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1.1 Introduction

Sensorless control of electrical machines is a topic that imposes the challenging problem

of eliminating the use of sensors for mechanical variables (position and speed) for controller

design purposes (Rajashekara et al. 1996). Its solution is both important from the applications

perspective (due to its economic impact) and quite attractive from the control theory approach

(for the mathematical complexity that it exhibits). In spite of the maturity level achieved for

understanding the usual strategies implemented in industrial applications as well as in the

proposition of novel control schemes (Dawson et al. 1998; Khorrami et al. 2003; Nam 2010;

Ortega et al. 1998), the sensorless control problem is currently recognized as a longstanding

essentially open problem.

In this paper we are interested in the sensorless control for non–salient permanent magnet

synchronous motors (PMSM). For solving it, three variables must be estimated out of the

measurement of the electrical coordinates: rotor position and speed, and load torque—

the latter assumed constant. Heuristically conceived solutions for this problem abound in

the literature, see e.g. (Fabio et al. 2010; Ichikawa et al. 2006) for recent surveys. Many

results are also available for the (practically unrealistic) cases of known initial position

(Ezzat et al. 2010; Tomei and Verrelli 2008) or zero load torque (Ezzat et al. 2010a), or

the (theoretically unjustifiable) assumption of bounded trajectories (Ezzat et al. 2010). An

approximate stability analysis of the scheme proposed in (Matsui 1996) is carried out in

(Nahid et al. 2001). In (Marino et al. 2008) a probably stable sensorless scheme for wound

rotor synchronous motors is proposed. A key difference of the latter machine with the PMSM
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2 Sensorless speed control of PMSM

is the availability of flux measurements that considerably simplifies the observation problem.

The observability properties of PMSMs have been recently studied in (Ezzat et al. 2010a;

Ortega et al. 2011; Zaltni et al. 2009).

Among other techniques, like the use of high frequency electric variables or the

implementation of extended Kalman filters, for non–salient pole PMSMs (also known as

“surface mounted” PMSMs) the simplest and most common rotor position estimation strategy

considers the estimation of the back–emf induced by the permanent magnets (Ichikawa et
al. 2006), hence it is adopted in this paper. However, instead of using standard methods,

that are difficult to tune for standstill and low–speed regimes, it is considered the globally

(under some conditions, even exponentially) stable position observer reported in (Ortega et
al. 2011), which has been successfully evaluated in an experimental setting, combining it

with an ad–hoc linear speed estimator and a standard field–oriented controller (Lee et al.
2010), but without a theoretical justification.

The main objective of this paper is to prove that direct application of two well–established

design methodologies—immersion and invariance (I&I) (Astolfi et al. 2007) for the observer,

and interconnection and damping assignment passivity–based control (IDA–PBC) (Ortega

and Garcia–Canseco 2004) for the control—can be combined with the observer of (Ortega

et al. 2011) to design an asymptotically stable sensorless controller. The result builds upon

some preliminary work reported in (Ortega et al. 2011; Shah et al. 2009) where, assuming

position is known, I&I techniques are used to design a speed and load torque observer, and

in (Akrad et al. 2007; Petrovic et al. 2001) where full state–feedback, globally convergent,

IDA–PBCs for the PMSM are proposed. To the best of our knowledge, this is the first time a

complete theoretical analysis of a sensorless controller is done—under reasonable practical

and theoretical assumptions.

The remaining of the paper is organized as follows. The models of the PMSM and the

problem formulation are given in Section 1.2. The controller structure and the main result

are presented in Section 1.3. In Section 1.4 the limitations of a linearization–based design

are highlighted. A full information IDA–PBC is given in Section 1.5. Section 1.6 recalls the

position observer of (Ortega et al. 2011), while in Section 1.7 a new I&I speed and load torque

observer is proposed. The proof of the main result is given in Section 1.8. Some simulation

and experimental results are given in Section 1.9, including a comparison with the heuristic

controller of (Lee et al. 2010). Finally, we wrap–up the paper with concluding remarks in

Section 1.10.

1.2 PMSM models and problem formulation

The classical fixed–frame (αβ) model of the unsaturated non–salient PMSM is given by

(Chiasson 2005; Krause 1986)

L
diαβ
dt

= −Riαβ − npωΦJ
[

cos(θ)
sin(θ)

]
+ vαβ

Jω̇ = npΦi
�
αβJ

[
cos(θ)
sin(θ)

]
− τL

θ̇ = npω (1.1)
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where J :=

[
0 −1
1 0

]
, iαβ =

[
iα
iβ

]
and vαβ =

[
vα
vβ

]
are the stator currents and motor

terminal voltages, respectively, ω is the rotor angular velocity, with 1
np

θ the corresponding

position, L is the stator inductance, R is the stator resistance, np is the number of pole pairs,

J is the moment of inertia (normalized with np), Φ is the magnetic flux and τL is the load

torque, which is assumed constant, but unknown.

To design the observer it is convenient to embed the dynamics (1.1) into the higher–

dimensional system

L
diαβ
dt

= −Riαβ − npωΦJ ραβ + vαβ (1.2)

Jω̇ = npΦi
�
αβJ ραβ − τL (1.3)

ρ̇αβ = npωJ ραβ (1.4)

where the vector

ραβ :=

[
ρα
ρβ

]
=

[
cos(θ)
sin(θ)

]
, (1.5)

is defined. Notice that, if ραβ is known, θ can be easily reconstructed inverting the

trigonometric functions.

The model (1.1) can be written in rotating (dq) coordinates by means of the transformation

eJ θ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
= ραI2 + ρβJ , (1.6)

with I2 the 2× 2 identity matrix, to obtain

L
di

dt
= −(RI2 + npωLJ )i− npωΦJ e1 + v

Jω̇ = npΦi2 − τL

θ̇ = npω, (1.7)

where the rotated signals

i =

[
i1
i2

]
:= e−J θiαβ , v =

[
v1
v2

]
:= e−J θvαβ , e1 =

[
1
0

]
:= e−J θραβ , (1.8)

are defined.

Remark 1. The main advantage of the dq–model is that it transforms the periodic orbits

associated to the constant speed operation of the αβ model of the PMSM into equilibrium

points. See Subsection 1.5.2.

Remark 2. The industry standard field–oriented control (Nam 2010) is designed for this

model, hence the need to reconstruct θ. Indeed, it must be recalled that the input is vαβ while

the measurable output is iαβ , but θ is an unmeasurable variable.

1.2.1 Problem formulation

The main contribution of the paper is the solution of the following.

Sensorless control problem. Consider the PMSM model (1.2)–(1.4) with some desired
constant speed ω� �= 0, under the following conditions.
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A.1 The only variables available for measurement are iαβ .

A.2 The load torque τL is constant but unknown.

A.3 The parameters R,L,Φ and J are known.

Design an output–feedback controller that ensures the existence of a set of initial conditions,
which guarantees that all signals are bounded and that ω(t) converges, exponentially fast, to
ω�.
Remark 3. Even though we have restricted to the case of constant desired speed and constant

load torque, it is clear that the controller, being exponentially stable hence robust, will be able

to track (slowly) time–varying references and reject changes in the load torque. Interestingly,

the simulations and experimental results of Section 1.9 show that the proposed controller

yields a good performance even in the face of fast changes in the speed reference and the load

torque. The constraint that ω� �= 0 is necessary in the present (sensorless) context, because it

is easy to show, see e.g., (Ezzat et al. 2010a; Ortega et al. 2011; Zaltni et al. 2009), that the

rank condition for observability is violated when the motor is at standstill. Practically, this

assumption is not restrictive because, once again, the intrinsic robustness of the controller

accommodates sign changes in the desired speed.

1.3 Controller structure and main result
To simplify the presentation of the main result it is convenient to explain the controller

structure and define the notation. The proposed controller is a fourth–order certainty–

equivalent version of a full–information globally asymptotically stabilizing controller, which

is a static state–feedback IDA–PBC of the form vαβ = q(ραβ , ω, τL, iαβ).
The certainty equivalent version is obtained replacing ραβ , ω, τL by their estimates. The

dynamics of the controller is, then, due to the I&I observer, which generates the estimates

that we denote ρ̂αβ , ω̂, τ̂L, respectively. The controller, combined with the third–order PMSM

dynamics (1.7) yields a seventh–order closed–loop system.

As usual, the analysis is carried–out in error coordinates, which is a mixture of regulation

errors, (·)− (·)�, and estimation errors, (̂·)− (·). To simplify the notation, all these errors

are lumped into a seventh–dimensional vector denoted χ, and defined as1

χ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ1

χ2

χ3

χ4

χ5

χ6

χ7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
:=

⎡⎢⎢⎢⎢⎣
L(i− i�)
J(ω − ω�)

e−J θ (ρ̂αβ − ραβ)
ω̂ − ω
τ̂L − τL

⎤⎥⎥⎥⎥⎦ . (1.9)

Notice that the errors in both, the currents and the vector ραβ , are defined in the dq
coordinates.

Our main result is the following proposition, whose proof is given in Subsection 1.8.4.

1The constants L and J are introduced because—consistent with the Hamiltonian formulation—the IDA–PBC

is derived with the motor dynamics represented using the energy variables, flux and momenta.
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Proposition 1.3.1 There exists a fourth–order observer–based speed regulator of the form

ψ̇ = g(ψ, iαβ , vαβ)⎡⎣ ρ̂αβ
ω̂
τ̂L

⎤⎦ = h(ψ, iαβ , vαβ)

vαβ = q(ρ̂αβ , ω̂, τ̂L, iαβ)

where ψ ∈ R4 and g, h, q are suitably defined functions that solves the sensorless control
problem2. More precisely, the closed–loop error dynamics is described by a differential
equation of the form

χ̇ = f(χ), (1.10)

with zero a (locally) exponentially stable equilibrium. Consequently, there exist constants
m, ε, α > 0 such that the following implication holds(|χ(0)| ≤ ε ⇒ |χ(t)| ≤ me−αt|χ(0)|) ,
for all t ≥ 0, where | · | is the Euclidean norm.

1.4 Unavailability of a linearization–based design
Before proceeding with the design of a controller for the nonlinear model it is natural to

explore the possibility of basing the design on the PMSMs linearization. This question

is particularly relevant in our case since, as explained below, the stability analysis of the

proposed controller relies on the linearization of the closed–loop.

To answer this question, it is convenient to work with the dq model (1.7), with measurable

output signals the currents iαβ . Fixing a constant desired speed ω�, and its corresponding

constant equilibrium current i�, define the error signals

δx(t) =

⎡⎣ i(t)− i�

ω(t)− ω�

θ(t)− θ�(t)

⎤⎦ , δv := v − v�,

where θ�(t) = θ(0) + ω�t, and v� is the constant control signal that assigns the equilibrium

(i�, ω�). Now, as the measurable signal is iαβ , invoking (1.8) we define the “output” error

δy(t) := eJ θ(t)i(t)− eJ θ�(t)i�.

The linearization of (1.7) and the output map above, along the equilibrium trajectory, yields

the linear time–varying system

δ̇x = A�δx +Bδv

δy = C(t)δx,

2The output–feedback controller consists of (1.18), the position observer (1.23), (1.25) and the speed–load torque

observer (1.30).
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where

A� :=

⎡⎣ −(RL I2 + npω
�J ) −npJ (ΦLe1 + i�) 0

np

J Φe�1 J� 0 0
0 np 0

⎤⎦ , B :=

⎡⎣ 1
LI2
0
0

⎤⎦
C(t) :=

[
eJ θ�(t) 0 eJ θ�(t)J i�

]
.

Although, apparently, this is an innocuous linear time–varying system for which an observer–

based controller could be designed, there are several aspects that stymies this task. First of

all, the equilibrium is unknown because, on one hand, i� depends on the unknown load torque

τL. On the other hand, the position θ�(t) is also unknown, due to its dependence on θ(0)—
see the remark below. Consequently, the system coefficients are unknown. On top of that, the

“output” δy is known up to the bias term eJ θ�(t)i�. In summary, since there exist products of

unknown parameters and the unmeasurable state ω, designing an output–feedback controller

implies the solution of a nonlinearly parameterized adaptive observer problem that—to the

best of our knowledge—is not possible with existing techniques.

Remark 4. It is sometimes argued that the motor operation often starts at a known rotor

position, hence θ�(t) can be computed. It is obvious that this “trajectory–dependent”

controller suffers, in the face of disturbances, from serious robustness problems—that, as

is well–known, is the main drawback of schemes based on open–loop integration.

1.5 Full information control
In this section a full–information IDA–PBC, e.g., assuming known the state and the load

torque, similar to the one reported in (Akrad et al. 2007; Petrovic et al. 2001), is presented.

This scheme serves as a basis for our certainty–equivalent design.

1.5.1 Port–Hamiltonian model

Following the IDA–PBC methodology (Ortega et al. 2002; Ortega and Garcia–Canseco 2004)

it is convenient to write the system dynamics in port–Hamiltonian form (van der Schaft 2000),

thus we define the state vector as

x =

[
x12

x3

]
=

[
Li
Jω

]
(1.11)

and the energy function H(x) = 1
2x

�Qx, with

Q =

[
1
LI2 0
0 1

J

]
. (1.12)

Then, the dq system (1.7) can be written in the form

ẋ = F (x)∇H(x) +

[
v

−τL

]
(1.13)

where ∇ = ( ∂
∂x )

� and the interconnection and damping matrices are lumped into

F (x) =

[ −RI2 −npJ (x12 +Φe1)
np(x12 +Φe1)

�J� 0

]
.
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Notice that Ḣ = −R|i|2 + v�i− τLω, which is the power balance equation for the motor.

The assignable equilibrium set for (1.13) is given by

{x� ∈ R3 | x�
2 =

L

npΦ
τL},

with x�
1 and x�

3 arbitrary. Consistent with engineering practice, and without loss of generality,

we will fix x�
1 = 0 in the sequel. See the remark below.

The objective of IDA–PBC is to find a state–feedback control law v = v(x) that assigns to

the closed–loop a desired energy function, say Hd(x), which satisfies x� = arg min Hd(x).
This is achieved modifying the interconnection and damping matrices, endowing the closed–

loop with the port–Hamiltonian form

ẋ = Fd(x)∇Hd(x), (1.14)

where Fd(x) + F�
d (x) ≤ 0. This ensures stability of the equilibrium x� with Lyapunov

function Hd(x). Under some standard detectability assumptions, e.g., Lemma 3.8 of (van

der Schaft 2000), the equilibrium is shown to be asymptotically stable.

1.5.2 A full–information IDA–PBC

Proposition 1.5.1 Consider the PMSM dq model (1.13) with a desired equilibrium point

x� =

⎡⎣ 0
L

npΦ
τL

Jω�

⎤⎦ . (1.15)

The full–information control

vFI = dx12 +

[ − L
JΦτLx3

npΦω
� + r

npΦ
τL

]
, (1.16)

where d := R−r
L , with r > 0 a damping injection term, renders x� globally asymptotically

stable.

Proof. Define the desired closed–loop energy function as the quadratic in the errors form

Hd(χ13) =
1

2
χ�
13Qχ13,

with

χ13 =

[
χ12

χ3

]
=

[
x12 − x�

12

x3 − x�
3

]
,

where Q is as in (1.12).

In order to achieve the required matching between the right hand sides of (1.13) and (1.14),

it is considered that matrix Fd(x) is partitioned in an appropriate way, with elements given

by Fij(x), that x�
1 = 0 and the definition of x�

2 in (1.15). Thus, the third row of this marching

equation, which actually states the only constraint to be solved since the first and second
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components can be easily satisfied with a suitable selection of the control inputs v1 and v2,

can be written in an equivalent way as

npΦ

L
χ2 =

1

L
F31χ1 +

1

L
F32χ2 +

1

J
F33χ3.

Then it is immediate to recognize that a solution is given by

F31 = F33 = 0; F32 = npΦ.

The non–positivity condition on the symmetric part of Fd(x) suggests to define F23 =
−F32 = −npΦ. Replacing this choice in the second row of the matching equation yields

−R

L
x2 − np

J
x1x3 + v2 =

1

L
F21x1 +

1

L
F22(x2 − x�

2) +
npΦ

J
x�
3,

where the term
np

J Φx3 has been canceled. A solution to this equation is obtained selecting

F21 = −Lnp

J x3, F22 = −r and

v2 = dx2 +
r

L
x�
2 +

npΦ

J
x�
3,

which, upon replacement of the definitions of x�
2 and x�

3, yields the expression given in the

proposition. With the definitions given up to this point, the third component of the matching

equation can be satisfied taking F11 = −r, F12 =
Lnp

J x3, F13 = 0 and

v1 = dx1 − np

J
x�
2x3

Finally, the closed–loop system takes the desired port–Hamiltonian form (1.14) with

Fd(x) =

⎡⎣ −r
Lnp

J x3 0

−Lnp

J x3 −r −npΦ
0 npΦ 0

⎤⎦ , (1.17)

hence the equilibrium x� is stable. Asymptotic stability follows verifying that

Ḣd = − r

L2
|χ12|2

and that |χ12|2 is a detectable output for the closed–loop system (1.14). ∇∇∇

1.5.3 Certainty–equivalent sensorless controller

If the states are measurable, the control law to be practically implemented is obtained

combining (1.16) with

vFI
αβ = eJ θvFI = (ραI2 + ρβJ )vFI .

However, under the impossibility for measuring the states ραβ , ω and the unknown nature of

the perturbation τL the proposed implementable sensorless controller takes the form

vαβ = (ρ̂αI2 + ρ̂βJ )v̂

v̂ := dx12 +

[ −L
Φ τ̂Lω̂

npΦω
� + r

npΦ
τ̂L

]
. (1.18)
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Notice that since the controller in dq coordinates requires the currents x12 then its

implementable structure is given in terms of the estimated currents in the αβ reference frame

given by (ρ̂αI2 + ρ̂βJ )x12.

1.6 Position observer of (Ortega et al. 2011)
In this section the observer presented in (Ortega et al. 2011), which estimates the

rotor position θ via the observation of the flux, is briefly revisited. Also, an alternative

representation of the observer, which is instrumental for the speed–load torque observer given

in the next section, is presented. Before presenting the results a word on notation is in order.

To facilitate the reference to (Ortega et al. 2011), the notation used in this paper is kept here.

In particular, we define the observation error λ̃ := λ̂− λ, with λ the stator flux and λ̂ its

estimate.

1.6.1 Flux observer and stability properties

In PMSMs the stator flux, λ, is related with the currents and voltages via (Krause 1986)

λ = Liαβ +Φραβ . (1.19)

Therefore, (1.2) can be equivalently written as

λ̇ = −Riαβ + vαβ . (1.20)

This representation of the electrical dynamics of the PMSM is used in (Ortega et al. 2011)

to develop a position observer. To explain this observer, we make the important observations

that λ̇ is measurable, and that the vector function

η(λ) := λ− Liαβ , (1.21)

satisfies

|η(λ)| = Φ. (1.22)

In (Ortega et al. 2011) it is shown that

˙̂
λ = −Riαβ + vαβ + γη(λ̂)[Φ2 − |η(λ̂)|2], (1.23)

where γ > 0 is an observer gain, is a gradient descent observer for the flux. It is also

proven that the dynamics of the observation error λ̃ is described by the second order non–

autonomous equation

˙̃
λ = −γ[|λ̃|2 + 2Φλ̃�ραβ(t)][λ̃+Φραβ(t)], (1.24)

which enjoys the following remarkable stability properties.

P1. (Global stability) For arbitrary speeds, the disk

{λ̃ ∈ R2| |λ̃| ≤ 2Φ},
is globally attractive. This means, that all trajectories of (1.24) will converge to this

disk.
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P2. (Exponential stability under persistent excitation) The zero equilibrium of (1.24) is

exponentially stable if there exists constants T,Δ > 0 such that

1

T

∫ t+T

t

ω2(s)ds ≥ Δ,

for all t ≥ 0.

P3. (Constant non–zero speed) If the speed is constant and satisfies

|ω| > 1

4
γΦ2,

then the origin is the unique equilibrium of (1.24) and it is globally asymptotically

stable3.

1.6.2 Description of the observer in terms of ραβ
Instrumental for the development of the position and load–torque observer, as well as for the

analysis of the closed–loop system, is the representation of the previous flux observer, and its

estimation error, in terms of ραβ .

Proposition 1.6.1 From (1.19) and the observer (1.23) define the estimate

ρ̂αβ =
1

Φ

(
λ̂− Liαβ

)
(1.25)

and the error ρ̃αβ := ρ̂αβ − ραβ . The observer (1.23) may be written as

˙̂ραβ = −γΦ2
(|ρ̂αβ |2 − 1

)
ρ̂αβ + npωJ ραβ , (1.26)

while the estimation error ρ̃αβ satisfies

˙̃ραβ = −γΦ2
(|ρ̃αβ |2 + 2ρ̃�αβραβ

)
(ρ̃αβ + ραβ) . (1.27)

Proof. First, notice that λ̃ = Φρ̃αβ , which replaced in (1.24) yields

˙̃
l = −γΦ3

(|ρ̃αβ |2 + 2ρ̃�αβραβ
)
(ρ̃αβ + ραβ)

leading directly to (1.27). Now, notice that |ρ̃αβ |2 + 2ρ̃�αβραβ = |ρ̂αβ |2 − 1, while ˙̃ραβ =
˙̂ραβ − npωJ ραβ , which replaced in (1.27) yields (1.26). ∇∇∇

1.7 An I&I speed and load torque observer
In this section an observer for the unmeasurable variables ω and τL is designed following the

I&I methodology (Astolfi et al. 2007). The construction proceeds along the following steps.

S1. The parametrization of the mechanical dynamics—in terms of ραβ—given in (1.3), as

well as the representation of the flux observer (1.23) given in (1.26), are used.

3Notice the presence of the free adaptation gain γ on the lower bound.
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S2. The term ραβ in both equations is decomposed as the sum of its estimate ρ̂αβ and the

error ρ̃αβ , and we treat the latter as a perturbation.

S3. A globally exponentially convergent I&I observer of ω and τL is designed neglecting

the perturbation in the system4.

The mechanical equation (1.3) and the position observer (1.26) can be written in the

“perturbed” form

Jω̇ = npΦi
�
αβJ ρ̂αβ − τL − (npΦi

�
αβJ ρ̃αβ)

˙̂ραβ = −γΦ2
(|ρ̂αβ |2 − 1

)
ρ̂αβ + npωJ ρ̂αβ − (npωJ ρ̃αβ). (1.28)

Their corresponding unperturbed forms, i.e., with ρ̃αβ = 0, are given by

Jω̇ = npΦi
�
αβJ ρ̂αβ − τL

˙̂ραβ = −γΦ2
(|ρ̂αβ |2 − 1

)
ρ̂αβ + npωJ ρ̂αβ

τ̇L = 0, (1.29)

where, for completeness, the last (trivial) equation has been added.

Proposition 1.7.1 Consider the system (1.29) and the speed and load torque observer

ξ̇ = A33ξ +

[
a2

J − npa
2
1

npa1a2

]
A
(
ρ̂β
ρ̂α

)
+

[ npΦ
J i�αβJ ρ̂αβ

0

]
[

ω̂
τ̂L

]
= ξ +

[
a1
−a2

]
A
(
ρ̂β
ρ̂α

)
(1.30)

where A(·) is an operator defined in Appendix A5, and A33 is the Hurwitz matrix

A33 :=

[ −npa1 − 1
J

npa2 0

]
, a1, a2 > 0. (1.31)

For some α > 0 and for all initial conditions (ω(0), ξ(0)) ∈ R×R2,

lim
t→∞ eαt

∣∣∣∣[ ω̂(t)− ω(t)
τ̂L(t)− τL

]∣∣∣∣ = 0. (1.32)

That is, (1.30) is a globally exponentially convergent speed and load torque observer for the
unperturbed system (1.29).

Proof. Following the I&I procedure (Astolfi et al. 2007), we define a manifold (in the

extended state-space of the plant and the observer) that should be rendered attractive and

invariant. As is well–known, to achieve the latter objective a partial differential equation

(PDE) should be solved.

4The perturbation term that is neglected in this section is lumped into the overall error dynamics, whose stability

is analyzed in Section 1.8.
5As explained below, the operator A(z), which is widely used in the drives community, is “essentially” equal to

arctan(z), and is introduced to avoid singularities and jumps.
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For the system (1.29) we propose the manifold

M := {(ξ, ω, ρ̂αβ) : ξ −
[

ω
τL

]
+ ζ(ρ̂αβ) = 0} ⊂ R5, (1.33)

where ξ ∈ R2 is the observer state, the dynamics of which are defined below, and the

mapping ζ(ρ̂αβ) is also to be defined.

To prove that the manifold M is attractive and invariant it is shown that the off–the–

manifold coordinate

χ67 := ξ −
[

ω
τL

]
+ ζ(ρ̂αβ), (1.34)

the norm of which determines the distance of the state to the manifold M, is such that:

- χ67(0) = 0 ⇒ χ67(t) = 0, for all t ≥ 0 (invariance);

- χ67(t) asymptotically (exponentially) converges to zero (attractivity).

Notice that, if χ67(t) → 0, an asymptotic estimate of

[
ω
τL

]
is given by ξ + ζ(ρ̂αβ).

To obtain the dynamics of χ67 differentiate (1.34) along the trajectories of (1.29), yielding

χ̇67 = ξ̇ −∇ζ[γΦ2
(|ρ̂αβ |2 − 1

)
ρ̂αβ − npωJ ρ̂αβ ] +

[
τL
J − npΦ

J i�αβJ ρ̂αβ
0

]
Our objective is to find ξ̇ and a mapping ζ to obtain an asymptotically stable linear dynamics

for χ67. Towards this end, notice that selecting ξ̇ as

ξ̇ = A33(ξ + ζ) + γΦ2
(|ρ̂αβ |2 − 1

)∇ζρ̂αβ +

[ npΦ
J i�αβJ ρ̂αβ

0

]
(1.35)

yields

χ̇67 = A33(ξ + ζ) +

[
τL
J
0

]
+ npω∇ζJ ρ̂αβ .

Consequently, if we can solve the PDE

∇ζJ ρ̂αβ =

[
a1
−a2

]
, (1.36)

recalling (1.34), one gets

χ̇67 = A33χ67, (1.37)

as desired. The PDE (1.36), indeed, has a solution

ζ(ρ̂αβ) =

[
a1
−a2

]
arctan

(
ρ̂β
ρ̂α

)
. (1.38)

Now, with the definition above,

∇ζ =
−1

|ρ̂αβ |2
[

a1
−a2

]
ρ̂�αβJ .
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Consequently ∇ζρ̂αβ = 0, and the second right hand term in (1.35) vanishes. The proof is

completed noting that

A33

[
a1
−a2

]
=

[
a2

J − npa
2
1

npa1a2

]
,

replacing the function arctan by the operator A in (1.30), and noting that the derivations

above remain valid after this substitution. ∇∇∇
Remark 5. If the arctan function is used instead of the operator A in order to recover

the estimate ρ̂αβ , some Dirac delta functions might appear in the speed estimation and the

error dynamics. To explain this phenomenon consider the case of (constant) regulation of

the motor speed and assume that ρ̂αβ(t) ≡ ραβ(t). Then, in view of (1.38), we have that

ζ(ρ̂αβ(t)) ≡ θ(t) = ω�t(mod π), which is a periodic function defined on the set (−π, π). In

this scenario the arctan jumps instantaneously from the value π
2 to the value −π

2 inducing

a train of Dirac delta functions, δT (t), in the derivative of arctan. This term propagates,

through ζ̇(ραβ), into the error dynamics that now reads as6

χ̇67 =

[ −npa1 − 1
J

npa2 0

]
χ67 +

[
a1
−a2

]
δT .

As illustrated in the simulations of Section 1.9 this undesirable effect is removed using

instead the operator A defined in Appendix A.

Remark 6. Proposition 1.7.1 refers to the unperturbed dynamics (1.29), for which it was

assumed that ρ̃αβ = 0. Some simple calculations show that if this term is not zero the error

dynamic of χ67 takes the form

χ̇67 =

[ −npa1 − 1
J

npa2 0

]
χ67 − npω

|ρ̂αβ |2
[

a1
−a2

]
ρ̂�αβ ρ̃αβ +

[ npΦ
J i�αβJ ρ̃αβ

0

]
(1.39)

In the next section the effect of the additional terms on the overall dynamics is analyzed.

1.8 Proof of the main result
In this section the stability properties of the closed–loop system, composed by the motor

(1.7), the output–feedback controller (1.18), the position observer (1.23), (1.25) and the

speed–load torque observer (1.30) are studied.

The dynamics are described using the error coordinates (1.9), which yields a set of

nonlinear differential equations of the form (1.10). For ease of reference, these equations

are sequentially derived for χ13, χ45 and χ67. The stability properties of the system are

established invoking Lyapunov’s indirect method. Towards this end, the equations are written

in the form

χ̇ = Aχ+ Γ(χ), (1.40)

where A is the system matrix of the linearized system, i.e. A := ∇f(0), where f(χ) is

defined in (1.9), (1.10), and the elements of the vector Γ(χ) contain (second or higher order)

products of the components of χ. The proof of the claim of asymptotic stability of Proposition

1.3.1, follows showing that A is a Hurwitz matrix.

6The expression above shows that, away from the isolated points where the δ–functions appear, the observer

error exponentially converges to zero.
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1.8.1 Currents and speed tracking errors

Lemma 1.8.1 Consider the PMSM model (1.7) in closed–loop with the output–feedback
controller (1.18). The first three components, χ13, of the error vector χ—defined in (1.9)—
evolve according to the following dynamics

χ̇13 = A11χ13 +A12χ45 +A13χ67 + Γ13(χ) (1.41)

where

A11 = Fd(x
∗)Q

A12 =

⎡⎢⎣ − L
JΦτLx

∗
3 −dx∗

2 − npΦ
J x∗

3 − r
npΦ

τL

dx∗
2 +

npΦ
J x∗

3 +
r

npΦ
τL − L

JΦτLx
∗
3

0 0

⎤⎥⎦
A13 =

⎡⎣ −L
ΦτL − L

JΦx
∗
3

0 r
npΦ

0 0

⎤⎦ (1.42)

where d = R−r
L while Fd(x) and Q are defined in (1.17) and (1.12), respectively, and Γ13(χ)

is such that ∇Γ13(0) = 0. Moreover, the matrix A11 is Hurwitz.

Proof. The output–feedback controller (1.18) can be written as

vαβ = [ρ̃αI2 + ρ̃βJ ] v̂ + eJ θv̂,

which, in dq coordinates, i.e., considering v = e−J θvαβ , takes the form

v = v̂ + [v̂1I2 + v̂2J ]χ45 (1.43)

where we have used the errors χ45 = e−J θρ̃αβ , and v̂1 and v̂2 are the components of v̂.

On the other hand, some simple calculations show that

v̂ = vFI +

[ −L
ΦτL − L

JΦx
∗
3

0 r
npΦ

]
χ67 −

[
Lχ7

Φ ( 1
Jχ3 + χ6)
0

]
with the full–information control vFI given by (1.16). Using the definition of χ3, the latter

can be decomposed as

vFI = dx12 +

[
− L

JΦτLx
∗
3

npΦ
J x∗

3 +
r

npΦ
τL

]
+

[ − L
JΦτLχ3

0

]
.

Finally, the second term of the control law v can be expanded as

[v̂1I2 + v̂2J ]χ45 =

[
− L

JΦτLx
∗
3 −dx∗

2 − npΦ
J x∗

3 − r
npΦ

τL

dx∗
2 +

npΦ
J x∗

3 +
r

npΦ
τL − L

JΦτLx
∗
3

]
χ45 + Γ13(χ)

for some Γ13(χ) verifying the conditions of the lemma. Using all the expressions above to

define v, and replacing in (1.13), yields (1.41), (1.42) allowing to complete the first part of

the proof.
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To prove that the matrix A11 is Hurwitz we use (1.17) and (1.12) to evaluate

Fd(x
∗)Q =

⎡⎣ − r
L

np

J x∗
3 0

−np

J x∗
3 − r

L −npΦ
J

0
npΦ
L 0

⎤⎦ .

Some simple calculations show that the characteristic polynomial is of the form s3 + c1s
2 +

c2s+ c3, with the coefficients ci > 0 and verifying c1c2 > c3 that, a simple Routh–Hurwitz

test, proves is the necessary and sufficient condition for stability. ∇∇∇

1.8.2 Estimation error for ραβ
Lemma 1.8.2 Consider the mechanical equation of the PMSM model (1.4) together with the
flux observer (1.23). The fourth and fifth components, χ45, of the error vector χ—defined in
(1.9)—satisfy the following differential equation

χ̇45 = A22χ45 + Γ45(χ) (1.44)

with

A22 =

[ −2γΦ2 np

J x�
3

−np

J x�
3 0

]
(1.45)

and Γ45(χ) is such that ∇Γ45(0) = 0. Moreover, the matrix A22 is Hurwitz for all x�
3 �= 0.

Proof. Computing the time derivative of χ45 = e−J θρ̃αβ yields

χ̇45 = −np

J
x3Jχ45 + e−J θ ˙̃ραβ .

Now, from (1.27), and using the facts that |ρ̃αβ | = |χ45| and that e−J θραβ = e1, it is possible

to write
˙̃ραβ = −γΦ2

(|χ45|2 + 2χ�
45e1

)
eJ θ (χ45 + e1)

Replacing the latter in the expression above yields

χ̇45 = −
[np

J
(x�

3 + χ3)J + γΦ2
(|χ45|2 + 2χ4

)]
χ45 − γΦ2

(|χ45|2 + 2χ4

)
e1,

which concludes the first part of the proof.

The proof that, for all x�
3 �= 0, A22 is Hurwitz follows trivially computing the characteristic

polynomial.

∇∇∇

1.8.3 Speed and load torque estimation errors

Lemma 1.8.3 Consider the mechanical equations of the PMSM model (1.3), (1.4) together
with the flux observer (1.23). The sixth and seventh components, χ67, of the error vector
χ—defined in (1.9)—satisfy the following differential equation

χ̇67 = A32χ45 +A33χ67 + Γ67(χ), (1.46)
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where

A32 =

[
−np

J

(
a1x

�
3 − Φx�

2

L

)
0

np

J a2x
�
3 0

]
, (1.47)

A33 the Hurwitz matrix defined in (1.31), and Γ67(χ) is such that ∇Γ67(0) = 0.

Proof. As indicated in Remark 6, the dynamics of χ67 is given by (1.39). For the last right–

hand term we have the identity

i�αβJ ρ̃αβ =
1

L
χ�
12Jχ45 +

1

L
(x�

12)
�Jχ45 (1.48)

where x12, defined in (1.11), is the stator current in the dq reference frame. On the other

hand, after some lengthy but straightforward computations, the second right–hand term of

(1.39) can be written as

npω

|ρ̂αβ |2 ρ̂
�
αβ ρ̃αβ =

np

J
(x�

3 + χ3)χ4 +Ω(|χ|2), (1.49)

where Ω(|χ|2) contains term of order higher or equal to |χ|2. Thus, the proof follows

immediately by considering that x�
1 = 0 and replacing (1.48) and (1.49) in (1.39). ∇∇∇

1.8.4 Proof of Proposition 1.3.1

Combining the results of Lemmata 1–3 we obtain that the error vector χ satisfies a differential

equation of the form (1.40) where

A =

⎡⎣ A11 A12 A13

0 A22 0
0 A32 A33

⎤⎦ , Γ(χ) =

⎡⎣ Γ13(χ)
Γ45(χ)
Γ67(χ)

⎤⎦ .

Recalling that ∇Γ(0) = 0, it only remains to prove that A is Hurwitz. For, we notice that A
is similar to a block triangular Hurwitz matrix. More precisely, with

T =

⎡⎣ I3 0 0
0 0 I2
0 I2 0

⎤⎦ ,

we get

TAT−1 =

⎡⎣ A11 A12 A13

0 A33 A32

0 0 A22

⎤⎦ ,

which is Hurwitz due to the fact that A11, A22 and A33 are Hurwitz matrices, completing the

proof. ∇∇∇

1.9 Simulation and experimental results
The usefulness of the proposed control scheme was evaluated through numerical simulations

and experiments. For the simulations, the considered motor parameters were L =
0.0038H , R = 0.225Ω, Φ = 0.17Wb, np = 3 and J = 0.012kg.m2, which correspond to

an experimental setup located in the Laboratoire de Genie Electrique de Paris, where the

experiments were carried out.
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1.9.1 Simulation results

Three types of simulations were developed, the first was devoted to illustrate the performance

under nominal (ideal) conditions, where the motor parameters are known, while the second

was intended to exhibit the operation under several cases of parametric uncertainty. Finally,

we carried out a third set of simulations to compare the performance of the proposed scheme

with one proposed in the drives community, namely the one reported in Nam (2010). The

signal profiles and the parameter variations were taken from the benchmark proposed by the

French Working Group Commande des Entraı̂nements Electriques7.

In order to evaluate the scheme under stringent conditions, the motor was at standstill at

the beginning of the simulations. Hence, the initial conditions for both currents and speed,

as well as, the initial values for the estimated speed and load torque were set to zero. To

avoid singularities, the initial conditions of the position observer were set as ρ̂α(0) = Φ and

ρ̂β(0) = 0. On the other hand, from t = 1s to t = 2.5s and from t = 5s to the end of the

experiment, a 1Nm load torque was applied.

The tuning parameters of the control scheme were chosen as γ = 5000, for the ραβ
observer, and a1 = 20, a2 = 6, for the speed–load torque observer. In both cases the selection

was taken to obtain a better response of the closed–loop system under parametric uncertainty

operation. The high value assigned to the gain γ is due to the high sensitivity exhibited by

the position observer with respect to the stator resistance R.

In Figure 1.1 the behavior of the motor speed and the load torque are included under

nominal operation. In the top of this figure, both the actual and the desired speeds are shown.

Here it can be noticed that, as predicted by the theory, when the desired speed is constant the

achieved performance is remarkable. Moreover, when the speed reference is time–varying

the speed error still remains within reasonable values. In the bottom of the same figure the

actual load torque and its estimate are presented. In Figure 1.2 the corresponding observation

errors for the position and the speed–load toque observers are presented. In both cases their

magnitudes are negligible, even in the presence of changes in the load torque perturbation

and under time–varying speed references. This picture is complemented with the tracking

speed error. In Figure 1.3 the stator currents and voltages are presented.

To illustrate the controller robustness against parametric uncertainty, in Figure 1.4 the

observer and speed tracking errors corresponding to a 50% positive variation of the stator

resistance value are depicted, while the behavior of the same variables for a 50% increase of

the stator inductance and a 15% positive change of the field flux are included in Figure 1.5 and

Figure 1.6, respectively. It is important to mention that these parameter variations correspond

to the maximum uncertainty that the controller can manage without going to instability.

In Nam (2010), see also Lee et al. (2010), the observer of Ortega et al. (2011) is used

together with a phase–locked–loop like speed and load torque observer to implement an

output feedback version of the classical field–oriented controller Krause (1986). To compare

the performance of our new speed and load torque observer and the proposed IDA–PBC, we

show in Figure 1.7 the response of both schemes to the previous benchmark references. It

is clear from the figure that our scheme outperforms the one in Nam (2010), both in speed

regulation as well as load torque estimation.

7The complete evaluation procedure can be consulted in http://www2.irccyn.ec-nantes.fr/CE2/.
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1.9.2 Experimental results

Experiments were carried out to test the performance of the proposed controller.

Unfortunately, at the moment of writing this paper the evaluation of the full–information
IDA–PBC and the observers was carried out in a separated way, i.e., it was not possible to

present the output–feedback operation. The behavior of the several components is depicted

in Figure 1.8 for a positive speed reference, while in Figures 1.9 and 1.10 the operation for a

speed reference that crosses through zero is shown.

1.10 Future research
From a theoretical viewpoint the need to include the operator A

(
ρ̂β

ρ̂α

)
to avoid the presence

of spikes may seem unsatisfactory. However, in practice this kind of modifications are

systematically applied and widely accepted. Given the theoretical complexity of the problem

we tend to believe that the problem does not admit a “smooth” solution. The result is

presented without a detailed analysis of the effect of this operator—that is currently under

investigation.

Another research line that we are currently pursuing is the establishment of a non–

conservative estimate of the region of attraction of the equilibrium point. It has been observed

in simulations that the estimates that are obtained with the standard Lyapunov tools are

extremely conservative and provide little insight on the choice of the free parameters γ, a1
and a2. This research is, obviously, related with the analysis of the full–fledged nonlinear

dynamics, that seems a formidable task.

Simulations have shown that performance is sensitive to parameter uncertainty, in

particular in the field flux. To enhance robustness it would be interesting to incorporate an

adaptation algorithm, but this task is far from trivial given the nonlinearly parameterized

nature of the problem. Robustness can also be enhanced trying alternative solutions for the

PDE’s that appear in the IDA–PBC and the I&I design methodologies.

Some preliminary experimental results, which have confirmed the remarkable properties

of the observers, have been reported here. Current research is under way to try experimentally

the output–feedback controller proposed in the paper.
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Figure 1.5 Observer and speed tracking errors with a 50% increase of the stator inductance
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Figure 1.6 Observer and speed tracking errors with a 15% positive increase of the field flux
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Appendix A

In computer programming languages the single argument arctan(u) function is computed

in such a way that its output value e is wrapped in the set (−π, π]. This situation results in the

existence of discontinuities since each time the output of the function e takes a value higher

(lower) than π (resp;,−π) then it is assigned the value −π (resp.,π). With the aim of avoiding

these discontinuities it is usual practice to modify the arctan(u) function by including at its

output an additional block whose input is e, the output of the arctan function, and its output

is given by

y = e+ 2nπ
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Figure 1.7 Comparative behavior of the proposed scheme (denoted TAC) with the one reported in
Nam (2010) (denoted NAM)
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Figure 1.8 Reference, measured and actual speeds (top) and observed load torque (bottom) in the
experimental rig

where n is a counter, initialized at zero, that is increased by 1 each time the e > π or

decreased by 1 if e < −π. From a mathematical perspective, the result is an operator, denoted

as A(u), that has as input the argument of the arctan function and as output a continuous

variable that corresponds to the unwrapped version of the original output of the arctan
function.

It is clear that A(u) can be easily implemented in any programming language, like C or

Matlab. The code for doing this considers two consecutive values of e at two consecutive

sampling times, kT , (k + 1)T , and compute its difference dif = e[kT ]− e[(k + 1)T ] in

order to know if there has been a jump from π to −π or viceversa. According to this, three

different possibilities can appear:

• If dif < −2π then n = n+ 1.



Sensorless speed control of PMSM 23

0 1 2 3 4 5 6 7 8 9
−600

−400

−200

0

200

400

600

Time(s)

S
p
e
e
d
(r
p
m
)

 

 

0 1 2 3 4 5 6 7 8 9
−10

−5

0

5

10

Time(s)

T
o
rq

u
e
(N

m
)

 

 

ω ∗
ω
ω̂

τ̂L

Figure 1.9 Measured and observed speed (top) and estimated load torque (bottom) in the
experimental rig
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Figure 1.10 Current (top) and voltage (bottom) in the experimental rig

• If dif > 2π then n = n− 1.

• Otherwise the value of n is not changed.

The computational loop is closed by updating the value of y and assigning k = k + 1.


