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In this letter, we demonstrate the experimental mapping of the longitudinal magnetic and electric optical

fields with a standard scanning microscope that involves a high numerical aperture far-field objective. The

imaging concept relies upon the insertion of an azimuthal or a radial polarizer within the detection path of the

microscope which acts as an optical electromagnetic filter aimed at transmitting selectively to the detector the

signal from the magnetic or electric longitudinal fields present in the detection volume, respectively. The resulting

system is thus versatile, non invasive, of high resolution, and shows high detection efficiencies. Magnetic optical

properties of physical and biological micro and nano-structures may thus be revealed with a far-field microscope.

In paraxial regime, light distributions are generally
considered as purely transverse fields and are often de-
scribed with scalar theory. When leaving paraxial con-
ditions for approaching the wavelength scale, the lon-
gitudinal components of the electric and magnetic fields
(parallel to the propagation direction) become noticeable
and light has to be seen as a 3D vectorial electromagnetic
field. The enhanced longitudinal electric field produced
by a radially polarized beam in a focal region has found
a large interest in various domains such as particle accel-
eration [1], laser cutting [2], lithography [3], far-field [4,5]
and near-field [6–8] microscopies and spectroscopies. Az-
imuthal polarization show the inverse electromagnetic
configuration for which focal spots show enhanced lon-
gitudinal optical magnetic fields [9]. Such beams have
been successfully used to excite the magnetic resonances
of split ring resonators [10] or generate purely longitudi-
nally polarized needles of optical magnetic field [11].

Rigorous numerical methods, such as FDTD (Finite
Difference Time Domain) [12] or plane wave spectrum
[13], predict strong discrepancies between the spatial dis-
tributions of longitudinal and transverse fields. Various
techniques have been then proposed to probe selectively
the longitudinal electric and magnetic optical fields gen-
erated in a focal spot or right at the surface of an opti-
cal structure, such as single molecules [5], azo-dye poly-
mers [14] and near-field probes [6, 15–17]. Longitudinal
light fields have also been deduced from the measure-
ment of the amplitude and phase of the transverse elec-
tric field [18]. All these techniques allow for mapping
subwavelength distributions of the longitudinal electric
or magnetic fields but require the development of non
trivial optical probes and/or acquisition procedures.

In this paper, we demonstrate the selective mapping
of the longitudinal electric and magnetic optical fields
with a standard far-field scanning microscope configura-
tion that involves a conventional microscope objective.
These selective electromagnetic detections are achieved
by inserting a radial or an azimuthal polarizer within the
detection path of the microscope, respectively. The re-

sulting system is thus versatile, non invasive, and shows
high detection efficiencies. Such a vectorial far-field imag-
ing should enable detailed electromagnetic information
onto highly confined light field distributions, impacting
applications such as biosensing, optical trapping, meta-
material analysis, focusing and beam shaping.

Under focusing, radially and azimuthally polarized
beams are known to produce single confinements of lon-
gitudinal electric and magnetic fields at their center,
respectively [9]. These confined longitudinal fields are
surrounded by transverse field distributions which can
be deduced from the longitudinal fields with Maxwell’s
equations [13]. According to Maxwell’s Ampere equation
(Maxwell’s Faraday equation, respectively), a single con-
finement of longitudinal electric field (longitudinal mag-
netic field, respectively) generates a loop of transverse
magnetic field (transverse electric field, respectively),
and vice versa. In linear polarization, focal spots show a
single confinement of linearly-polarized transverse elec-
tric field at their center. From Maxwell’s equations, the
rest of the electromagnetic field in the focal region can
be seen as being induced by this single transverse field
confinement.

Following reciprocity, the signal from the longitudi-
nal component of the electric and magnetic optical fields
present at the center of the detection volume of an objec-
tive used in collection mode are transmitted through the
objective as radially and azimuthally polarized beams,
respectively, or fields distributions which overlap these
axially polarized beams. As a comparison, the signal
from the transverse electric field is transmitted by an
objective as a linearly polarized beam. We propose here
to map selectively the longitudinal electric and magnetic
optical fields scattered by physical and biological sam-
ples by extracting selectively from the signal collected
by an objective the information that propagates toward
the detector under the form of radially and azimuthally
polarized beams, respectively, or beams with similar ax-
ial polarizations.

To this end, we developed the far-field detection sys-
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tems shown in Fig. 1. It combines the detection bench of
a confocal microscope to an axial (radial or azimuthal)
and a linear polarizer. The light fields collected locally
by a high numerical aperture (NA) objective (×50, 0.8)
is projected onto a second objective of lower NA (×4,
0.1) to be efficiently injected into a monomode fiber
connected to a photodetector. The entrance facet of the
optical fiber is conjugated optically to the focus of the
high NA objective: the detection volume of the system
coincides with the focal region of the high-NA objec-
tive. Radial and azimuthal polarizers are usually used
to convert a linearly polarized light beam into radially
and azimuthally polarized doughnut beams, respectively.
Following reciprocity, we propose here to use these po-
larizers (inserted in between the two objectives) in order
to convert radially and azimuthally polarized beams into
linearly polarized beams. The linear polarizer, placed af-
ter the axial polarizer in the detection path, is used as
an analyzer to transmit or stop the signal from these
incident axially polarized incident beams.
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Fig. 1. Scheme of the far-field detection system and prin-
ciple of the detection process.

The axial polarizer is a passive and compact compo-
nent used to convert an incident linearly polarized beam
into either a radially polarized or an azimuthally polar-
ized beam. When the incident polarization is parallel to
the axial polarizer’s axis, a radially polarized beam is
generated. A perpendicular incident polarization direc-
tion leads to an azimuthally polarized doughnut beam.
From reciprocity, this axial polarizer coupled to a linear
polarizer transmits power from incident radially or az-
imuthally polarized beams if the two polarizers’ axis are
parallel or perpendicular, respectively.

The detection principle of our system is schemed in
Fig. 1. The transverse components of the electric field
(ET ) present at the center of the detection volume are

converted into linearly-polarized collimated beams by
the first objective. Depending on the orientation of the
axial polarizer with respect to the incident polarization
direction, a radially or an azimuthally polarized beam
is generated, which is converted into a linearly polar-
ized hermite-gauss beam by the linear polarizer. Such
beams, which couple into the TE01, TM01 and HE21

fiber modes [19], cannot be transmitted through the
single-mode fiber piece connected to the detector (which
transmits only the fundamental mode HE11). Therefore,
the signal from the transverse electric field cannot be de-
tected. As noted previously, the longitudinal electric field
(magnetic field) at the center of the detection volume of
our system leaves the first objective as a radially (az-
imuthally) polarized beam. Such a beam is converted by
the axial polarizer into a linearly polarized beam along
(perpendicular to) the axial polarizer’s axis. If the linear
and axial polarizers have parallel (perpendicular) axis,
the signal is transmitted to the fiber, couples to its funda-
mental HE11 mode, and a signal is detected. If the axis
are perpendicular (parallel), the linear polarizer stops
the signal. Therefore, the imaging system proposed here
can detect either the longitudinal electric or magnetic
field simply by rotating by 90◦ the linear polarizer with
respect to the axial polarizer’s axis, or vice versa.

In the following, a He-Ne collimated laser beam (λ =

632.8 nm) is used to illuminate the sample from the
backside and the transmitted optical field distribution
is mapped while the sample is raster scanned with a
3D piezo stage. The photodetector (a photomultiplier
tube), connected to a computer, records the optical sig-
nal transmitted by the detection bench at each raster
point, leading to 2D transverse or longitudinal maps of
optical fields.

First, our far-field imaging concept is tested onto a
1D dielectric surface grating whose profile, measured by
atomic force microscopy, is shown in Fig. 2(a). The grat-
ing, whose invariance direction is along (0y), is illumi-
nated from the backside with a collimated s-polarized
He-Ne laser beam at normal incidence (incident waves
propagate along (0z)). Under these conditions, the grat-
ing generates 3 homogeneous diffraction orders in air
which produce an interferogram that involves only 3 vec-
torial components of the optical field Ey, Hx and Hz.
Figs 2(b) and (c) show the simulation of the intensity dis-
tributions of Ey and Hz diffracted by the sample. These
two field distributions can be easily distinguished from
each other and can thus be used as test-field distribu-
tions to validate our microscopy concept. Figs. 2(d) and
(e) display the experimental acquisition mappings of the
field diffracted by the grating (d) with and (e) without
the azimuthal polarizer in the detection path of the mi-
croscope, the linear polarizer being oriented along (0y).
These two images have been acquired successively over
the same area along the longitudinal plane (xz). We see
that the two experimental images are in good agreement
with the simulations of |Ey|

2 and |Hz|
2 shown in Figs.

2(b) and (c), respectively. This agreement is confirmed
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in Figs. 2(f) and (g) which compare theoretical profiles
of |Ey|

2 and |Hz|
2 (along the dashed lines of Figs. 2(b)

and (c)) to the profiles of the experimental images ac-
quired without and with the azimuthal polarizer (along
the solid lines of Figs. 2(d) and (e)). This unambiguously
prove that our far-field microscope is capable of mapping
the magnetic field of light (Hz) diffracted by 1D samples.

In a second time, our system is used to probe the light
field at the focus of an objective. Focused beams offer the
unique opportunity to produce simple and reproducible
2D field distributions in a transverse plane that can be
easily identified and predicted theoretically. Figures 3(a-
c) show the simulation of the transverse field distribu-
tion generated at the focus of an objective of NA=0.45
by an incident collimated beam that is linearly-polarized
along (0x) [20]. The field amplitude at the objective’s
pupil plane is described by a gaussian function whose
1/e width matches the pupil diameter. The intensity dis-
tribution of Ex leads to a single spot (Fig. 3(a)) whereas
Ez and Hz (longitudinal fields) generate orthogonal two-
spots structures, as shown in Figs. 3(b) and (c). There-
fore, linearly polarized focused beams allow for validat-
ing our imaging concept to the mapping of 2D optical
field distributions in a transverse plane.

Figures 3(d-f) report the experimental mapping of the
focal spot generated by a (×20, 0.45) objective illumi-
nated with a linearly polarized HeNe laser beam along
(0x). The laser beam is launched toward the objective
with an optical fiber coupled to a collimation lens and the
overall optical bench is raster scanned in the transverse
(xy)-plane with a piezo stage during image acquisition.
Here again, when only a single linear polarizer is inserted
in the microscope detection path, the experimental im-
age (Fig. 3(d)) is in good agreement with the simula-
tion of |Ex|

2. When the radial and azimuthal polarizers
are added, the experimental acquisitions (Figs. 3(e) and
(f)) reveal |Ez|

2 and |Hz|
2, respectively (cf. Figs. 3(b)

and (c)). The good agreement between the experimen-
tal mappings and theoretical predictions of the fields at
focus is confirmed in Figs. 3(g,h) which plot the experi-
mental and theoretical intensity profiles across the focal
region, along the solid, dashed and dotted lines shown in
Figs. 3(a-f).

The results shown in this paper demonstrate the abil-
ity of our far-field microscope to locally map 3D distribu-
tions of longitudinal magnetic and electric light fields. In
other words, we show that a sample can be imaged op-
tically through the selective detection in the far-field of
either the longitudinal electric or magnetic fields. It may
thus be possible to reveal for example the magnetic op-
tical properties of physical and biological samples with a
far-field microscope. This detection concept is indepen-
dent of the illumination process of the sample, and can
therefore be used in a standard scanning far-field mi-
croscope to map large scale light field distributions, or
it can be integrated in a confocal microscope [21]. New
polarization contrast confocal microscopy could then be
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Fig. 2. (a) Grating’s profile along (xz)-plane measured by
atomic force microscopy. This dielectric sample is used
in transmission mode and contains 830 grooves per mm
aligned along (0y)-axis. (b) and (c) Simulation in a lon-
gitudinal (xz)-plane of the intensity distribution of (b)
Ey and (c) Hz produced by the grating at λ = 632.8
nm and with a s-polarized incident plane wave. (d) and
(e) Experimental acquisitions of the grating diffraction
pattern in a longitudinal (xz)-plane (d) without and (e)
with azimuthal polarizer in the detection path of the
microscope (the linear polarizer is oriented along (0y)).
The grating is illuminated from the backside with a s-
polarized He-Ne laser beam at normal incidence. (f) and
(g) Theoretical (dashed curves) and experimental (solid
curves) profiles of the grating’s diffracted field, (f) along
the lines shown in (b) and (d) (electric field), and (g)
along the lines shown in (c) and (e) (magnetic field).

imagined, involving longitudinal electric and magnetic
fields in the detection. It is also possible to realize the si-
multaneous mappings of the longitudinal and transverse
optical electric fields and longitudinal magnetic field by
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Fig. 3. (a-c) Simulation of the intensity distributions
of (a) Ex, (b) Ez and (c) Hz at the focus of an ob-
jective (NA=0.45) illuminated with an incident beam
linearly polarized along (0x) ((0z) is the longitudinal
axis). The intensity distributions are plotted along the
transverse (xy)-plane at λ = 632.8 nm. (d-f) Experi-
mental acquisitions of the diffraction pattern produced
at the focal plane of a (×20, NA=0.45) objective by
an incident HeNe laser beam, linearly polarized along
(0x), (d) with a single linear polarizer oriented along
(0x), (e,f) with the combinations of linear/radial and lin-
ear/azimuthal polarizers, respectively. (g) profiles along
(0x) of (d) (dashed curve), (e) (solid curve) and (a,b)
(|Ex|

2 and |Ez|
2, dotted curves). (h) profiles along (0y)

of (d) (dashed curve), (f) (solid curve) and (a,c) (|Ex|
2

and |Hz|
2, dotted curves).

implementing a multichannel acquisition system. The
resolution of the microscope, about 0.75λ in our case,
can be improved up to 0.4λ by using immersion objec-
tives. Note that the image forming process shown here
may require vector diffraction theories to be analyzed,
instead of scalar diffraction theories as usually employed
in far-field microscopies [13, 22]. An analytical descrip-
tion of the microscope with a vectorial transfer function
may be possible and would merit further investigations.
Finally, the selective coupling to the detector of the infor-
mation that is collected under the form of waves showing
hybrid polarizations [19] would allow for accessing the
quadrupolar optical information of a sample. This infor-
mation, which is often hidden by the dipolar information,
would provide new insight onto light-matter interaction.

The authors are indebted to Remo Giust for helpful
discussions. This work is supported by the "Pôle de com-
pétitivité Microtechnique" and the Labex ACTION.
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