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Abstract:  This paper presents a pattern-recognition-based diagnosis approach for fault-diagnosis of fuel 
cell stacks, using Electrochemical Impedance Spectroscopy (EIS). It aims at implementing a diagnosis 
tool able to detect fuel cell degradations from EIS measurements. It consists in different steps. First, 
measurable features are extracted. Then, in order to improve fault classification, a correlation-based 
feature selection is used to keep only relevant features. Finally, the classification is achieved to assign 
each observation to one of the predefined defect classes. The performances are evaluated on an 
experimental dataset extracted from a twenty-cell PEMFC stack to show the effectiveness of the 
proposed approach.  
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1. INTRODUCTION 

The diagnosis of a complex system consists in detecting and 
identifying defects appearances from inspection 
measurements. It is particularly vital for industrial systems, in 
order to avoid premature degradations of the system 
performances and additional costs. In the case of Fuel Cell 
(FC) systems, the diagnosis issue is strongly linked with 
costs, reliability, and durability considerations.  
Various diagnosis approaches for FC systems have been 
developed. These include model-based approaches 
(Kozlowski et al. 2001; Burford et al. 2004) and gray or 
black-box model approaches using fuzzy logic (Hissel et al, 
2004), neural networks (Nitsche et al, 2004). Non-parametric 
identification by Markov parameters have also been 
presented (Tsujioku et al, 2004), as well as a fuzzy-
clustering-based FC diagnosis approach (Hissel et al, 2007). 
The last ones use in particular for the information retrieval, 
the electrochemical impedance spectrometry (EIS). This 
technique allows measuring the impedance of the 
investigated system over a large frequency bandwidth. The 
real and imaginary parts of the system impedance are thus 
calculated from the measured current and voltage alternating 
component, and usually the data is presented in a Nyquist 
plot (Wasterlain et al, 2009). EIS measurements not only 
have the capability to encompass in one representation 
various information about the state-of-health of the system, 
but also they can used efficiently to highlight the influence of 
changes in operating Therefore, the EIS seems to be a 
powerful tool for the diagnosis process of many systems, 
including fuel cell (FC) systems. 
In this article, the use a pattern-recognition-based 
methodology for diagnosis purposes is explored, while using 
EIS measurements as the support database. This particular 
methodology has the advantage of not requiring any physical 
modeling of the FC system. With this approach, we aim at 
detecting faults automatically in the dataset and classify them 

into different categories. And the main idea that is 
investigated with this study is that by automatically 
generating a set of limited descriptors or patterns, one could 
diagnose fault in FC, while limiting computational costs, 
reducing information redundancy, and avoiding overfitting. 
These are factors that need to be taken into account if we 
want to achieve good performances for the proposed 
diagnosis approach. 
The paper is organized as follows. In section 2, the database 
on which the analysis is made is presented. The fault 
diagnosis system will also be briefly presented. In Section 3 
the diagnosis methodology is described in more details. And 
the section 4 presents the results of the study. 
 
 

2. DATABASE CONSTITUTION 

 
The database that was used in this work was built after the 
experimentation on a twenty-cell PEMFC (Polymer 
Electrolyte Membrane Fuel Cell) stack, which was operated 
under various conditions, comparable to real-life conditions, 
especially when various faults occur. This stack was 
assembled with commercial perfluorosulfonic MEAs, 
graphite bipolar plates and electrodes with 100cm2 area. The 
experiments and EIS measurements have been performed 
using a 2kW test bench developed in-lab. The experimental 
generated operating conditions, were based on a fractional 
experimental design at 2 levels (cf. Table1). This 
experimental design deals with the impact of five factors on 
the operating conditions:  
- the anodic relative humidity (RHa) [35%, 75%],  
- the cathodic relative humidity (RHc) [35%, 75%],  
- the anodic stoichiometry factor (FSa) [1.8, 3],  
- the cathodic stoichiometry factor (FSc) [2, 3], and 
- the FC temperature (T) [60°C, 80°C]. 



 
 

     

 

The stack is then operated, and faults, from drying to 
flooding, are triggered by varying one or several parameters. 
EIS spectra are measured for a current density of 0.5 A/cm2. 
Out of the 25 possible experimental conditions (when the 5 
factors are modified), only 16 were initially considered, 
because of their relevance for the initial objectives. But the 
critical conditions induced by some of these tests on the FC 
performances and stability, have made impossible to record 
EIS measurements under the chosen current density. 
Therefore only 11 experimental points were achieved for that 
particular current density. These experimental points, 
obtained with the variations over the five previously 
mentioned factors, are presented in Table 1 
 
Table 1: Presentation of the different operating conditions 
and the different factors 

 

 
Each EIS measurement consists in 42 measurements of the 
real and imaginary parts, for 42 different frequencies. 
In total, 231 impedance spectra were recorded at the outputs 
of the FC stack, that represent 21 spectra per experience stack 
(the stack impedance is measured one time, and then, in 
parallel, each spectrum per individual cell and per experience 
was recorded (220 impedance spectra in total). More 
information can be found in (Wasterlain et al, 2009)  
Taking into account the analysis presented in (Wasterlain et 
al, 2009), and taking into consideration the operating 
parameters, the classification of five failure modes presented 
in Table 2 will be considered in what follows.  
 
Table 2: Distribution of the data with the corresponding 
degradation modes 
Fault mode gravity test Nr. Nr. EIS  
drying  moderate 1, 6  42 

minor 7 21 
Fault-free  3  21 
flooding moderate 2, 4, 8, 10 84 

minor 5, 9 42 
slight 11 21 

 

This information about the different failure modes will be 
important in the following methodology for the identification 
of data representing a faulty behavior. Indeed, as it will be 
presented in Section 3.3., each fault mode will be useful as a 
class label, and for the diagnosis task. 

 

 

3. DIAGNOSIS METHODOLOGY 

 
The proposed methodology consists in three principal steps. 
First, features are extracted from the initial EIS 
measurements in order to generate descriptors. Then a feature 
selection step, where we select a representation space from 
the extracted features is achieved. This not only enables to 
remove non-relevant or redundant feature, but it could also 
increase the quality of the results. And finally for the last step 
of classification is carried out with the two widely used 
classifiers: the k-nearest neighbors (k-NN), and the Fisher's 
Linear Discriminant Analysis (LDA). 
 

3.1 Feature extraction  

 
The aim of this step is to select a representation space for 

the data that will be used in the classification step. This 
choice of representation space is an essential step for the 
proposed methodology, because of its potential benefits. 
Indeed, and these benefits include:  
- facilitating data visualization and data understanding  
- reducing the measurements and storage requirements 
- reducing training, utilization, and computational times 
(and errors)  
- defying the curse of dimensionality to improve 
performances (Guyon et al, 2003; and Bishop, 2006). 
 
Rather than using a global fitting of the measurement curve 
to extract features, the approach adopted here is to directly 
select points on the spectra and to use them as inputs for the 
classification step. The main advantage, especially for 
embedded application, is the fact that these features are 
measureable features, and require no additional computations 
for the extraction task. 
Using expert knowledge, the feature extraction consists in 
two different approaches:  
 
- In the first case (FE1), features are extracted by selecting 
out of the EIS spectra couples of a real part and its 
corresponding imaginary part at a given frequency, the 
chosen frequency being evenly distributed across the 
available (measured) frequency bandwidth. The extracted 
features are the real and imaginary parts of points taken at the 
frequencies: 

• f = 5 kHz: (Ref=5kHz Imf=5kHz),  
• f = 500 Hz: (Ref=500Hz Imf=500Hz), 
• f = 50 Hz: (Ref=50Hz Imf=50Hz),  
• f = 5 Hz: (Ref=5Hz Imf=5Hz),  

Test 
Nb. 

RHa(%) RHc(%) FSa FSc 
T 
(°C) 

1 35 35 3 2 60 

2 35 75 1.8 2 60 

3 35 75 1.8 3 80 

4 35 75 3 2 80 

5  35 75 3 3 60 

6  75 35 1.8 2 60 

7 75  35  3  2  80  

8  75 75 1.8 2 80 

9  75 75 1.8 3 60 

10  75 75 3 2 60 

11  75 75 3 3 80 



 
 

     

 

• f = 775 mHz: (Ref=775mHz Imf=775mHz), and 
• f = 50 mHz: (Ref=50mHz Imf=50mHz).  

With this method, a total of 12 features are thus extracted. 
 
- In the second case (FE2), particular points or 
hyperparameters are extracted from the spectra. These 
represent measures that have been presented as discriminant 
features in a previous study (Wahdame et al, 2008, Hissel et 
al, 2007). These hyperparameters include:  

• the internal resistance (Rint) 
• the polarization resistance (Rpola)  
• the real and imaginary parts of the minimal point 

(Remin and Immin) 
• the real and imaginary parts of the breaking point of 

the spectrum (Rebreak, Imbreak) 
• the value of the maximal phase φmax 

This gives 7 extracted features. 
 
In both cases (FE1 and FE2), there are many correlated 
variables. This shows redundancy in the extracted features. 
This redundancy could lead to the reduction of the 
performances of classification methods. Indeed, the amount 
of data required to obtain a statistically sound result grows 
exponentially with the dimensionality. Therefore, as the 
amount of available data is limited, it is necessary to proceed 
to a dimensionality reduction through a feature selection step. 
 

3.2 Feature selection  

As presented in section 3.1, the points of the spectra in 
general and the extracted features in particular, are especially 
correlated. This could have a negative impact on the results. 
Therefore, it could be interesting to use a feature selection 
method that considers this information. The proposed feature 
selection is a correlation-based method. One of its advantages 
is to be a pre-processing step independent from the choice of 
the predictor in the classification step (Kohavi et al, 1997; 
Guyon, 2003). Correlation-based feature selection method 
uses hypothesis based on the following heuristic: Good 
feature subsets contain features highly correlated with the 
class, yet uncorrelated with each other (Hall, 2000)  
The method that was used, is a correlation-based method 
presented by M. Hall in (Hall, 1999). This correlation-based 
feature selection (CFS) is a heuristic approach that takes into 
account the usefulness of individual features for predicting a 
class label, along with the level of inter-correlation among 
the features.  
 
The feature selection step is developed as follows: 
 

1. First, for all features, the standard linear correlation 
coefficient between pairs of variables (X,Y) are 
evaluated, and are given by: 
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2. Secondly, for each feature, the class-feature 

correlation coefficient is evaluated. Because the 
class attribute is a discrete attribute whereas the 
features are continuous ones, weighted correlation 
coefficients are used, and given by the following 
formula: 
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where Xbi  is a binary attribute that takes value 1 when X has 
value xi , and 0 otherwise.  
 

3. Finally, the subset of feature is chosen with the 
highest heuristic "merit" that quantifies the 
relevance of a subset, and that is given by:  
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where k is the number of selected features in the 
subset S, CYr  is the mean class-feature correlation 

( )Y S∈ , and XYr the average feature-feature 

intercorrelation. (Guyon, 2003; Hall, 1999, 2000, 
Ghisselli 1964). 

 
The feature selection procedure, as described above, was 
applied for the features extracted in the first case (FE1), and 
the ones extracted in the second case (FE2). This has led to 
the selection of subsets of relevant features, i.e. features 
identified as highly correlated with the classes (therefore 
potentially discriminant for the following classification step), 
but slightly correlated with each other.  
 
− For FE1, five features were selected: Ref=500Hz, Imf=500Hz, 

Imf=5Hz, Imf=775mHz, and Imf=50mHz.  
− For FE2, three features were selected: Rint, Rpola and φmax 

.This subset is particularly interesting, because, Hissel et 
al (2007), and Wahdame et al (2008), while using 
approaches different from the approach presented in this 
paper (fuzzy clustering  for the former, and 
experimental-design-based modeling technique for the 
latter), have also identified them as relevant features for 
FC diagnosis. 

 
The scatterplot matrix of the features extracted in the second 
case is presented in Figure 1. Different colors and markers 
present each class and its associated data. 
In general, a feature #1 is correlated with another feature #2 
when the data projected on features #1 and #2 lead to the 
representation of the a distinctive pattern such a line. For 
example, the subplots in the diagonal of the scatterplot matrix 
correspond to the representation of one parameter versus 
itself, hence the visualization of a line. On the other hand, 
when no distinctive pattern is observed, then the 
corresponding features are uncorrelated. In addition, when 
clusters of data can be identified on the subplot, the 



 
 

     

 

corresponding variables can be considered as relevant for valuable classification. 

 

Figure 1: Scatterplot of the different features extracted by the 
FE2 method 

 

3.3 Classification methods  

The classification task, final stage of the proposed approach 
consists in assigning labels on new data (test set), based 
labeled training data. This process is divided into a learning 
phase, where the classification method is trained on a training 
data, and a test phase, where the classifier obtained in the 
training phase is used to label new data. In the case of the 
present dataset, labels correspond to the gravity of the fault 
modes (e.g. minor drying, fault-free mode, etc.), and the 
dataset is impedance spectra of the FC, represented by the 
representation space chosen in Section 3.2. 
For this classification task, two methods have been tested: the 
multiclass linear discriminant analysis and the k-nearest 
neighbor rule. 
 
Linear discriminant analysis (Bo et al, 2002; Hastie et al, 
2001)  
The classification algorithm that is used here is a multiclass 
linear discriminant analysis (LDA); it learns linear 
boundaries in the input space by assuming that each class is 
modeled by one probability density, and all probability 
densities have the same covariance matrix.  
 
k nearest neighbor classifier 
Unlike the LDA, the k-nearest neighbor (k-NN) classifier is a 
distance-based supervised classifier which only considers the 

neighborhood around the data point we want to classify. In 
the case of k=1, the k-NN algorithm works as follows. Given 
a set {( , ), ..., ( , )}1 2= n nD x x x y  of labeled data, to determine 

the class of the test point x, the method searches jx , the 

nearest point to x  with regard to a chosen metric (in our case 
the Euclidian distance):  
 

    (4)argmin i
i

j x x= −  

The nearest-neighbor rule for classifying x is to assign it the 
label associated with jx . Then ( , )jx y  is the solution. In the 

case of k nearest neighbors, k of the nearest neighbors are 
gathered, a vote is proceeded, and the class of the most 
neighbors wins. This means that the kNN classifies a data 
example according to a majority vote of its k nearest data 
examples with regard to a chosen metric.  
 

 

4. RESULTS AND DISCUSSION 

 
The classified training data consists of n1 = 174 EIS 
measurements and the test dataset of n2 = 57 EIS 
measurements; this is ratio of 75% and 25% from the total 
database. A cross-validation approach was adopted to assess 
the performance of each classifier (Bo et al, 2002). The 
database was randomly split into four subsets; we used three 
of them as the training set to learn the classifier, and the 
remaining subset was used as the test set to estimate the 
performances obtained with the trained classifier. These two 
steps were repeated four times, each time leaving out a 
different subset for testing. The results were averaged over 
the four test sets. 
The results were analyzed according to the global 
classification error (in %) and the confusion matrices 
between the true and the estimated classes for all the 
observations in the database. The results obtained with the 
two feature extractions methods (FE1, FE2) and the two 
classifiers (LDA, kNN) are reported in Tables [3-6]. In these 
tables, the rows correspond to the true class, whereas the 
columns correspond to the predicted class. To analyze the 
performances of a classification task, one looks at the two 
numbers:  
-false positive rate: these rates are given by the elements of a 
row of the confusion matrix that are not the diagonal ones. 
The false positive rate is the proportion of negative cases (i.e. 
data points that belong to other classes than the assigned one) 
that are incorrectly classified as positive; 
-true positive rate: corresponding to the numbers given by the 
diagonal numbers of the matrix, the true positive rate is the 
proportion of positive cases (i.e. data points that actually 
belong to a given class) that are classified correctly as 
positive.  
 

 − Data in blue correspond of minor drying (Min. D)  

 − Data in green correspond to moderate drying (Mod. D) 

 − Data in red correspond to slight flooding (Sli. F)  

 − Data in cyan correspond to minor flooding (Min. F) 

 − Data in magenta correspond to moderate flooding (Mod. F)  

 − Data in orange correspond to the fault-free data (Fault-free) 



 
 

     

 

The results reveal good classification performances despite 
some misclassification between contiguous classes: the false-
positive rate is low, both when the LDA or the kNN 
classifiers are used. Indeed, they present for most classes very 
high values for true positive rates, and small values for false 
positive rates. Furthermore, false positive rates appear 
between classes that are close with regard to the gravity of 
the degradation; for example in Table 4, 4.8% of slight 
flooding defects is classified wrongly as belonging to the 
fault-free class. This tends to confirm the expert analysis of 
the degradations of the stack, i.e. degradation classes can be 
put in a graduation scale. It can be observed that the kNN 
classifier using the FE1 features gives the highest 
classification rate (99.6%). 
 
 
Table 3: Results obtained with the nearest neighbor classifier 

combined with the first feature extraction method (FE1) 

  Predicted Class 
 classif.  

rate (%)  
Mod. 
D  

Min.
D  

Fault-
free  

Sli. 
F 

Min. 
F  

Mod
. F  

T
ru

e 
C

la
ss

es
 

Mod. D 100 0 0 0 0 0 
Min. D 0 100 0 0 0 0 
Fault-free 0 0 100 0 0 0 
Sli. F  0 0 4.8 95.2 0 0 
Min. F 0 0 0 0 100 0 
Mod. F 0 0 0 0 0 100 
Global  
Accuracy 

test error rate (%) :   99.6   
Nr. of nearest neighbors: 1  
Selected features: [Ref=500Hz, Imf=500Hz, Im f=5Hz

,  
                                Im f=775mHz, Im f=50mHz.] 
merit value : 0.53 

 

 

Table 4: Results obtained with the linear discriminant 
analysis classifier combined with the first feature extraction 

method (FE1) 

  Predicted Classes 
 classif.  

rate (%)  
Mod
.D  

Min. 
D  

Fault-
free  

Sli. 
F 

Min. 
F  

Mod
.F  

T
ru

e 
C

la
ss

es
 

Mod. D 100 0 0  0  0 0 
Min. D  0 100 0  0  0 0 
Fault-free  0 0 95.2  4.8  0 0 
Sli. F  0 0 4.8  95.2  0 0 
Min. F  0 0 0  0  100 0 
Mod. F  0 0 0 0  0 100 

Global  
Accuracy 

test error rate (%) :   99.1 
training error rate (%) : 98.9 
Selected features : [Ref=500Hz, Imf=500Hz, Im f=5Hz

,   
                                Im f=775mHz, Im f=50mHz.] 
merit value : 0.53 

 

 

Table 5: Results obtained with the nearest neighbor classifier 
combined with the second feature extraction method (FE2)  

 

 

Table 6: Results obtained with the linear discriminant 
analysis classifier combined with the second feature 

extraction method (FE2)  

  Predicted Classes 
T

ru
e 

C
la

ss
es

 

classif.  
rates (%)  

Mod.  
D  

Min.  
D 

Fault-
free 

Sli.  
F 

Min. 
 D 

Mod.  
D  

Mod.D 97.6 0 0 0 2.4 0 
Min. D 4.8 95.2 0 0 0 0 
Fault-free 0 0 95.2 0 0 4.8 
Sli. F 0 0 0 95.2 0 4.8 
Min. F 0 0 2.4 4.8 88.0 4.8 
Mod.F 1.2 1.2 1.2 1.2 1.2 94.0 
Global  
Accuracy 

test error rate (%) :   93.9 
training error rate (%): 93.1 
Selected features : [Rint, Rpola, φmax]   
merit value : 0.38 

 

 

6. CONCLUSIONS  

This article has presented a pattern recognition PEM fuel 
cell fault diagnosis approach that uses EIS measurements. It 
involves first a feature extraction step, during which, points 
are extracted from the EIS spectra. This helps later to 
facilitate data visualization and problems linked to the 
phenomenon of curse dimensionality. A selection procedure 
to keep only relevant features then takes place and the last 
phase of classification gives the fault diagnosis of the studied 
data. Because of the correlation and redundant issues, 
particularly linked to the evolution of the spectra with the 
fault occurrences, a correlation-based feature selection 
criterion had to be used. 

Simulations on actual data set have shown that a very 
high accuracy for fault prediction can be achieved, and can be 
as high as 99%. However, because all the data were extracted 
from only one PEM fuel cell stack, further studies must be

  Predicted Classes 
 classif.  

 rate (%)  
Mod. 
D  

Min.
D  

Fault-
free 

Sli. 
F 

Min. 
F  

Mod. 
F 

T
ru

e 
C

la
ss

es
 

Mod. D 97.6  0  0  0  2.4  0  
Min. D 4.8  85.7  0  0  0  9.5  
Fault-free 0  0  95.2  0  0  4.8  
Sli. F 0  0  4.8  90.5  0  4.8  
Min. F 0 0 0  0  95.2  4.8  
Mod. F 1.2  1.2  1.2  0  1.2  95.2  
Global  
Accuracy 

test error rate (%) :   94.3  
Nr. of nearest neighbors: 3  
Selected features : [Rint, Rpola, φmax]   
merit value : 0.38 



 
 

     

 

carried out with more data, containing if possible, 
information from various kinds of stacks. This could lead to a 
generic approach of PEM fuel cell diagnosis. 
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