
Managing Order Relations in MlBibTEX∗

Jean-Michel HUFFLEN
LIFC (EA CNRS 4157)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
hufflen@lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract

Lexicographical order relations used within dictionaries are language-dependent.
First, we describe the problems induced within automatic generation of multilin-
gual bibliographies. Second, we explain how these problems are handled within
MlBibTEX. To add or update an order relation for a particular natural language,
we have to program in Scheme, but we show that MlBibTEX’s environment eases
this task as far as possible.
Keywords Lexicographical order relations, dictionaries, bibliographies, colla-
tion algorithm, Unicode, MlBibTEX, Scheme.

Streszczenie

Porządek leksykograficzny w słownikach jest zależny od języka. Najpierw omó-
wimy problemy powstające przy automatycznym generowaniu bibliografii wielo-
języcznych. Następnie wyjaśnimy, jak są one traktowane w MlBibTEX-u. Do-
danie lub zaktualizowanie zasad sortowania dla konkretnego języka naturalnego
umożliwia program napisany w języku Scheme. Pokażemy, jak bardzo otoczenie
MlBibTEX-owe ułatwia to zadanie.
Słowa kluczowe Zasady sortowania leksykograficznego, słowniki, bibliografie,
algorytmy sortowania leksykograficznego, Unikod, MlBibTEX, Scheme.

0 Introduction

Looking for a word within a dictionary or for a name
in a phone book is common task. We get used to the
lexicographic order for a long time. More precisely,
we get used to our own lexicographic order, because
it belongs to our cultural background. It depends
on languages.

This problem is particularly acute when we deal
with managing multilingual bibliographies, as in our
program MlBibTEX—for ‘MultiLingual BibTEX’.
Let us recall that this program aims to be a ‘better’
BibTEX [15], the bibliography processor usually as-
sociated with the LATEX word processor [12]. When
it builds a ‘References’ section for a LATEX docu-
ment, BibTEX uses a bibliography style ruling the
layout of this section. Some bibliography styles are
unsorted, that is, the order of bibliographical items
within the bibliography is the order of first citations
∗ Title in Polish: Zarządzanie zasadami sortowania lek-

sykograficznego w MlBibTEX-u.

of these items throughout the document. However,
most of BibTEX’s styles sort these items w.r.t. the
alphabetical order of authors’ names. But the bst
language of bibliography styles [14] only provides a
SORT function [13, Table 13.7] suitable for the En-
glish language, the commands for accents and other
diacritical signs being ignored by this sort operation.

The purpose of this article is to show how this
problem is solved in MlBibTEX’s first public ver-
sion. In practice, this version only deals with Euro-
pean languages using the Latin alphabet. Besides,
the MlBibTEX program is written using the Scheme
programming language [10]. Some implementations
provide partial support for Unicode [22], a proposal
for a future standardised library has been estab-
lished [18, §§ 1.1 & 1.2], but we cannot say that the
present version of Scheme is Unicode-compliant.1

1 At the time of writing the revised version of this article,
the proposal for Scheme’s next standard [19, 18] has been

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1001

Jean-Michel HUFFLEN

So some parts of our present implementation of or-
der relations are temporary, but we think that this
implementation could be easily updated for future
Unicode-compliant versions.

In a first section, we show how diverse lexi-
cographic orders used throughout European coun-
tries are. This allows readers to estimate this diver-
sity and to realise the complexity of this task. We
also explain why this problem is made more diffi-
cult when we consider it within the framework of
bibliographies. Then we show how order relations
operate in MlBibTEX and how they are built. We
also give some details about the common and differ-
ent points betwen x

◦
ındy [13, § 11.3] and MlBibTEX,

these two programs using multilingual order rela-
tions.

Reading this article does not require advanced
knowledge of Scheme;2 in fact, we think that a non-
programmer should be able to specify a new order
relation. We give more technical details in an an-
nex, for users that would like to do more experi-
ment themselves. In particular, we explain how to
deal with languages using the Latin 2 encoding, even
if our implementation is based on Latin 1.

1 European languages and lexicographic
orders

Figure 1 gives an idea about the diversity of order
relations used throughout some European countries.
In this figure, ‘a < b’ denotes that the words begin-
ning with a are less than the words beginning with
b, whereas ‘a ∼ b’ expresses that the letters a and b
are interleaved, except that a takes precedence over
b if two words differ only by these two letters.

Roughly speaking, there are two family of lan-
guages, if we consider the associated lexicographic
orders. In some languages, accented letters are fully
viewed as ‘real’ letters, distinct from unaccented
ones: examples are given by Slavonic languages. In
other languages, accented letters are processed as if
there is no accent. The precedence of a unaccented
letter over an accented one is not managed the same
way: it follows a left-to-right order in Irish, Ital-
ian, and Portuguese, a right-to-left order in French.
The Estonian language ‘mixes’ the two approaches:
some accented letters— ‘õ’, ‘ä’—are alphabeticised,
some— ‘š’, ‘ž’—are interleaved. Last, some letter
groups may be viewed as a single letter and alpha-
beticised as another letter. For example, the Hun-
garian words beginning with ‘cs’ are alphabeticised

submitted for ratification. See http://www.r6rs.org for more
details.

2 Readers can refer to [20] for an introductory book about
Scheme.

separately from the words beginning with ‘c’. In
fact, the ‘c-’ entry, in a Hungarian dictionary, con-
tains words beginning with ‘c’ and not with ‘cs’.
The ‘c-’ entry is followed by the ‘cs-’ entry, before
the ‘d-’ entry.

Anyway, it clearly appears that there cannot
be a universal order, encompassing all lexicographic
orders. Besides, these orders aim to classify words
of a dictionary, that is, common words belonging to
a language, even if some dictionaries may include
some proper names. When bibliographies are gen-
erated, order relations are used to sort bibliograph-
ical items, most often w.r.t. authors’ names. These
names may be ‘foreign’ proper names if we consider
the language used for the bibliography. So names
can include characters outside of this language’s al-
phabet. As a consequence, an order relation for sort-
ing a bibliography should be able to deal with any
letter, since any letter may appear in foreign names.
A good choice is to associate such a foreign letter
with a letter belonging to the ‘basic’ Latin alphabet,
so this foreign letter is interleaved with this basic let-
ter, which takes precedence over the foreign letter if
two words differ only by these two letters. If we con-
sider the English language, this means that accented
letters are interleaved with unaccented letters, but
unaccented letters take precedence. So proceed most
of implementation of order relations.

Unicode provides a default algorithm to sort all
its characters. This algorithm is based on a sort key
table, DUCET3 [23]. It is also based on a decom-
position property for composite characters. For ex-
ample, the ‘ô’ letter, whose name and code point—
given using hexadecimal numbers—are:

latin small letter o with circumflex,
U+00F4

can be decomposed into these ‘simpler’ characters:
latin small letter o, U+006F
combining circumflex accent, U+0302

The sort algorithm requires several passes. To de-
scribe it roughly, an information about weight, given
by sort keys, is associated with each string. Then
this information is re-arranged according to sort lev-
els, w.r.t. letters, w.r.t. accents, etc. Finally, a binary
comparison between bytes is done, level by level, un-
til the two strings can be distinguished. This algo-
rithm can be refined for a particular language, by
using a specialised sort key table, possibly including
sort keys for accented letters and digraphs viewed
as single letters.

This modus operandi would be difficult to put
into action within MlBibTEX. First, we do not have

3 Default Unicode Collation Element Table.

1002 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Managing Order Relations in MlBibTEX

• The Czech alphabet is: a < b < c < č < d < . . . < h < ch < i < . . . < r < ř < s < š < t < . . . z < ž.
• In Danish, accented letters are grouped at the end of the alphabet: a < . . . < z < æ < ø < å.
• The Estonian language does not use the same order for unaccented letters than usual Latin order; in addition,

accented letters are either inserted into the alphabet or alphabeticised like the corresponding unaccented letter:
a < . . . < s ∼ š < z ∼ ž < t < . . . < w < õ < ä < ö < ü < x < y.

• Here are the accented letters in the French language: à ∼ â, ç, è ∼ é ∼ ê ∼ ë, î ∼ ï, ô, ù ∼ û ∼ ü, ÿ.
When two words differ by an acccent, the unaccented letter takes precedence, but w.r.t. a right-to-left order:a

cote < côte < coté < côté.
The French language also use two ligatures: ‘æ’ (resp. ‘œ’), alphabeticised like ‘ae’ (resp. ‘oe’).

• There are three accented letters in German— ‘ä’, ‘ö’, ‘ü’—and three lexicographic orders:
– DINb-1: a ∼ ä, o ∼ ö, u ∼ ü;
– DIN-2: ae ∼ ä, oe ∼ ö, ue ∼ ue;
– Austrian: a < ä < . . . < o < ö < . . . < u < ü < v < . . . < z.

• The Hungarian alphabet is:

a ∼ á < b < c < cs < d < dz < dzs < e ∼ é < f < g < gy < h < i ∼ í < j < k < l < ly < m <
n < ny < o ∼ ó < ö ∼ ő < p < . . . < s < sz < t < ty < u ∼ ú < ü ∼ ű < v < . . . < z < zs

Some double digraphs may be restored before sorting:

ccs → cs+cs, ddz → dz+dz, ggy → gy+gy, lly → ly+ly, nny → ny+ny, ssz → sz+sz, tty → ty+ty

The same for the double trigraph: ddzs → dzs+dzs.
• The Polish alphabet is:

a < ą < b < c < ć < d < e < ę < . . . < l < ł < m <
n < ń < o < ó < p < . . . < s < ś < t < . . . < z < ż

• The Romanian alphabet is: a < ă < â < b < . . . < i < î < j < . . . s < ş < t < ţ < u < . . . < z.
• The Slovak alphabet is:

a < á < ä < b < c < č < d < ď < dz < dž < e < é < f < g < h < ch < i < í < j < k < l < ĺ <
l′ < m < n < ň < o < ó < ô < p < q < r < ŕ < s < š < t < ť < u < ú < . . . < y < ý < z < ž

• The Spanish alphabet was a < b < c < ch < d < . . . < l < ll < m < n < ñ < o < . . . < z until 1994. Now the
digraphs ‘ch’ and ‘ll’ are no longer viewed as single letters in modern dictionaries, and the words using ‘ñ’ are
interleaved with words using ‘n’.

• In Swedish, accented letters are grouped at the end of the alphabet: a < . . . < z < å < ä < ö.

a Using a left-to-right order for this step is common mistake even for French people. But the accurate order is right-to-left,
as specified in [7].

b Deutsche Institut für Normung (German Institute of normalisation).

Figure 1: Some order relations used in European languages.

complete support for Unicode:4 for example, we
cannot directly deal with caracters such as the ‘com-
bining circumflex accent’, not included in the Latin-1
encoding. But we keep the idea about decomposi-
tion, replacing the combining characters by ASCII5

characters. For example, the ‘combining circumflex
accent’ will be replaced by the ‘^’ character. To
sum up, our order relations are based on a 3-step
algorithm:

• replace composite characters (‘foreign’ letters
or composite characters not viewed as single let-
ters) when extracting successive letter groups
and compare the two results,

4 See the annex.
5 American Standard Code for Information Interchange.

• refine the sort about accent information when
accented letters are interleaved with others,
• test the case.

2 Generating order relations

Let us recall that MlBibTEX can apply BibTEX’s
bibliography styles using a compatibility mode [6],
but in order to take advantage of MlBibTEX’s multi-
lingual features as far as possible, it is better to use
the nbst6 language [4], close to XSLT7 [24], the lan-
guage of transformations used for XML8 documents.
Let us recall that parsing a bibliography data base
(.bib) results in the representation of an XML tree in

6 New Bibliography STyles.
7 eXtensible Language Stylesheet Transformations.
8 eXtensible Markup Language.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1003

Jean-Michel HUFFLEN

Scheme [11], this nbst language includes an element
for sorting selected subtrees of an XML document
[4, App. A], this element being analogous to XSLT’s
[24, § 10]. For example, the following two elements
can be used to sort bibliographical items by the first
author’s last name, and then the items left unsorted
by this first step are sorted by the first author’s first
name:9

<nbst:sort select="author/name[1]/last"
language="german"/>

<nbst:sort select="author/name[1]/first"
language="german"/>

Due to the language attribute’s value, this sort op-
eration will use the lexicographic order for the Ger-
man language. Such an order relation is to be speci-
fied in Scheme, as a 2-argument function taking two
strings s0 and s1 and returning a ‘true’ value (#t)
if s0 is strictly less than s1, a ‘false’ value (#f) oth-
erwise.

The best way to define such a function is to de-
rive it from a generator of order relations, as shown
in Figure 2. This <mk-order-relation generator
has four arguments.

• A list whose elements are separator characters,
viewed less than any letter. Usually, this list
contains only the space character, in which case,
the <space-only variable can be used. This
is not universal: for example, space characters
are ignored when words are sorted in Hungarian
(cf. the definition of the <hungarian? variable
in Figure 2).
• An alphabet, given w.r.t. the increasing order,

as a list of strings. If the ‘classical’ alphabet
is used—unaccented letters of the Latin alpha-
bet, sorted according to the usual order— just
put the ‘false’ value (cf. the definition of the
<english? variable).
• An association list for additional sequences of

characters, each sequence being followed by a
replacement and a weight.
• A function related to the sense of the second

step: when the first is finished and the second
is about to start, weights appear in reverse or-
der, so put reverse!10 (resp. identity—the
identity function) to put the second step into

9 This illustrative example would be too restrictive for an
‘actual’ bibliographystyle: there may be several authors, and
some authors may be denoted by an organisation name, in
which case the element’s name is not name.

10 Some Schemers could observe that this function does
not belong to pure functional style, because it is potentially
destructive [17]. But it is more efficient than the reverse
function and the weight list is not shared with other lists.

action according to a left-to-right (resp. right-
to-left) order. Cf. the use of these two values
for <french? and <english?.

It should be noticed that only lowercase letters have
to be specified, the equivalent relations among up-
percase letters will be deduced.

Let us come back to associations for additional
sequence characters, there are default associations,
comparable to the information given by the decom-
position property in Unicode. For example:

é 7→ e + |’|
where “ |’| ” denotes the default weight of the “ ’ ”
character. MlBibTEX knows such decomposition in-
formation for each accented letter of Latin 1. These
default associations can be overrided by alphabet-
specific associations given to the function building
orders. Weights are managed as follows.
• By default, the weight of each component of an

alphabet—appearing within the second argu-
ment of <mk-order-relation—is 1.
• If we consider only one substitution, that is, a

word W0 where a sequence S0 is to be replaced
by a sequence S1 with a weight w1, this substi-
tution resulting in a word W1. The W0 word
will be alphabeticised at first if w1 < 1, put
after otherwise.

Here are some examples.
• In French, the only accent put on the ‘o’ letter

is circumflex. When ‘ô’ is replaced by ‘o’ for
the first step, we must ensure that ‘ô’ will be
ranked after ‘o’ if two words differ only by these
two letters at the same position. We must also
ensure that the other accented letters based on
‘o’— in ‘foreign’ words will be put after. So the
weight of the replacement of ‘ô’ by ‘o’ is 2, as
it can be seen in Figure 2 (cf. the definition of
<french?). The defaults weights for accents are
higher, so this accented letter is ranked before
the other accented letters based on the ‘o’ let-
ter and possibly used in languages other than
French.
• Similarly, the two accents allowed on the ‘a’ let-

ter are grave and circumflex, the correct order
being a < à < â. So the replacement of ‘à’
(resp. ‘â’) by ‘a’ for the first step is 2-weight
(resp. 3-weight).
Given a language, if a character belongs neither

to separators, nor to the alphabet, it is ignored, un-
less it is an accented letter included in default asso-
ciations.

Given an alphabet’s specification—the second
argument of the <mk-order-relation function—

1004 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Managing Order Relations in MlBibTEX

(define <english (<mk-order-relation <space-only #f ’() reverse!))
(define <austrian?

(<mk-order-relation
<space-only
’("a" "ä" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "ö" "p" "q" "r" "s" "t" "u"

"ü" "v" "w" "x" "y" "z")
’() reverse!))

(define <czech?
(<mk-order-relation
<space-only
’("a" "b" "c" "\\v{c}" "d" "e" "f" "g" "h" "ch" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "\\v{r}"

"s" "\\v{s}" "t" "u" "v" "w" "x" "y" "z" "\\v{z}")
’() reverse!))

(define <danish?
(<mk-order-relation
<space-only
’("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w"

"x" "y" "z" "æ" "ø" "å")
’(("aa" ("å" . 2))) ; In Danish, ‘aa’ is equivalent to ‘å’.
reverse!))

(define <estonian?
(<mk-order-relation
<space-only
’("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "z" "t" "u" "v"

"w" "õ" "ä" "ö" "ü" "x" "y")
’(("\\v{s}" ("s" . 2)) ("\\v{z}" ("z" . 2))) reverse!))

(define <french?
(<mk-order-relation <space-only #f

’(("à" ("a" . 2)) ("â" ("a" . 3)) ("è" ("e" . 2)) ("é" ("e" . 3))
("ê" ("e" . 4)) ("ë" ("e" . 5)) ("î" ("i" . 2)) ("ï" ("i" . 3))
("ö" ("o" . 2)) ("ù" ("u" . 2)) ("ü" ("u" . 3)) ("ÿ" ("y" . 2)))

identity))
(define <german-din-1?

(<mk-order-relation <space-only #f ’(("ä" ("a" . 2)) ("ö" ("o" . 2)) ("ü" ("u" . 2))) reverse!))
(define <german-din-2?

(<mk-order-relation
<space-only #f ’(("ä" ("a" . 2) ("e" . 2)) ("ö" ("o" . 2) ("e" . 2)) ("ü" ("u" . 2) ("e" . 2)))
reverse!))

(define <hungarian?
(<mk-order-relation
’() ; In Hungarian, a space character is irrelevant when words are sorted.
’("a" "b" "c" "cs" "d" "dz" "dzs" "e" "f" "g" "gy" "h" "i" "j" "k" "l" "ly" "m" "n" "ny" "o" "ö"

"p" "q" "r" "s" "sz" "t" "ty" "u" "ü" "v" "w" "x" "y" "z" "zs")
‘(("á" ("a" . 2)) ("é" ("e" . 2)) ("ccs" ("cs" . 2) ("cs" . 2))

("ddz" ("dz" . 2) ("dz" . 2)) ("ddzs" ("dzs" . 2) ("dzs" . 2)) ("ggy" ("gy" . 2) ("gy" . 2))
("í" ("i" . 2)) ("lly" ("ly" . 2) ("ly" . 2)) ("nny" ("ny" . 2) ("ny" . 2)) ("ó" ("o" . 2))
("\\H{o}" ("ö" . 2)) ("ssz" ("sz" . 2) ("sz" . 2)) ("tty" ("ty" . 2) ("ty" . 2))
("ú" ("u" . 2)) ("\\H{u}" ("ü" . 2))))

reverse!))
(define <polish?

(<mk-order-relation
<space-only
’("a" "{\\aob}" "b" "c" "\\’{c}" "d" "e" "{\\eob}" "f" "g" "h" "i" "j" "k" "l" "{\\l}" "m" "n"

"\\’{n}" "o" "ó" "p" "q" "r" "s" "\\’{s}" "t" "u" "v" "w" "x" "y" "z" "\\.{z}")
’() reverse!))

Figure 2: Building order relations for some European languages.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1005

Jean-Michel HUFFLEN

MlBibTEX notices the possible presence of multi-
character sequences (e.g., digraphs or trigraphs). If
need be, it builds a lexical analyser able to return the
longest sequence of characters belonging to this al-
phabet,11 an example of use being given in Figure 3.
Let us mention that these analysers extract as few
sequences of characters as possible. For example, if
we have to compare a word beginning with ‘a’ and
a word beginning with ‘b’ in English, only the first
letters— "a" and "b"—are extracted because that
is sufficient to conclude.

From a point of view related to implementa-
tion, the encoding of the sequences of an alphabet
w.r.t. an increasing order is implemented by means
of hash tables,12 what ensures efficiency. Let us not
forget that these order relations are used to sort bib-
liographical items, and sorting requires many calls
to the function modelling an order relation.

3 MlBibTEX vs x
◦
ındy

x
◦
ındy [9] and MlBibTEX do not aim to perfom the

same task, since x
◦
ındy is an index processor. How-

ever, both have common points: they reimplement
‘old’ programs belonging to TEX’s galaxy—makein-
dex [13, § 11.2] and BibTEX—with particular fo-
cus on multilingual features, they are both writ-
ten using a Lisp13 dialect: Common Lisp [21] for
x
◦
ındy, Scheme for MlBibTEX. Of course, the suc-

cessive steps used for putting an order relation into
action—needed to arrange the successive entries of
an index—also exist in x

◦
ındy. But the specification

of an order relation is different because it is done
step by step. There are forms:

define-alphabet define-letter-group
merge-rule sort-rule

to specify an alphabet, a letter group, and the re-
placement of a pattern. If a sort procedure is quite
close to the standard way used in English, it is prob-
ably easier to use x

◦
ındy’s forms, because only small

changes have to be expressed. In MlBibTEX, we
chose to develop less functions, but more powerful.
This allows a global view of a new order relation
and makes easier some coherence tests among the
information about this relation.

11 Such lexical analysers are implemented by means of
tries. In MlBibTEX, this structure is also used to manage
the information related to language identifiers, as explained
in [5].

12 A hash table has a set of entries, and can efficiently
map an object to another object. This structure is described
in [1] from a general point of view, our implementation of
hash tables in MlBibTEX is inspired by [8].

13 LISt Processor.

4 Conclusion

The availability of these language-dependent order
relations within a unique program has been planned
through the use of the language attribute, as speci-
fied in the W3C14 recommendation about XSLT [24,
§ 10]. However, these relations have been imple-
mented only partially in most of XSLT processors.
Of course, our implementation also provides this ser-
vice partially, because we are limited to European
languages. But we think that the orders we define
are correct w.r.t. these languages and they are ac-
tually running. Our implementation is clearly influ-
enced by the Unicode collation algorithm, it is a first
step towards general algorithms for lexicographic or-
ders, it is a first version subject to changes when we
explore other languages or get criticisms from end-
users. In many domains, improvement has existed
because first versions existed. We think that will be
also the case for our functions.

5 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
written the Polish translation of the abstract. I also
thank Gyöngyi Bujdosó, Hans Hagen, Karel Horák,
Dag Langmyhr, who helped me fix some errors.

A How to use MlBibTEX’s functions

A.1 Getting started

To use the functions dealing with multilingual or-
dering, change your current directory into the src
subdirectory of MlBibTEX’s main directory, launch
a Scheme interpreter, and proceed as follows:

(load "common.scm") ; Loading general
; definitions.

(load "orders.scm") ; Loading all the
; definitions related to orders. This causes
; the other files needed to be loaded, too.

Then you can use the functions described in Fig-
ure 2. Use a Scheme interpreter R5RS-compliant [10]
and able to deal with the Latin 1 encoding: bigloo
[16], MIT Scheme[3], PLT Scheme [2] do that.15

Now we describe the conventions used within
strings resulting from parsing a .bib file. These con-
ventions are supposed to be followed by the argu-
ments of the functions modelling order relations, so
you have to know them. You can directly type ac-
cented letters belonging to the Latin 1 encoding:

"Frank Böhmert"

14 World Wide Web Consortium.
15 In fact, these three Scheme interpreters include partial

support of Unicode, as mentioned in the introduction.

1006 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Managing Order Relations in MlBibTEX

(define mk-hungarian-word-sectioner ; Building a generator of sectioning functions for Hungarian words.
(<mk-otoken-generator ’() ; The first three arguments of the <mk-order-relation

’("a" "b" "c" "cs" ...) ; function in the definition of the <hungarian? variable:
’(("á" ("a" . 2)) ...))) ; cf. Figure 2.

(define g ; Definition of a zero-argument function that will
(mk-hungarian-word-sectioner "sz\\H{o}l\\H{o}")) ; section the word ‘szőlő’ (‘grape’).

(g) =⇒ ("sz" . 1) ; The successive equivalent letters, digraphs, etc. of this word are returned in turn, with
(g) =⇒ ("ö" . 2) ; the corresponding weight.
(g) =⇒ ("l" . 1)
(g) =⇒ ("ö" . 2)
(g) =⇒ #f ; The word is finished, so all the calls of the g function will return the ‘false’ value, from now on.

Figure 3: How to section Hungarian words.

In Scheme, the ‘ " ’ character being the delimiter of
constant strings, it must be escaped by a ‘\’ charac-
ter if it belongs to a string:

"\"Perry Rhodan\" Series"
If you are interested in strings using other en-

codings (in particular, the Latin 2 encoding, used in
Eastern Europe), you cannot specify them directly;
you must use the LATEX command producing accents
and other diacritical signs not included in Latin 1.
For example, ‘Henryk Mikołaj Górecki’ should be
typed as follows:

"Henryk Miko{\\l}aj Górecki"
because ‘ó’ belongs to Latin 1, not ‘ł’. Remember
that the ‘\’ escape character must be itself escaped
within a string. If such an accent command has no
argument—e.g., the ‘\l’ command—write it be-
tween braces, as suggested by the previous exam-
ple. If it has an argument, write this argument be-
tween braces, as in "Rezs\\H{o} Kókai" for ‘Rezső
Kókai’.

Now you can type some expressions and evalu-
ate them:
(<english? "coté" "côte") =⇒ #t ; True.
(<french? "coté" "côte") =⇒ #f ; False.
...

Of course, you can define new order relations
according to the modus operandi we explain in § 2
and try to model some ‘exotic’ order relations.16

A.2 Testing decomposition

To see how words are sectioned into successive let-
ters, digraphs, etc. according to a particular alpha-
bet, then use the <mk-otoken-generator function

16 It can be noticed that all the names of the Scheme func-
tions described above begin with ‘<’. A convention within the
source files of MlBibTEX is that all the definitions stored in
the same file are the same prefix. That allows a ‘kind of mod-
ularity’, even if Scheme’s standard does not provide a way to
emphasise modular decomposition. Of course, we recommend
you to choose a not-yet-used prefix for your own definitions.

to build a generator of functions sectioning words for
a particular language. This <mk-otoken-generator
function is automatically called when we apply the
<mk-order-relation function, and its three argu-
ments are the second, third and fourth arguments of
the <mk-order-relation function. As an example,
Figure 3 shows how to build such a generator for
Hungarian words and use it.

A.3 Going further

If you want to use MlBibTEX for producing bib-
liographies— in which case you have to load more
files by means of evaluating the expression:

(load "mlbibtex.scm")
—and would like to change the association of a lan-
guage with an order relation, use the Scheme func-
tion c-language->order-relation as follows:
(c-language->order-relation
"german"
<german-din-2?) =⇒ #t

This causes the order relation <-german-din-2? to
be the order relation used for the German language.
If another order relation was previously associated
with this language,17 it is replaced by this new value,
that is, the <-german-din-2? function. If no order
relation was known for this language,18 the associa-
tion is created. The c-language->order-relation
function returns #t if the association succeeds, #f
otherwise (for example, if it is called with a string
whose value is an unknown language).

References

[1] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ull-
man: Compilers, Principles, Techniques and
Tools. Addison-Wesley Publishing Company.
1986.

17 In fact, when MlBibTEX is initialised, the order relation
for the German language is the <german-din-1? function.

18 . . . in which case the default order relation is the
<english? function.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1007

Jean-Michel HUFFLEN

[2] Matthew Flatt: PLT MzScheme: Lan-
guage Manual. Version 360. August 2004.
http://download.plt-scheme.org/doc/
360/pdf/mzscheme.pdf.

[3] Chris Hanson, the MIT Scheme team et al.:
MIT Scheme Reference Manual, 1st edition.
March 2002. Massachusetts Institute of Tech-
nology.

[4] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262. July
2003.

[5] Jean-Michel Hufflen: Managing Languages
within MlBibTEX. To appear. June 2005.

[6] Jean-Michel Hufflen: “BibTEX, MlBibTEX
and Bibliography Styles”. Biuletyn GUST,
Vol. 23, pp. 76–80. In BachoTEX 2006 con-
ference. April 2006.

[7] ISO-IEC CD 14651: International String Order-
ing—Method for Comparing Character Strings
and Description of a Default Tailorable Order-
ing. May 1996.

[8] Panu Kalliokoski: Basic Hash Tables.
September 2005. http://srfi.schemers.
org/srfi-69/.

[9] Roger Kehr: x
◦
ındy Manual. February 1998.

http://www.xindy.org/doc/manual.html.
[10] Richard Kelsey, William D. Clinger,

Jonathan A. Rees, Harold Abelson, Nor-
man I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris Han-
son, Christopher T. Haynes, Eugene Edmund
Kohlbecker, Jr, Donald Oxley, Kent M.
Pitman, Guillermo J. Rozas, Guy Lewis
Steele, Jr, Gerald Jay Sussman and Mitchell
Wand: “Revised5 Report on the Algorithmic
Language Scheme”. HOSC, Vol. 11, no. 1, pp. 7–
105. August 1998.

[11] Oleg E. Kiselyov: XML and Scheme. Septem-
ber 2005. http://okmij.org/ftp/Scheme/
xml.html.

[12] Leslie Lamport: LATEX: A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[13] Frank Mittelbach, Michel Goossens, Jo-
hannes Braams, David Carlisle, Chris A.
Rowley, Christine Detig and Joachim
Schrod: The LATEX Companion. 2nd edition.
Addison-Wesley Publishing Company, Read-
ing, Massachusetts. August 2004.

[14] Oren Patashnik: Designing BibTEX Styles.
February 1988. Part of the BibTEX distribu-
tion.

[15] Oren Patashnik: BibTEXing. February 1988.
Part of the BibTEX distribution.

[16] Manuel Serrano: Bigloo. A Practical Scheme
Compiler. User Manual for Version 2.9a. De-
cember 2006.

[17] Olin Shivers: List Library. October 1999.
http://srfi.schemers.org/srfi-1/.

[18] Michael Sperber, William Clinger, R. Kent
Dybvig, Matthew Flatt, Anton van
Straaten, Richard Kelsey and Jonathan
Rees: Revised5.97 Report on the Algorithmic
Language Scheme—Standard Libraries. June
2007. hhtp://www.r6rs.org.

[19] Michael Sperber, William Clinger, R. Kent
Dybvig, Matthew Flatt, Anton van
Straaten, Richard Kelsey, Jonathan
Rees, Robert Bruce Findler and Jacob
Matthews: Revised5.97 Report on the Al-
gorithmic Language Scheme. June 2007.
hhtp://www.r6rs.org.

[20] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The MIT
Press, McGraw-Hill Book Company. 1989.

[21] Guy Lewis Steele, Jr., Scott E. Fahlman,
Richard P. Gabriel, David A. Moon,
Daniel L. Weinreb, Daniel Gureasko Bo-
brow, Linda G. DeMichiel, Sonya E. Keene,
Gregor Kiczales, Crispin Perdue, Kent M.
Pitman, Richard Waters and Jon L White:
Common Lisp. The Language. Second Edition.
Digital Press. 1990.

[22] The Unicode Consortium: The Unicode
Standard Version 4.0. Addison-Wesley. August
2003.

[23] The Unicode Consortium, http:
//unicode.org/reports/tr10/: Unicode
Collation Algorithm. Unicode Technical
Standard #10. July 2006.

[24] W3C: XSL Transformations (XSLT). Ver-
sion 1.0. W3C Recommendation. Edited by
James Clark. November 1999. http://www.w3.
org/TR/1999/REC-xslt-19991116.

1008 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

