2VDHLAMS transformations. Moreover,
unit tests are executed by an ANT file, which allows
to validate transformations by running test cases in a
continuous integration manner.

S RELATED WORK

Further works have been studied in the model trans-
formation testing domain, as introduced in (Jochen
and Mohamed, 2006), by using white box approach
for deriving test cases. Some of these techniques
concern the meta-model coverage testing. For exam-
ple, the tests generation tool of (Baudry et al., 2006)
is based on the idea that unit tests should cover the
source meta-model. However, this approach does not
take care of preconditions that define constraints of
transformations. But, our approach aims at perform-
ing structural testing on ATL rules, which implies that
the test cases have to be essentially based on the pre-
conditions of ATL rules.

Fleurey et al. (Fleurey et al., 2004) present an ini-
tial exploration of techniques for model transforma-
tion validation. They discuss two approaches to gen-
erate test data using systematic and bacteriologic al-
gorithm. The systematic approach provides a way
to build a model that covers as many items as pos-
sible of the effective meta-model. They compare this
approach to the bacteriologic approach, which is an
adaptation of genetic algorithms.

In (Erwan et al., 2006), the authors propose an al-
gorithm and a prototype that build test models from
the input meta-model and a set of model fragments.
The set of model fragment is automatically deducted
from the meta-model with a test criterion provided
by the user. Constraints of transformation are not
taken into account, which implies that test cases do
not cover the transformation code with a white-box
testing approach.

Sen et al. (Sagar et al., 2008) and (Sagar et al.,
2009) have developed a tool called Cartier that gener-
ates hundreds of models conforming to the input do-
main and guided by different strategies. However, this
tool is based on a black-box testing method that does
not take the internal model transformation design re-
quirements into account.

Finally, (Mottu et al., 2008) identify and discuss
important issues that are relevant to define transfor-
mation testing oracles. Among them, we can under-
line the model comparison techniques with an oracle
using an expected output model. This technique is
very close to our approach since EUnit provides an en-
gine that compares (using EMFCompare framework)
expected data with the obtained transformation result.



6 CONCLUSION AND FUTURE
WORKS

Verification of SysML consistency and validation of
model transformation allow to improve the quality
of critical systems design process. In this paper, we
have presented an approach to verify the model con-
sistency in regards of design rules. We have used an
ATL transformation to generate problems from SysML
models. Indeed, ATL provides an engine that automat-
ically browses the source meta-model to execute the
transformation process. Consequently, this technique
is relevant to verify the modeling process in order to
generate correct code, i.e. which does not contain any
syntactic or semantic errors.

An approach to validate model-to-model transfor-
mation with EUnit has been presented. This approach
is part of a larger work and provides a way to validate
our transformation toolchain by using white-box test-
ing method. The decision coverage criterion used and
presented in this paper allows to ensure the exhaus-
tive coverage of ATL rules. Moreover, unit tests could
be automatically executed in a continuous integration
manner and Test Driven Development context.

Further challenges have been identified in the do-
main of model transformation testing. The main limit
of this approach is that the user has to define and write
test cases and expected outputs. The automatic gener-
ation of test cases for model transformation has been
discussed in several works and it would be possible
to implement such a tool to generate test models with
the same coverage criteria for ATL rules. For instance,
the automatic generation of SysML models from the
interpretation of header and from section of ATL rules.

Finally, the Acceleo model-to-text transformation
has not been validated by unit tests, even if it has been
validated with several experiments. It would be inter-
esting to define a dedicated unit testing approach to
validate Acceleo templates.
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