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ABSTRACT 
 

The SIMBA project had for objective to model the whole air loop of the automotive engine. In order to get 
boundary conditions for this model and verify it, PIV measurements were done. Simultaneously in the eight intake 
manifold’s runners of a DV6 TED4 PSA engine, acquisitions were obtained for each of the 720 crank angle degrees. 
Specific software (named PYV) was developed to pre-process images to deal with constraints inherent to running 
engine environment, and also to enable automate PIV processing. 
 
1. INTRODUCTION 
 

In the field of pollutant emissions (such as NOx and CO) related to terrestrial vehicles, standards are in constant 
evolution. The SIMBA project had for objective to model the whole air loop of the automotive engine. Boundary 
conditions of such a model required to be able to measure several fluidic parameters along the air loop. Our tasks were 
to achieve PIV measurements in the intake manifold's runners of a DV6 TED4 engine manufactured by PSA. 
Optical measurements on a real running engine, in an industrial surrounding, are challenging. Most of optical velocity 
measurements were done over generic engines (mono-cylinder, or without firing...) [1, 2, 3, 4, 5]. Moreover, most of 
these measurements were performed in cylinders, and are still quite rare in the air loop [6, 7, 8]. 
We designed an optical system composed of a double cavity Nd:Yag laser, two cameras and 53 optical components to 
enable PIV measurements simultaneously in the eight intake manifold’s runners of a diesel engine. This experimental 
setup is briefly presented in the next section. 
When the engine was running, there were vibrations that induced spatial shifts between pairs of images acquired 
successively. Thus the spatial origin of each pair of images was not known precisely. As a consequence, the automation 
of PIV processing was not possible since the regions of interest could not have been precisely located. In order to 
automate PIV processing, it was necessary to develop software able to apply an offset to images (to obtain the same 
spatial reference on the images) and to correct their orientations. This pre-processing is detailed in the section 3. 
Software was coded to enable different processings for multiple regions of interest in order to save time. Moreover, we 
coded a synthetic image generation program to validate our software. This is developed in section 4. 
The fifth section presents some examples of experimental results for engine running at 2000 revolutions per minutes 
with a load of 70 N.m. 
 
2. EXPERIMENTAL SETUP 
 

To achieve optical measurements on a real running engine induced several constraints that had to be handled. These 
constraints mostly consisted in vibrations (that misalign optical devices), laser reflections in ducts (that deteriorate 
image quality) and engine bulk (that limit optical access). The strategy was to design an experimental setup to deal with 
most of the constraints, and then to solve residual issues with computing processings. 
 



 

 

 
Figure 1 Modified intake manifold with optical access adaptations. 

 
In order to obtain 8 velocity fields corresponding to 8 runners, 8 optical cells (shown on Figure 1) were inserted 

downstream the intake manifold. These cells were designed to gently change circular sections of the intake manifold 
into square ones, so that they enabled optical access while avoiding optical distortions. This was done using selective 
laser sintering technique. We used a single Quantel Evergreen double cavity Nd:Yag laser (532 nm wavelength) to 
create a laser sheet that was split into 8 identical laser sheets by means of various optical components (lenses, reflectors 
and beam splitters).  This 8 laser sheets reached the 8 runners with the same optical path length. Pictures of the 8 fields 
were recorded by 2 TSI PIVCAM 13:8 cameras. Each camera visualized 4 fields corresponding to 4 runners of one side 
of the intake manifold. This was made possible by using 2 optical benches (composed with reflectors) and localized 
outside the engine. Each optical bench brings 4 images of 4 runners on a camera, with a same optical path length. All of 
these compounds (laser, cameras, optical benches and PIV cells) were interdependent with the engine to reduce 
vibrations influence. Principle of the optical installation is shown on Figure 2. Laser and cameras were triggered by a 
synchronizer so the 8 flows in the 8 runners were measured simultaneously. 

 

 
Figure 2 Principle of the optical installation. 

 
With this setup, there was no optical distortion since visualization windows were plans. Moreover, laser reflections 

were limited as well as vibrations influence. Nevertheless, vibrations still induced a relative displacement between 
consecutive pairs of images as shown on Figure 3.  



 

 

 
 

Figure 3 Consecutive pairs of images. 
 

On this figure, two images, from a consecutive pair are superposed. One can observe the blur aspect due to a non 
identical spatial origin on both images. Furthermore, there still remained some reflections on the edges of the images. 
To deal with remaining issues, we decided to implement a pre-processing tool. This pre-processing, as well as the 
global image processing we applied, are presented in the next section. 
 
3. PYV software 
 

Software was Python coded and was designed with numerous features. PYV software was first developed to take 
into account the huge quantity of data that were obtained during experiments on the engine test bench. With 4 runners to 
be visualized on each camera, there were, on each image, different areas of interest. Thus software was developed in 
order to authorize the user to select several regions of interest and to apply, on each of them, different pre-processings 
and different adjustments of parameters for the PIV-processing. This software limited the amount of user manipulations 
and so, saved time. 

 
3.1. PRE-PROCESSING 

The main issue was that vibrations induced displacements between pairs of images. That prevented from launching 
automatic processings over a large range of images. Indeed, because of this displacement, region of interest the user 
selected was not at the same spatial localization on each image. For that reason, we developed pre-processing operation 
to shift all the images so that they all had the same spatial origin. 
During a same experiment, displacements larger than 20 pixels were observed between different pairs of images. 
Nevertheless, it was not the case between 2 images belonging to the same pair. Indeed, the delay time between 2 images 
of a single pair was short enough so that translation due to vibrations was not visible. Thus, the shifting operation 
involved determining relative displacement between an image from a pair of reference, and another one from a pair to 
process. The displacement calculation was done performing a classical PIV correlation process [9]. More precisely, an 
interrogation area (Zref) with a fixed pattern was selected on the image of reference. Zref had coordinates (x, y) and 
size (dx, dy). Then the same interrogation area Zi was selected on images to process. On each of them, Zi had the same 
coordinates (x, y) and size (dx, dy) than Zref. Correlation between Zref and each Zi gave the relative displacement 
between each pair of images and the reference one. After this calculation, all images were shifted to match the same 
origin than the reference. 
Even if this shifting operation was automatic for a range of images, it was necessary to perform this twice for each 
experiment since there were 2 cameras so 2 distinct ranges of images. Once all images were shifted so that they all had 
the same spatial origin, it was possible to select regions of interest and to apply some pre-processing and PIV-
processing operations. 

The use of optical reflectors to obtain images of 4 runners on each camera induced orientations modifications. 
Distinct flips and rotations operations could be applied to each selected regions (corresponding to each runner) in order 
to correct orientations of the runners’ images. 



 

 

To limit influence of remaining reflections, it was possible to calculate an average image from non-seeded acquisitions 
to obtain a background image that was subtracted to images. 
 
3.2. PIV-PROCESSING 

Two kinds of processings were available, both based on cross-correlation. The first one was the classical PIV-
processing based on cross-correlation and a 3-points Gaussian fitting of the maximum correlation peak. The second one 
is based on cross-correlation and window offset as proposed by [10] with 3-points Gaussian fitting. This algorithm took 
advantage of results from a first correlation between interrogation areas that gave displacements in integer pixels. Then, 
interrogation areas from the second image were shifted according to these displacements. Then, a second correlation 
processing was applied and coupled with 3-points Gaussian fitting to obtain more accurate displacements. 
For each method, the user chose several parameters. He defined size (Dx, Dy) as well as overlap (dx, dy) of 
interrogation areas that meshed regions of interest. Overlap was a tuple of integer greater or equal to 1 that can be 
greater than interrogation areas size. Spatial calibrations parameters for 2 components x and y as well as the delay time 
were filled in to convert particles displacements into velocities. Considering window offset algorithm, the user had to 
input size (D’x, D’y) of interrogation areas for the second correlation processing, so that they could have been smaller 
or larger than size (Dx, Dy) of the first processing. 
There were two ways of saving results. Results from every regions of interest were saved independently, or they were 
saved in the same file. This last type of saving was useful when wanted to apply different kind of processings inside 
different regions of the flow (for instance, a processing for the region of a flow in the middle of a working section, and a 
different one for the boundary layer). 
 
4. CODE VALIDATION 

To evaluate the accuracy of the PYV software process, we chose to numerically generate images [11]. Parameters 
of these images, and particles displacements were perfectly known. Thus, a direct comparison between imposed 
displacement fields and those obtained by the PIV processing were made. From this comparison, mean bias error and 
standard deviation can be determined. For each run, 1000 images (32x32 pix2 and 8 bits coded) were generated taking 
into account several criterions. Concerning the image quality on the CCD, no noise was added, the percentage of active 
surface was set at 100%, and its black level set at 0%. 
The first criterion was the characteristics of particles. Their 3D positions in the image A were randomly determined, 
following a continuous uniform distribution. Particles positions in image B were imposed by applying a uniform 
displacement field to particles in image A (neither displacement gradient, nor displacement in the laser sheet width 
direction). Various displacements values were tested: from 0 to 2 pix by steps of 0.05 pix. 
The variation of the luminous intensity of a particle Ip as a function of the distance from the center of the particle r was 
defined following a Gaussian function:  

 
 
The particle diameter, dp, corresponded to two times the distance from the center of the particle for which the Gaussian 
is equal to “e-2.Imax”, with Imax the maximum of the Gaussian. 
Particle diameters were randomly obtained, following a normal distribution with a mean diameter of 2 pix at e-2, and an 

associated standard deviation equal to . 

 
Last important parameters were luminous intensities of each particles on image A and B (which depends on laser sheet 
intensity profile) and particle seeding density, which was set at 0.039 pix-2. We used a Gaussian laser sheet intensity 
profile for the sheet’s width. This last one was equal to 5 pix at e-2. An example of generated images is given on the 
Figure 4. 
 



 

 

                   
Figure 4 Example of a pair of images generated (Size: 32x32pix2, displacement of each particle: 0.5 pix in the 

horizontal direction). 
 
Then, the generated images were tested using the PYV software, for a FFT-based cross-correlation algorithm with a 3 
points interpolation of the Gaussian peak. For each test, we represented both bias error B and standard deviation σ.  
     

      

  
With Dr the real displacement, N the number of calculated displacement (Dci), and  the average of the calculated 

displacements. 
The Figure 5 gives bias error and standard deviation for a classic correlation process (a), and for an iterative process 
with window offset (b). 
  
  

       
                     (a)  Classic correlation process             (b) Iterative process with sliding windows 

Figure 5 Bias error and standard deviation. 
 

For all our tests, we found that the bias error was below 0.08 pix. For typical adjustment of PIV parameters (i.e. 
particles displacements between 1/4 or 1/3 of the interrogation area) on interrogation windows of 16x16 pix2, the 
maximum error on the velocity would be equal to 1.5%. This error would decrease when increasing size of the 
interrogation area. All these results enabled us to conclude that the process of PYV software delivered good results, and 
thus to validate our code. 
 
5. RESULTS 

Experimental setup enabled to acquire images from 4 runners on each camera, and thus images from 8 runners were 
recorded simultaneously. An example of an image obtained on one camera is presented on Figure 6. Identical laser 
sheets in the four runners are visible. As previously mentioned, the engine vibrations had an impact on recorded images 
which had to be corrected. On the Figure 7, an example of the selection of the same region on two different images is 
given. The images (a) corresponded to results without preprocessing. On the right of this figure, the displacement of the 
bright edge is obvious. Images (b) corresponds to the same region selected, but after the pre-processing shifting 
operation described earlier (cf. § 3.1). In this last case, the luminous right edge is located at the same position, showing 
that the shifting operation was successful. Before image shifting, one can observe bright borders on the right are not at 
the same position. This is due to vibrations that induced a displacement between acquisitions. After the shifting 
operation, images have the same spatial origin and position. 



 

 

 
 

 
Figure 6 Example of acquired image on 1 camera. 4 laser sheets into runners are visible. 

 

 
(a) Before image shifting. 

 
(b) )After shifting operation 

Figure 7 Example showing to selections of the same region for different acquisitions. 
 
Once all the images shifted and their orientation corrected (flips and/or rotation), four regions of interest 

(corresponding to the laser sheet in the four runners) were defined on the images. The PIV process was applied and, for 
each crank angle, instantaneous velocity vector fields were obtained. The figure 8 represents the height instantaneous 
velocity vector fields obtained simultaneously in the eight runners for a crank angle of 90°. In that case, the engine was 
running at 2000 rpm with a load of 70 N.m. We selected this crank angle since it corresponded to the one for which the 
velocity was maximal in two runners, and almost null in the six other runners.  

Mean discharge velocities were then calculated for every of the 720 crank angle degrees. These results are 
presented on Figure 9, where velocity curves are drawn versus crank angle for every runner. On these curves, negative 
velocities corresponded to the flow entering into cylinder. One can observe a main velocity peak for each runner curve, 
which is relative to corresponding intake valve opening. 

 
 

 
Figure 8 Instantaneous velocity vectors fields in the 8 runners, for a crank angle of 90°. Speed and load of the 

running engine: 2000 rpm - 70 N.m. 
 



 

 

 

 
Figure 9  Mean velocity versus crank angle in the 8 runners of the intake manifold (2000 rpm 70 N.m) 

 
 
 
6. CONCLUSION 
A PIV experimental setup, as well as its associated “PYV” software which allowed to determine the velocity inside 
intake manifold runners, were presented. Simultaneous measurements inside 8 runners were performed on a real 
running engine at a representative engine speed of 2000 rpm and a load of 70 N.m. Thus, velocities were obtained for 
each single degree of the 720 crank angle ones. This was made possible first thanks to the experimental setup that dealt 
with most of the constraints of such a severe environment. Second, a processing tool was developed, among other 
reasons, to deal with remaining issues. It allowed to measure global image displacements due to vibrations in order to 
shift all the images at the same spatial origin. Thus, it was possible to automatically apply pre-processings and PIV-
processings over different regions of interest. Thanks to these tools, it was possible to realize optical PIV measurements 
and obtain instantaneous velocity vector fields in the eight runners of the intake manifold of a real a running engine. 
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