
Jean-Michel Hufflen EUROTEX 2009 71

Using TEX’s Language within a Course
about Functional Programming

Abstract
We are in charge of a teaching unit, entitled Advanced
Functional Programming, for 4th-year university
students in Computer Science. This unit is optional
within the curriculum, so students attending it are
especially interested in programming. The main
language studied in this unit is Scheme, but an
important part is devoted to general features, e.g.,
lexical vs dynamic scoping, limited vs unlimited extent,
call by value vs call by name or need, etc. As an
alternative to other programming languages, TEX
allows us to show a language where dynamic and
lexical scoping—\def vs \edef—coexist. In addition,
we can show how dynamic scoping allows users to
customise TEX’s behaviour. Other commands related
to strategies are shown, too, e.g., \expandafter,
\noexpand. More generally, TEX commands are
related to macros in more classical programming
languages, and we can both emphasise difficulty
related to macros and shown non-artificial examples.
So TEX is not our unit’s main part, but provides
significant help to illustrate some difficult notions.

Keywords
Functional programming, TEX programming, lexical vs
dynamic scope, macros, evaluation strategies.

Introduction
If we consider programming in TEX [17], we have
to admit that this language is old-fashioned, and
programs are often viewed as rebuses, as shown
in the Pearls of TEX programming demonstrated at
BachoTEX conferences1. Some interesting applica-
tions exemplifying this language can be found in
[19, 30], but as noticed in [5], ‘some of these pro-
gramming tricks are ingenious and even elegant.
However [. . .] it is time for a change’.

So, at first glance, it may be strange to use some
examples of TEX programming within a present-
day course devoted to Functional programming. Let
us recall that this programming paradigm treats
computation as the evaluation of mathematical
functions, avoiding state and mutable data as far
as possible. Functional programming emphasises

functions’ application, whereas imperative program-
ming—the paradigm implemented within more ‘tra-
ditional’ languages, such as C [16]—emphasises
changes in state. Many universities include courses
about functional programming, examples being re-
ported in [35]. Besides, such languages are some-
times taught as first programming languages, ac-
cording to an approach comparable to [1, 8, 32] in
the case of Scheme.

Let us remark some tools developed as part of
TEX’s galaxy have already met functional program-
ming: cl-bibtex [18], an extension of BIBTEX—
the bibliography processor [26] usually associated
with the LaTEX word processor [20]—is written us-
ing ANSI2 COMMON LISP [7]; x◦ındy, a multilin-
gual index processor for documents written using
LaTEX [24, § 11.3] is based on COMMON LISP, too;
BIBTEX2HTML [4], a converter from .bib format—
used by the bibliography database files of BIBTEX—
to HTML3, is written in CAML4 [21]; MlBIBTEX5, a
re-implementation of BIBTEX focusing on multilin-
gual features [11], is written in Scheme [15]; as an-
other example, Haskell6 [28] has been used in [38];
last but not at least, there were proposals for de-
veloping NTS

7—a re-implementation of TEX—using
CLOS8, an object-oriented system based on COM-
MON LISP [39].

The unit we mentioned above is entitled Ad-
vanced Functional Programming9, it is an optional
unit for 4th-year university students in Computer
Science, part of the curriculum proposed at the
University of Franche-Comté, at the Faculty of Sci-
ence and Technics, located at Besançon, in the East
of France. Most of these students already know
a functional programming language: Scheme, be-
cause they attended a unit introducing this lan-
guage in the 2nd academic year in Computer Sci-
ence10. Other students, who attended the first two
university years at Belfort, know CAML. So this
unit is not an initiation course, we actually go thor-
oughly into functional programming.

In next section, we expose the ‘philosophy’ of our
unit. Then we summarise the features of TEX that

72 MAPS 39 Jean-Michel Hufflen

(define (factorial x)
;; Returns x! if x is a natural number, the ‘false’
;; value otherwise.
(and (integer? x) (not (negative? x))

(let tr-fact ((counter x)
(acc 1))

;; Returns acc * counter!.
(if (zero? counter)

acc
(tr-fact (- counter 1)

(* acc counter))))))

Figure 1. The factorial function, written using Scheme.

are useful within this unit and discuss our choice
about TEX. Reading this article only requires ba-
sic knowledge of programming, readers who would
like to go thoroughly into Scheme constructs we
have used throughout our examples can refer to
[32], very didactic. Of course, the indisputable ref-
erence about TEX commands is [17].

Our unit’s purpose
Functional programming languages have a com-
mon root as the λ-calculus, a formal system de-
veloped in the 1930’s by Alonzo Church to in-
vestigate function definition, function application,
and recursion [3]. However, these programming
languages are very diverse, some—e.g., the Lisp
dialects11—are dynamically typed12, some—e.g.,
Standard ML13 [27], CAML, Haskell—are strongly
typed14 and include a type inference mechanism:
end-users do not have to make precise the types
of the variables they use, they are inferred by the
type-checker: in practice, end-users have to con-
ceive a program using a strongly typed approach
because if the type-checker does not succeed in as-
sociating a type with an expression, this expres-
sion is proclaimed incorrect. As examples, Fig. 1
(resp. 2) show how to program the factorial func-
tion in Scheme (resp. COMMON LISP). In both cases,
the factorial function we give can be applied to any
value, but returns the factorial of this value only if
it is a non-negative integer, otherwise, the result is
the ‘false’ value. Fig. 3 gives the same function in
Standard ML: it can only be applied to an integer,
as reported by the type-checker (see the line begin-
ning with ‘>’).

A course explaining the general principles of
functional programming and an overview of some
existing functional programming languages would
be indigestible for most students, since they could
difficultly get familiar with several languages, due
to durations allowed to each unit. In addition,

(defun factorial (x)
"Behaves like the namesake function in Scheme
(cf. Fig. 1)."

(and
(integerp x) (not (minusp x))
(labels ((tr-fact (counter acc)

;; The labels special form of
;; COMMON LISP introduces local
;; recursive functions [33, § 7.5].
(if (zerop counter)

acc
(tr-fact (- counter 1)

(* acc counter)))))
(tr-fact x 1))))

Figure 2. The factorial function in Common Lisp.

theoretical notions without practice would not be
very useful. So, our unit’s first part is devoted to
the λ-calculus’ bases [10]. Then, all the practical
exercises are performed with only one language,
Scheme, most students already know. Besides, this
unit ends with some advanced features of this lan-
guage: delayed evaluation, continuations, hygienic
macros [9]. In addition, this choice allows us to
perform a demonstration of DSSSL15 [13], initially
designed as the stylesheet language for SGML16

texts. These students attended a unit about XML
and XSLT17 [36] the year before, and DSSSL—which
may be viewed as XSLT’s ancestor—is based on a
subset of Scheme, enriched by specialised libraries.

When we begin to program, the language we
are learning is always shown as finite product. It
has precise rules, precise semantics, and is consis-
tent. According to the language used, some ap-
plications may be easy or difficult to implement.
When you put down a statement, running it often
results in something predictible. That hides an im-
portant point: a language results from some impor-
tant choices: does it use lexical or dynamic scop-
ing, or both? To illustrate this notion with some
examples in TEX, that is the difference between the
commands \firstquestion and \secondquestion
in Fig. 4. The former can be related to lexical scop-
ing, because it uses the value associated with the
\state command at definition-time and produces:

You’re happy, aint’U?

whereas the latter can be related to dynamic scop-
ing, because it uses the value of the \state com-
mand at run-time and yields:

You’re afraid, aint’U?

Students difficultly perceive this notion: some
know that they can redefine a variable by means of

Using TEX’s Language within a Course about Functional Programming EUROTEX 2009 73

fun factorial x =
(* If x is a negative integer, the predefined

exception Domain is raised [27, §§ 4.5–4.7]. The
internal function tr_fact is defined by means of
pattern matching [27, § 4.4].

*)
if x < 0 then raise Domain
else let fun tr_fact 0 acc = acc |

tr_fact counter acc =
tr_fact (counter - 1)

acc * counter
in tr_fact x 1

end ;
> val factorial = fn : int -> int

Figure 3. The factorial function in Standard ML.

a let form in Emacs Lisp [22], but they do not re-
alise that this would be impossible within lexically-
scoped languages such as C or Scheme. In other
words, they do not have transversal culture con-
cerning programming languages, they see each of
them as an independent cell, a kind of black box.

The central part of our unit aims to emphasise
these choices: what are the consequences of a lex-
ical (resp. dynamic) scope? If the language is lexi-
cal (resp. dynamic), what kinds of applications are
easier to be implemented? Likewise, what are the
advantages and drawbacks of the call-by-value18

strategy vs call-by-name one? In the language you
are using, what is variables’ extent19? Of course, all
the answers depend on the programming languages
considered. But our point of view is that a course
based on Scheme and using other examples in TEX
may be of interest.

TEX’s features showed
As mentioned above, \def and \edef allow us to il-
lustrate the difference between lexical and dynamic
scope. Most of the present-day programming lan-
guages are lexical, but we can observe that the
dynamic scope allows most of TEX commands to
be redefined by end-users. The dynamic scope is
known to cause variable captures20, but TEX is pro-
tected against undesirable redefinitions by its inter-
nal commands, whose names contains the ‘@’ char-
acter. Of course, forcing these internal commands’
redefinition is allowed by the \makeatletter com-
mand, and restoring TEX’s original behaviour is
done by the \makeatother command.

If we are interested in implementation consider-
ations, the commands within an \edef’s body are
expanded, so this body is evaluated as far as pos-
sible21. To show this point, we can get dynamic

\def\state{happy}
\edef\firstquestion{You’re \state, ain’t U?\par}
\def\secondquestion{You’re \state, ain’t U?\par}
\def\state{afraid}

Figure 4. Lexical and dynamic scope within TEX.

scope with an \edef command by preventing com-
mand expansion by means of \noexpand:
\edef\thirdquestion{%
You’re \noexpand\state, ain’t U?\par}

and this command \thirdquestion behaves ex-
actly like \secondquestion (cf. Fig. 4).

A second construct, useful for a point of view re-
lated to conception, is \global, shown in Fig. 5,
because it allows ‘global’ commands to be defined
within local environments. There is an equivalent
method in Scheme, but not naturally: see Appendix.
Let us go on with this figure, any TEXnician knows
that \thisyear no longer works if ‘\edef’ is re-
placed by ‘\def’. This illustrates that TEX com-
mands have limited extent.

Nuances related to notion of equality exist in TEX:
let \a be a command already defined:
\let\b\a
\def\c{\a}

the former expresses that \a and \b are ‘physically’
equal, it allows us to retain \a’s definition, even it is
changed afterwards, the latter expresses an equality
at run-time, it ensures that the commands \c and
\a are identical, even if \a changes22.

Scheme’s standard does not allow end-users to
know whether or not a variable x is bound23. A
TEXnician would use:
\expandafter\ifx\csname x\endcsname\relax...%
\else...%

\fi

For beginners in programming with TEX, this is
a quite complicated statement causing commands
\relax and \ifx to be introduced. However,
that leads us to introduce not only the construct
\csname...\endcsname, but also \expandafter,
which may be viewed as kind of call by value. A
simpler example of using this strategy is given by:
\uppercase\expandafter{\romannumeral 2009}

—which yields ‘MMIX’—since this predefined com-
mand \uppercase is given its only argument as it
is; so putting the \expandafter command causes
this argument to be expanded, whereas remov-
ing it would produce ‘mmix’, because \uppercase
would leave the group {\romannumeral 2009} un-
touched, then \romannumeral would just be ap-

74 MAPS 39 Jean-Michel Hufflen

{\def\firsttwodigits{20}
\def\lasttwodigits{09}
\global\edef\thisyear{%
\firsttwodigits\lasttwodigits}}

Figure 5. Using TeX’s \global command.

plied to 2009. That is, TEX commands are macros24

in the sense of ‘more classical’ programming lan-
guages.

The last feature we show concerns is related to
mixfixed terms, related to parsing problems and pri-
orities. TEX can put mixfixed terms into action by
means of delimiters in a command’s argument, like
in:
\def\put(#1,#2)#3{...}

Discuss
As shown in last section, we use TEX as ‘cultural
complement’ for alternative constructs and imple-
mentations. Sometimes, we explain some differ-
ences by historical considerations: for example, the
difference between \def and \long\def—that is,
the difference in LaTEX between \textbf{...} and
\begin{bfseries}...\end{bfseries}—comes of
performance considerations, since at the time TEX
came out, computers were not as efficient as today.
Nevertheless, are there other languages that could
be successfully used as support of our unit? Yes and
no.

An interesting example could be COMMON LISP.
Nevertheless, this language is less used now than
some years ago, and it is complexified by the use
of several namespaces25. Besides, this language’s
initial library is as big as possible, it uses old con-
structs26. That is why we give some examples in
COMMON LISP, but prefer for our course to be based
on Scheme, which is ‘the’ modern Lisp dialect, from
our point of view.

Concerning the coexistence between lexical and
dynamic variables, the Perl 27 language [37] pro-
vides it. In addition, it has been successfully used to
develop large software, so examples could be cred-
ible. However, it seems to us that dynamic vari-
ables in Perl are rarely used in practice. In fact, the
two dynamic languages mainly used are Emacs Lisp
and TEX, in the sense that end-users may perceive
this point. From our point of view, using exam-
ples in Emacs Lisp requires good knowledge about
the emacs28 editor, whereas we can isolate, among
TEX’s features, the parts that suit us, omitting addi-
tional details about TEX’s tasks. Likewise, such an
approach would be more difficult with Perl.

Conclusion
Our unit is viewed as theoretical, whereas other op-
tional units are more practical, so only a few stu-
dents attend ours. But in general, students who
chose it do not regret that and enjoy it. They say
that they have clear ideas about programming af-
ter attending it. Some students view our exam-
ples in TEX as historical curiosity since this language
is quite old and originates from the 1980’s, but
they are surprised by its expressive power. Some,
that are interested in using TEX more intensively,
can connect programming in TEX to some concepts
present in more modern languages.

Acknowledgements
When I decided to use TEX to demonstrate ‘alter-
native’ implementations of some features related to
programming, I was quite doubtful about the re-
sult, even if I knew that some were interested. But
feedback was positive, some students were encour-
aged to go thoroughly into implementing new TEX
commands for their reports and asked me for some
questions about that. Thanks to them, they encour-
aged me to go on with this way in turn.

Appendix: \global in Scheme
In this appendix, we show that a construct like
\global in TEX may be needed. Then we will ex-
plain why it cannot be implemented in Scheme us-
ing a ‘natural’ way.

Let us consider that we are handling dimensions,
that is, a number and a measurement unit—given
as a symbol—like in TEX or DSSSL. A robust solution
consists of using a list prefixed by a marker—e.g.,
((*dimension*) 1609344 mm)—such that all the
lists representing dimensions—of type dimension—
share the same head element, defined once. To put
this marker only when the components—a number
and a unit29—are well-formed, it is better for the
access to this marker to be restricted to the func-
tions interfacing this structure. So here is a pro-
posal for an implementation of functions dealing
with dimensions:

(let ((*marker* ’(*dimension*)))
(define (mk-dimension r unit)

;; Performs some checks and creates an
;; object of type dimension, whose
;; components are r and unit.
...)

(define (dimension? x)
;; Returns #t if x is of type dimension, #f

Using TEX’s Language within a Course about Functional Programming EUROTEX 2009 75

(define mk-dimension)
(define dimension?)
(define dimension->mm)

(let ((*marker* ’(*dimension*)) ; Only the cell’s address is relevant.
(allowed-unit-alist
‘((cm . ,(lambda (r) (* 10 r))) ; Each recognised unit is associated with a function giving the

(mm . ,values)))) ; corresponding length in millimeters.
(set! mk-dimension

(let ((allowed-units (map car allowed-unit-alist)))
(lambda (r unit)

(and (real? r) (>= r 0) (memq unit allowed-units) (list *marker* r unit)))))
(set! dimension? (lambda (x) (and (pair? x) (eq? (car x) *marker*))))
(set! dimension->mm

(lambda (dimension-0) ; dimension-0 is supposed to be of type dimension.
((cdr (assq (caddr dimension-0) allowed-unit-alist)) (cadr dimension-0)))))

Figure 6. Global definitions sharing a common lexical environment in Scheme.

;; otherwise.
...)

(define (dimension->mm dimension-0)
;; Returns the value of dimension-0,
;; expressed in millimiters.
...))

Unfortunately, this does not work, because define
special forms inside the scope of a let special form
are viewed as local definitions, like \def inside a
group in TEX. So, mk-dimension, dimension?, and
dimension->mm become unaccessible as soon as this
let form is processed. The solution is to define
these three variables globally, and modify them in-
side a local environment, as shown in Fig. 6.

This modus operandi is quite artificial, because it
uses side effects, whereas functional programming
aims to avoid such as far as possible. But in reality,
from a point of view related to conception, there is
no ‘actual’ side effect, in the sense that variables like
mk-dimension, dimension?, and dimension->mm
would have been first given values, and then mod-
ified. The first bindings may be viewed as prelim-
inary declarations30; however, using ‘global’ decla-
rations for variables introduced within a local en-
vironment would be clearer, as in TEX. To sum up,
such an example illustrates that some use of assign-
ment forms are not related to actual side effects,
and TEX’s \global command allows us to explain
how this example could appear using a ‘more func-
tional’ form, without any side effect31.

References
[1] Harold ABELSON and Gerald Jay SUSSMAN,

with Julie SUSSMAN: Structure and Inter-
pretation of Computer Programs. The MIT

Press, McGraw-Hill Book Company. 1985.
[2] Neil BRADLEY: The Concise SGML Compan-

ion. Addison-Wesley. 1997.
[3] Alonzo CHURCH: The Calculi of Lambda-

Conversion. Princeton University Press.
1941.

[4] Jean-Christophe FILLIÂTRE and Claude
MARCHÉ: The BIBTEX2HTML Home Page.
June 2006. http://www.lri.fr/
~filliatr/bibtex2html/.

[5] Jonathan FINE: “TEX as a Callable Func-
tion”. In: EuroTEX 2002, pp. 26–30.
Bachotek, Poland. April 2002.

[6] Michael J. GORDON, Arthur J. MILNER and
Christopher P. WADSWORTH: Edinburgh
LCF. No. 78 in LNCS. Springer-Verlag.
1979.

[7] Paul GRAHAM: ANSI COMMON LISP. Series
in Artificial Intelligence. Prentice Hall,
Englewood Cliffs, New Jersey. 1996.

[8] Jean-Michel HUFFLEN : Programmation
fonctionnelle en Scheme. De la conception à
la mise en œuvre. Masson. Mars 1996.

[9] Jean-Michel HUFFLEN : Programmation
fonctionnelle avancée. Notes de cours et
exercices. Polycopié. Besançon. Juillet
1997.

[10] Jean-Michel HUFFLEN : Introduction au λ-
calcul (version révisée et étendue). Polycopié.
Besançon. Février 1998.

[11] Jean-Michel HUFFLEN: “A Tour around
MlBIBTEX and Its Implementation(s)”. Bi-
uletyn GUST, Vol. 20, pp. 21–28. In
BachoTEX 2004 conference. April 2004.

[12] Jean-Michel HUFFLEN: “Managing Lan-
guages within MlBIBTEX”. TUGboat, Vol. 30,

76 MAPS 39 Jean-Michel Hufflen

no. 1, pp. 49–57. July 2009.
[13] International Standard ISO/IEC

10179:1996(E): DSSSL. 1996.
[14] Java Technology. March 2008. http:

//java.sun.com.
[15] Richard KELSEY, William D. CLINGER,

Jonathan A. REES, Harold ABELSON, Nor-
man I. ADAMS IV, David H. BARTLEY, Gary
BROOKS, R. Kent DYBVIG, Daniel P. FRIED-
MAN, Robert HALSTEAD, Chris HANSON,
Christopher T. HAYNES, Eugene Edmund
KOHLBECKER, JR, Donald OXLEY, Kent M.
PITMAN, Guillermo J. ROZAS, Guy Lewis
STEELE, JR, Gerald Jay SUSSMAN and
Mitchell WAND: “Revised5 Report on the
Algorithmic Language Scheme”. HOSC,
Vol. 11, no. 1, pp. 7–105. August 1998.

[16] Brian W. KERNIGHAN and Denis M.
RITCHIE: The C Programming Language.
2nd edition. Prentice Hall. 1988.

[17] Donald Ervin KNUTH: Computers & Type-
setting. Vol. A: The TEXbook. Addison-
Wesley Publishing Company, Reading,
Massachusetts. 1984.

[18] Matthias KÖPPE: A BIBTEX System in
Common Lisp. January 2003. http:
//www.nongnu.org/cl-bibtex.

[19] Thomas LACHAND-ROBERT : La maîtrise de
TEX et LaTEX. Masson. 1995.

[20] Leslie LAMPORT: LaTEX: A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts. 1994.

[21] Xavier LEROY, Damien DOLIGEZ, Jacques
GARRIGUE, Didier RÉMY and Jéróme
VOUILLON: The Objective Caml System.
Release 0.9. Documentation and User’s Man-
ual. 2004. http://caml.inria.fr/pub/
docs/manual-ocaml/index.html.

[22] Bill LEWIS, Dan LALIBERTE, Richard M.
STALLMAND and THE GNU MANUAL GROUP:
GNU Emacs Lisp Reference Manual for Emacs
Version 21. Revision 2.8. January 2002.
http://www.gnu.org/software/emacs/
elisp-manual/.

[23] John MCCARTHY: “Recursive Functions of
Symbolic Expressions and Their Computa-
tion by Machine, Part I”. Communications
of the ACM, Vol. 3, no. 4, pp. 184–195.
April 1960.

[24] Frank MITTELBACH and Michel GOOSSENS,
with Johannes BRAAMS, David CARLISLE,
Chris A. ROWLEY, Christine DETIG and
Joachim SCHROD: The LaTEX Companion.
2nd edition. Addison-Wesley Publishing

Company, Reading, Massachusetts. August
2004.

[25] Chuck MUSCIANO and Bill KENNEDY: HTML
& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[26] Oren PATASHNIK: BIBTEXing. February 1988.
Part of the BIBTEX distribution.

[27] Lawrence C. PAULSON: ML for the Working
Programmer. 2nd edition. Cambridge
University Press. 1996.

[28] Simon PEYTON JONES, ed.: Haskell 98
Language and Libraries. The Revised Report.
Cambridge University Press. April 2003.

[29] Erik T. RAY: Learning XML. O’Reilly
& Associates, Inc. January 2001.

[30] Denis B. ROEGEL : « Anatomie d’une ma-
cro ». Cahiers GUTenberg, Vol. 31, p. 19–27.
Décembre 1998.

[31] Michael SPERBER, William CLINGER,
R. Kent DYBVIG, Matthew FLATT, Anton
VAN STRAATEN, Richard KELSEY, Jonathan
REES, Robert Bruce FINDLER and Jacob
MATTHEWS: Revised6 Report on the Algo-
rithmic Language Scheme. September 2007.
hhtp://www.r6rs.org.

[32] George SPRINGER and Daniel P. FRIEDMAN:
Scheme and the Art of Programming. The
MIT Press, McGraw-Hill Book Company.
1989.

[33] Guy Lewis STEELE, JR., with Scott E.
FAHLMAN, Richard P. GABRIEL,
David A. MOON, Daniel L. WEINREB,
Daniel Gureasko BOBROW, Linda G.
DEMICHIEL, Sonya E. KEENE, Gregor
KICZALES, Crispin PERDUE, Kent M. PIT-
MAN, Richard WATERS and Jon L WHITE:
COMMON LISP. The Language. Second
Edition. Digital Press. 1990.

[34] “TEX Beauties and Oddities. A Permanent
Call for TEX Pearls”. In TEX: at a turning
point, or at the crossroads? BachoTEX 2009,
pp. 59–65. April 2009.

[35] Simon THOMPSON and Steve HILL: “Func-
tional Programming through the Curricu-
lum”. In: FPLE ’95, pp. 85–102. Nijmegen,
The Netherlands. December 1995.

[36] W3C: XSL Transformations (XSLT). Ver-
sion 2.0. W3C Recommendation.
Edited by Michael H. Kay. January
2007. http://www.w3.org/TR/2007/
WD-xslt20-20070123.

[37] Larry WALL, Tom CHRISTIANSEN and Jon
ORWANT: Programming Perl. 3rd edition.
O’Reilly & Associates, Inc. July 2000.

[38] Halina WĄTRÓBSKA i Ryszard KUBIAK: „Od

Using TEX’s Language within a Course about Functional Programming EUROTEX 2009 77

XML-a do TEX-a, używając Emacsa i Ha-
skella“. Biuletyn GUST, tom 23, strony 35–
39. In BachoTEX 2006 conference. kweicień
2006.

[39] Jǐri ZLATUŠKA: “NTS: Programming Lan-
guages and Paradigms”. In: EuroTEX 1999,
pp. 241–245. Heidelberg (Germany).
September 1999.

Notes
1. The most recent pearls can be found in [34].
2. American National Standards Institute.
3. HyperText Markup Language, the language of Web
pages. [25] is a good introduction to it.
4. Categorical Abstract Machine Language.
5. MultiLingual BIBTEX.
6. This language has been named after logician Haskell
Brooks Curry (1900–1982).
7. New Typesetting System. It was finally developed us-
ing Java [14].
8. COMMON LISP Object System.
9. ‘Programmation fonctionnelle avancée’, in French. In
2009, it has been renamed into ‘Outils pour le dévelop-
pement’ (Tools for Development), but changes about the
contents are slight.
10. The program of this 2nd academic year unit can be
found in French in [8].
11. ‘Lisp’ stands for ‘LISt Processing, because Lisp di-
alects’ major structures are linked lists. Their syntax is
common and based on fully-parenthesised prefixed ex-
pressions. Lisp’s first version, designed by John McCarthy,
came out in 1958 [23]. This language has many descen-
dants, the most used nowadays being COMMON LISP and
Scheme.
12. ‘Dynamically typed’ means that we can know the type
of an object at run-time. Examples are given in Figs. 1
& 2.
13. ‘ML’ stands for ‘MetaLanguage’ and has been initially
developed within the formal proof system LCF (Logic for
Computable Functions) [6]. Later on, it appears as an ac-
tual programming language, usable outside this system,
and its standardisation resulted in the Standard ML lan-
guage.
14. There are several definitions of strong typing. The
most used within Functional programming is that the
variables are typed at compile-time. Some courses being
the same level are based on a strongly typed functional
programming language, examples are CAML or Haskell.
Is that a choice better than Scheme? This is a busy de-
bate. . . but it is sure that these courses do not emphasise
the same notions than a course based on a Lisp dialect.
15. Document Style Semantics Specification Language.
16. Standard Generalised Markup Language. Ancestor of
XML (eXtensible Markup Language), it is only of a histor-
ical interest now. Readers interested in SGML (resp. XML)
can refer to [2] (resp. [29]).
17. eXtensible Stylesheet Language Transformations.
18. Nowadays, the call by value is the most commonly

used strategy—in particular, in C and in Scheme—the ar-
gument expression(s) of a function are evaluated before
applying this function. For example, the evaluation of the
expression (factorial (+ 1 9))—see Fig. 1—begins
with evaluating (+ 9 1) into 10, and then factorial is
applied to 10. In other strategies, such as call by name or
call by need, argument expressions are evaluated whilst
the function is applied.
19. The extent of a variable may be viewed as its life-
time: if it is limited, the variable disappears as soon as
the execution of the block establishing it terminates; if
it is unlimited, the variable exists as long as reference’s
possibility remains. In Scheme, variables have unlimited
extent.
20. A variable capture occurs when another binding than
expected is used.
21. On the contrary, Scheme interpreters do not evaluate
a lambda expression’s body. They use a technique—so-
called lexical closure—allowing the function to retrieve
its definition environment.
22. There is another distinction in Scheme, between
‘physical’ equality (function eq?) and ‘visual’ one (func-
tion equal?) [31, § 11.5].
23. COMMON LISP allows that about variables and func-
tions, by means of the functions boundp and fboundp [33,
7.1.1].
24. Macros exist in Scheme: the best way to implement
them is the use of hygienic macros, working by pattern-
matching [31, §§ 11.2.2 & 11.19].
25. As an example of handling several namespaces in
COMMON LISP, let is used for local variables, whereas
local recursive functions are introduced by labels, as
shown in Fig. 2.
26. For example, there is no hygienic macro in COMMON
LISP.
27. Practical Extraction Report Language.
28. Editing MACros.
29. . . . although we consider only centimeters and mil-
limeters in the example given in Fig. 6, for sake of sim-
plicity.
30. In Scheme’s last version, a variable can be defined
without associated value [31, § 11.2.1]. That was not the
case in the version before [15, § 5.2], so such a variable
declaration was given a dummy value, which enforced
the use of side effects.
31. Many data structures, comparable with our type
dimension, are used within MlBIBTEX’s implementation,
as briefly sketched in [12]. Another technique, based on
message-passing, allows us to avoid side effects. Only one
function would be defined to manage dimensions, and
the three functionalities implemented by mk-dimension,
dimension?, and dimension->mm would be implemented
by messages sent to the general function, the result being
itself a function.

Jean-Michel Hufflen
LIFC (EA CNRS 4157),
University of Franche-Comté, 16, route de Gray,
25030 Besançon Cedex, France

