
On Positive TAGED with a
Bounded Number of Constraints

Pierre-Cyrille Héam?, Vincent Hugot??, and Olga Kouchnarenko

FEMTO-ST CNRS 6174, University of Franche-Comté & INRIA/CASSIS, France
{pierre-cyrille.heam,vincent.hugot,olga.kouchnarenko}@inria.fr

Abstract. Tree Automata With Global Equality Constraints (aka. positive TAGED, or TAGE) are
a variety of Bottom-Up Tree Automata, with added expressive power. While there is interest
in using this formalism to extend existing regular model-checking frameworks – built on
vanilla tree automata – such a project can only be practical if the algorithmic complexity of
common decision problems is kept tractable. Unfortunately, useful TAGE decision problems
sport very high complexities: Membership is NP-complete, Emptiness and Finiteness are
both ExpTime-complete, Universality and Inclusion are undecidable. It is well-known that
restricting the kind of equality constraints can have a dramatic effect on complexity, as
evidenced by Rigid Tree Automata. However, the influence of the number of constraints
on complexity has yet to be examined. In this paper, we focus on three common decision
problems: Emptiness, Finiteness and Membership, and study their algorithmic complexity
under a bounded number of equality constraints.

1 Introduction

Tree Automata are a pervasive tool of contemporary Computer Science, with
applications running the gamut from XML processing [8] to program verification.
Since their original introduction in the fifties, they have spawned an ever-growing
family of variants, each with its own characteristics of expressiveness and de-
cision complexity. Notable among them is the sub-family of Tree Automata
With Constraints, which increases the expressiveness of vanilla tree automata by
providing some means of comparing subtrees. Examples of such devices are are
Automata With Equality and Disequality Constraints [4], Automata with Con-
straints on Brothers [2], and Visibly Tree Automata with Memory and Constraints
[3]. In this paper, we focus on one of the latest strains: Tree Automata With Global
Equality Constraints (TAGE) [6,5]. Their increased expressiveness is well paid
for in terms of algorithmic complexity: Membership is NP-complete, Emptiness
and Finiteness are both ExpTime-complete [1], Universality and Inclusion are
undecidable. While those complexities are fairly prohibitive, restrictions on the
? This author is supported by the project ANR 2010 BLAN 0202 02 FREC.

?? This author is supported by the French DGA (Direction Générale de l’Armement).

constraints can dramatically simplify some problems — for instance Rigid Tree
Automata (RTA) [9], a more restrictive class of TAGE, enjoy a trivial, linear-time
decision procedure for Emptiness. An application of TAGE of particular interest
is the extension of regular model-checking techniques, where the increased
expressiveness permits a wider range of applications. For such extensions to be
practical, algorithmic complexities must be kept tractable — for instance RTA
achieve that for Emptiness by restricting the kind of equality constraints which
may be taken; in contrast, the present paper studies how bounding the number
of constraints influences the complexity of three common decision problems:
Emptiness and Finiteness (Sec. 3) are shown to be in PTime for one constraint,
and ExpTime-complete for two or more; Membership (Sec. 4) is shown to stay in
PTime, regardless of how high the bound is.

2 Preliminaries

Relations & Intervals. Let R ⊆ Q2 be a binary relation on a set Q; we denote
by R+, R∗ and R≡ its transitive, reflexive-transitive, and equivalence closure
(symmetric-reflexive-transitive), respectively. Unless explicitly stated otherwise,
reflexive closures are taken on dom(R) = { x | ∃y : xRy or yRx }, even if R has
been introduced as a relation on the larger set Q. The integer interval [n,m] ∩ Z
is written Jn,mK.

Trees. We denote by N∗ the set of words over N; if v,w ∈ N∗, then v.w stands
for the concatenation of the words v and w. A ranked alphabet is a finite set Σ of
symbols, equipped with an arity function arity : Σ→ N. The subset of symbols
of Σ with arity n is denoted by Σn, and the notation σ/n is shorthand for “σ,
with arityσ = n”. The set T(Σ) of trees over Σ is defined inductively as the
smallest set such that Σ0 ⊆ T(Σ) and, if n > 1, σ ∈ Σn and u1, . . . , un ∈ T(Σ), then
σ(u1, . . . , un) ∈ T(Σ). If t is a tree, then the set of positions (or nodes) Pos(t) ⊆ N∗

is defined inductively by Pos(t) = {ε} if t ∈ Σ0 and Pos
(
σ(u1, . . . , un)

)
= {ε} ∪

{k.αk | k ∈ J1, nK , αk ∈ Pos(uk+1) } otherwise, where n is the arity of σ. We see a
tree t as a function t : Pos(t) → Σ which maps a position to the symbol at that
position in t. Positions are equipped with a non-strict (resp. strict) partial order E
(resp. C), such that α E β iff β is a prefix of α (resp. α E β and α , β). The subtree
of a tree t at position α ∈ Pos(t) is the tree t|α such that Pos(t|α) = {β | α.β ∈ Pos(t) }
and ∀β ∈ Pos(t|α), t|α(β) = t(α.β). Subterms are ordered by the relations
u E v ⇐⇒ ∃α ∈ Pos(v) : v|α = u and u C v ⇐⇒ u E v ∧ u , v. Note that
α E β =⇒ t|α E t|β. Two positions α and β are incomparable, written α f β, if

neither α E β nor β E α. The size of a tree t is denoted by ‖t‖ and defined by
‖t‖ = |Pos(t)|.

Tree Automata. LetQ be a finite set of symbols of arity 0, called states, such that
Q∩Σ = ∅. A transition is a rewrite ruleσ(q1, . . . , qn)→ q, whereq1, . . . , qn, q ∈ Q
and σ ∈ Σn. A bottom-up non-deterministic finite tree automaton (tree automaton, or
TA for short) over Σ is a tuple A = 〈Σ,Q, F, ∆〉, such that F ⊆ Q and ∆ is a finite
set of transitions. A run of A on a term t ∈ T(Σ) is a tree ρ : Pos(t) → Q such
that for all α ∈ Pos(t), t(α)(ρ(α.1), . . . , ρ(α.n)) → ρ(α) ∈ ∆. A run ρ is a q-run
if ρ(ε) = q, and it is called accepting (or successful) if ρ(ε) ∈ F. A set of trees is
called a language. The set of all trees on which there exists a q-run of A is written
Lq(A), and the set of trees on which there exists an accepting run is denoted by
L(A) =

⋃
q∈FL

q(A), and called the language recognised (or accepted) by A.

Tree Automata with Equality Constraints: TAGE. A TAGE, or “positive TAGED”
[6] is a tuple A = 〈Σ,Q, F, ∆,u〉, where 〈Σ,Q, F, ∆〉 is a tree automaton over Σ
and u ⊆ Q2 is a binary relation on Q. The underlying tree automaton 〈Σ,Q, F, ∆〉 is
denoted by ta (A). A run of a TAGE A on a tree t is a run of ta (A) on t satisfying
the equality constraints of u, which is to say: for all positions α, β ∈ Pos(t), if
ρ(α)u ρ(β) then t|α = t|β. An accepting run ofA is a run ofAwhich is accepting for
ta (A); accepted languages are defined similarly to TA. The Membership problem
for TAGE is NP-complete [6]. Emptiness and Finiteness are ExpTime-complete,
whereas Universality and Inclusion are undecidable [9, Table 1]. Following
the respective definitions of runs, it is straightforward that for every TAGE A,
L(A) ⊆ L(ta (A)). A TAGE A is said to be rigid (i.e. a RTA) if u ⊆ idQ, i.e. if every
constraint is of the form pup. The standard disjoint union of two TAGE A and B

is a TAGE A]B, such that L(A]B) = L(A) ∪ L(B) [6]. Two TAGE A and B are
said to be equivalent if L(A) = L(B).

TAGE-Specific Notations. Throughout this paper, any TAGE X will be assumed to
have attributes of the form 〈X :Σ,X :Q,X :F,X :∆,X :u〉. In addition, A will simply
be assumed to be 〈Σ,Q, F, ∆,u〉. We write the modification of an existing TAGE as
*X | <modifs>+, where <modifs> is a comma-separated list of attribute changes.
For brevity, within the scope of *X | · · · + any unqualified attribute x stands for
X :x — this takes precedence over the A :x convention. For instance, *X | u := ∅+
is the bare tree automaton associated with X, or ta (X). Modifications of the form
“x := f(x)” will just be written “f(x)”; for instance *X | Q \ {q} + is X from which
the state q has been removed, as with “Q := Q\{q}” (or even “X :Q := X :Q\{q}”).
Of course in this example the modification “F \ {q}” is completely omitted, as it

is implied by “Q \ {q}”, given that by definition X :F ⊆ X :Q. The same goes for
the removal of all the rules of X :∆ and constraints of X : u that used q.

Tree Automata With Bounded Equality Constraints: TAGEk. A TAGEk, where
k ∈ N, is a TAGE whose number of constraints is at most k. In other words, a
TAGEk A is such that Card (u) 6 k. By extension, we also denote by TAGEk the set
of all automata which are TAGEk. Note that trivially TAGEk ⊆ TAGEk+1 ⊆ TAGE.

3 The Emptiness & Finiteness Problems

Lemma 1 (Incomparable Positions). Let A be a TAGE with the constraint puq,
and ρ an accepting run of A on a tree t. Assume that both those states are involved
in the run: {p, q} ⊆ ran ρ; then any two distinct positions α,β ∈ ρ−1({p, q}), α , β,
are incomparable: α f β.

Proof. Since α,β ∈ ρ−1({p, q}) and {p, q} ⊆ ran ρ and puq, we have t|α = t|β

Suppose wlog. that α C β, then t|α C t|β; this is absurd since t|β cannot be
structurally equal to one of its own strict subterms. Therefore α f β. �

Lemma 2 (Rigidification). For every TAGE1 A, there exists an equivalent RTA B
whose size is at most quadratic in that of A. (a)

Proof. If A has no constraints, or a rigid constraint (pup), then B = A. Assume
A has a constraint of the form puq, with p , q, and suppose wlog. that
p, q < F. Building Blocks. We let B¬p = *A | Q \ {p} +, B¬q = *A | Q \ {q} +,
Bp = *B¬q | F := {p} , ∆ := ∆p+ —where ∆p is B¬q :∆ from which all rules where
p appears in the left-hand side have been removed, and Bq, which is defined
symmetrically toBp. Lastly,Bpq is built to accept the intersection of the languages
of Bp and Bq; using the standard product algorithm, it has a single final state
qf = (p, q). Note that they are all vanilla tree automata. Construction. We let

B = B¬p]B¬q] *A | Q ′, ∆ ′, qf uqf+, with

{
Q ′ = (Q \ {p, q})] (Bpq :Q)

∆ ′ = ∆qf
pq] (Bpq :∆)

,

where ∆qf
pq is A :∆ from which all left-hand side occurrences of p or q have been

replaced by qf. Equivalence. Let t ∈ L(A), accepted through a run ρ; one of the
following is true: (1) neither p nor q appears in ρ (2) p appears, and q does not
(3) q appears, and p does not (4) both p and q appear. In the three first cases, the

(a) Note that the general construction for TAGE is exponential [6, Thm. 10].

constraints are not involved, and t is accepted by: (1) both B¬p and B¬q (2) B¬q (3)
B¬p. In case (4), a subterm evaluating to pwill belong to Lp(A) by definition, and
also to Lq(A) as it needs to be equal to another extant subterm evaluating to q.
Furthermore, p and q can only appear at the root of each subruns, lest puq be
trivially violated. Therefore, a successful run of B can be constructed by simply
substituting all p and q subruns by qf-runs of Bpq. Thus t ∈ L(B). Conversely,
let t ∈ L(B); it is immediately seen by construction that L

(
B¬p
)
⊆ L(A) and

L
(
B¬q
)
⊆ L(A). Suppose that t is accepted through a run of the third and last

part of B (namely *A | · · · +); then every qf-subrun can be replaced by either a
p-run or a q-run of A. The result of this operation is trivially an accepting run of
ta (A); there remains to observe that it satisfies puq, because the corresponding
subtrees must be equal given the constraint (qf, qf) ∈ B :u. Thus t ∈ L(A). Size
& Time. All building blocks are of size O(‖A‖), except Bpq, which is of size
O(‖A‖2). Globally, the size of B is at most quadratic in that of A. The construction
is also straightforwardly done in quadratic time. �

Proposition 3 (Emptiness). The Emptiness problem is in PTime for TAGE1, and
ExpTime-complete for TAGE2.

Proof. TAGE1. Emptiness is testable in linear time for RTA [9], therefore the
emptiness of A is testable in quadratic time using the construction of Lemma 2.
TAGE2. Overview. We reduce the test of the emptiness of the intersection ofn tree
automata A1, . . . ,An, which is an ExpTime-complete problem, to the emptiness
of a TAGE2 A. This is similar to the arguments of [5, Thm. 1], the major difference
being that we can only use two constraints instead of an unbounded number
of constraints. The idea is to take advantage of the fact that an explicit equality
constraint between two positions effectively enforces an arbitrary number of
implicit equality constraints on the sub-positions. Assumptions. It is assumed
wlog. that n > 2 and the sets of states of the Ai are pairwise disjoint; that is to
say, ∀i, j ∈ J1, nK , i , j⇒ (Ai :Q)∩ (Aj :Q) = ∅. Furthermore, it can be assumed
that each Ai has exactly one final state qfi. If that is not the case, then Ai can be
modified to be so, which results in its size doubling in the worst case. Language.
We define the language L as the set of trees of the form given in Figure 1[p6],
where σ is a fresh binary symbol and for all i, xi ∈ L(Ai) and x = xi. Note that
this implies that x ∈

⋂
iL(Ai), and therefore L is empty iff

⋂
iL(Ai) is empty.

Automaton. We build a TAGE2 A that accepts L, by first building a universal tree
automaton U, of final state qu. Then, we let A = 〈Σ,Q, F, ∆,u〉, where

Q = (
⊎
iAi :Q)] (U :Q)]

{
qu
1, . . . , q

u
n−1, q

v
1, . . . , q

v
n−1

}
] {qf}

σ

σ

x1

σ

x2

σ

x3

. . . σ

xn−1

xn

σ

x

σ

x

σ

x

. . . σ

x

x

Fig. 1: Language L

F = {qf} qu uqu, qu
1 uq

v
1 Σ = (

⋃
iAi :Σ)] {σ/2}

∆ = {σ(qu
1, q

v
1)→ qf } ∪ (

⋃
iAi :∆) ∪ (U :∆) ∪{

σ(qu, qu
k+1)→ qu

k

∣∣ k ∈ J1, n− 2K
}
∪
{
σ(qu, qu)→ qu

n−1

}
∪{

σ(qfk, q
v
k+1)→ qv

k

∣∣ k ∈ J1, n− 2K
}
∪
{
σ(qfn−1, qfn)→ qv

n−1

}
.

Note that we have L(A) = L and ‖A‖ = O (
∑n
k=1 ‖Ai‖), which concludes the

proof. �

Proposition 4 (Finiteness). The Finiteness problem is in PTime for TAGE1, and
ExpTime-complete for TAGE2.

Proof. TAGE1. Finiteness is testable in linear time for RTA [9], therefore the
finiteness of A is testable in quadratic time using the construction of Lemma 2.
TAGE2. We reduce the Emptiness problem for TAGE2 to the Finiteness problem.
Given a TAGE2 A, we build

A ′ = * A | Q] {p} , F := {p} , Σ] {σ/1} , ∆
′+

where ∆ ′ = ∆ ∪ {σ(qf)→ p | qf ∈ F } ∪ {σ(p)→ p } .

A ′ is also a TAGE2. If A accepts the empty language, then so does A ′. Conversely,
if t ∈ L(A), then σ∗(t) ⊆ L(A ′), and thus L(A ′) is infinite. Consequently, the
language of A ′ is finite iff that of A is empty. This, combined with Prp. 3[p5],
shows that TAGE2-Finiteness is ExpTime-hard; since the general problem for
TAGE is ExpTime [6, Thm. 14], TAGE2-Finiteness is ExpTime-complete. �

4 The Membership Problem

Let us begin with some general observations and notations. We will need to
reason about the relation u; unfortunately, it is not an equivalence relation. For

instance, given the constraints pu r and ruq it is tempting, but in general wrong,
to infer puq by transitivity. The crux of the matter here is whether the state r
actually appears in the run: if it does, puq is effectively implied, but if it does
not, then both constraints pu r and ruq are moot. Lemma 5 shows that, given
the knowledge (or the assumption) of a set P ⊆ domu of the constrained states
which are actually present in runs, the constraints of u are interchangeable with
an equivalence relation, which we call the togetherness relation.

Lemma 5 (Togetherness). Let A be a TAGE and P ⊆ domu. Then any run ρ
such that (ran ρ) ∩ (domu) = P is accepting for A if and only if it is so for
AP = *A | u :=

(
u∩P2

)≡ +, where the closure is meant under dom(u∩P2).

Given a P, we denote by �P =
(
u∩P2

)≡ this equivalence relation, and say that
“p and q are together wrt. P” if p�P q. Its equivalence classes are denoted by
GP = dom(u∩P2)/�P, and called groups. If t is a tree, we write ∼ for the similarity
relation on t, defined on Pos(t)2 such that α ∼ β ⇐⇒ t|α = t|β. We denote by St
the quotient set Pos(t)/∼ of the similarity classes of t.

Lemma 6 (Housing Groups). Let A be a TAGE, P ⊆ domu and ρ a run of A on a
tree t, such that (ran ρ)∩ (domu) = P. Then ρ satisfies the constraints of u if and
only if ∀G ∈ GP, ∃CG ∈ St : ρ−1(G) ⊆ CG.

Given the hypothesis of P and given a successful run ρ on t, we call the map
G 7→ CG a P-housing of ρ in t, which is said to be compatible with ρ, and we denote
by HtP = GP → St the set of all possible P-housings on t.

Proposition 7 (Membership). Given an arbitrary but fixed n ∈ N, the Member-
ship problem for TAGEn is in PTime— albeit with an overhead exponential in
n.

Proof. Let A be a TAGEn, and t a tree. The Housing Lemma (6[p7]) has already
established that a run ρ of A on t satisfies u iff there exists a housing h ∈ HtP
which is compatible with ρ, where P = (domu)∩ (ran ρ) is the set of constrained
states which actually appear in the run. Our strategy to check the membership of
twill simply be to try each possible P ⊆ domu successively, by attempting, for
each possible housing h ∈ HtP, to craft an accepting run ρ of ta (A) compatible
with h. There are at most 22n possible P, and given a choice of P, there are
|St|

|GP| 6 ‖t‖2n P-housings on t, which gives at most 4n · ‖t‖2n tests in total. Note
that since n is a constant, this remains polynomial. There only remains to show
that given a choice of P and h ∈ HtP, the existence of a compatible run can be

tested in polynomial time. To do so, we use a variant of the standard reachability
algorithm, where only the states of P may appear, and the states of a given group
G ∈ GP may only appear at the positions assigned to them by the chosen housing
h. Formally, given a choice of P and a housing h ∈ HtP, there exists such a run iff
ΦP,ht (ε) ∩ F , ∅, where

ΦP,ht (α) =

q ∈ Q
∣∣∣∣∣∣∣∣∣
t(α)(p1, . . . , pn)→ q ∈ ∆

∀i ∈ J1, nK , pi ∈ ΦP,ht (α.i)

q ∈
⋃
GP =⇒ α ∈ h ([q]�P)

q < dom(u) \ P

 .

The reader will notice that, were the last two conditions removed,ΦP,ht (α) would
simply be the set of reachable states at position α. The additional two constraints
areO(1) operations, thusΦP,ht (·) does run in polynomial time; there only remains
to show that our algorithm does what is expected of it. There are two points to
this: (1) no false negative: every successful run is subsumed by someΦP,ht (·) (2)
no false positive: every run subsumed by someΦP,ht (·) is accepting.

(1) Let ρ a successful run for A, and P = (ran ρ) ∩ (domu); then by the
Housing Lemma, it satisfies �P, and there exists a housing h ∈ HtP with which
it is compatible. We propose that ρ is subsumed by ΦP,ht (·), which is to say
that for each position α ∈ Pos(t), we must have ρ(α) ∈ ΦP,ht (α). Indeed, let α
any position, and q = ρ(α); we check that q satisfies all four conditions for
belonging toΦP,ht (α). The first condition is trivially satisfied since ρ is a run. The
second one will be the hypothesis of our recursion which, quite conveniently,
evaluates to true vacuously if α is a leaf. The third condition is taken care of
by the Housing Lemma: suppose q ∈

⋃
GP; then there is a group G ∈ GP such

that q ∈ G (in fact G = [q]�P), and ρ−1(G) ⊆ h(G). Thus we have the chain
α ∈ ρ−1({q}) ⊆ ρ−1(G) ⊆ h(G), and in particular α ∈ h([q]�P). The fourth and
last condition is trivial given our choice of P: Assume its negation q ∈ dom(u)\P,
then you have q < ran ρ, which is absurd.

(2) Let ρ be a run subsumed by ΦP,ht (·), for some P and h. By the fourth
condition, (ran ρ) ∩ (dom(u) \ P) = ∅, and thus (ran ρ) ∩ (domu) ⊆ P. Let
α ∈ Pos(t); by the third condition, if ρ(α) ∈ G ∈ GP, then α ∈ h(G); in other
words, ρ−1(G) ⊆ h(G), thus by the Housing Lemma (b), ρ is successful. �

(b) The watchful reader will notice that we are slightly cheating here, because Lem. 6[p7] as written requires
(ran ρ) ∩ (domu) = P. The inclusion is enough for the “if” part, as shown by the relevant halves of the
proofs of Lem. 6[p7] and Lem. 5[p7]. Alternatively, one could replace P and h by adequate P ′ ⊆ P and
h ′ ∈ HtP ′ such that we have equality and preserve subsumption. Either way this is an easy technicality
with no bearing on any other part of this paper.

5 Conclusions

In the case of Emptiness and Finiteness we have shown that, perhaps somewhat
counter-intuitively, while the limitation to a single equality constraint does lead to
tremendously easier complexities (from ExpTime-hardness to quadratic decision
procedures), the addition of a second constraint suffices to reintroduce the full
complexity of the general, unbounded problem.

This stands in contrast to the behaviour of the Membership problem which, while
NP-complete in general, becomes polynomial once the number of constraints
is bounded by a constant, regardless of the size of that constant — though
admittedly “polynomial” is in that case quite unlikely to mean “efficient” for
anything but the smallest constants. Nevertheless, this suggests a potentially
more scalable alternative to the existing SAT encoding approach [7].

Acknowledgements. Our thanks go to the reviewers, especially for the sugges-
tion of a simpler approach to the TAGE1 parts of Propositions 3 and 4.

References

1. Barguñó, L., Creus, C., Godoy, G., Jacquemard, F., Vacher, C.: The emptiness problem for tree automata
with global constraints. In: LICS. pp. 263–272. IEEE Computer Society (2010)

2. Bogaert, B., Tison, S.: Equality and disequality constraints on direct subterms in tree automata. In: STACS.
LNCS, vol. 577, pp. 161–171. Springer (1992)

3. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Visibly tree automata with memory and constraints. CoRR
abs/0804.3065 (2008)

4. Dauchet, M., Mongy, J.: Transformations de noyaux reconnaissables d’arbres, Forêts RATEG. Ph.D. thesis,
LIFL (France) (1981)

5. Filiot, E., Talbot, J., Tison, S.: Tree automata with global constraints. In: Developments in Language
Theory. pp. 314–326. Springer (2008)

6. Filiot, E., Talbot, J.M., Tison, S.: Tree automata with global constraints. Int. J. Found. Comput. Sci. 21(4),
571–596 (2010)

7. Héam, P.C., Hugot, V., Kouchnarenko, O.: SAT solvers for queries over tree automata with constraints.
In: ICST (CSTVA ws.). pp. 343–348. IEEE (2010)

8. Hosoya, H.: Foundations of XML Processing: The Tree-Automata Approach. Cambridge University
Press (2010), http://books.google.fr/books?id=xGlH3ADxwn4C

9. Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata and applications. Inf. Comput. 209(3), 486–512
(2011)

http://books.google.fr/books?id=xGlH3ADxwn4C

	On Positive TAGED with a Bounded Number of Constraints
	Introduction
	Preliminaries
	The Emptiness & Finiteness Problems
	The Membership Problem
	Conclusions

