Fault-diagnosis of PEM fuel cells using electrocheiral spectroscopy impedance
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Abstract: This paper presents a pattern-recognition-basgghdsis approach for fault-diagnosis of fuel
cell stacks, using Electrochemical Impedance Spsctpy (EIS). It aims at implementing a diagnosis
tool able to detect fuel cell degradations from Bi8asurements. It consists in different steps.t,Firs
measurable features are extracted. Then, in omémprove fault classification, a correlation-based
feature selection is used to keep only relevarufea. Finally, the classification is achieved ssign
each observation to one of the predefined defem$sels. The performances are evaluated on an
experimental dataset extracted from a twenty-c&IMPC stack to show the effectiveness of the
proposed approach.

Keywords: fuel cells, fault diagnosis, electrochemical imgece spectroscopy (EIS), pattern recognition

into different categories. And the main idea that i
investigated with this study is that by automatical
The diagnosis of a complex system consists in tageand generating a set of limited descriptors or patteome could
identifying  defects appearances from inspectiodiagnose fault in FC, while limiting computationebsts,
measurements. It is particularly vital for induskisystems, in reducing information redundancy, and avoiding attan.
order to avoid premature degradations of the systefese are factors that need to be taken into atdbume
performances and additional costs. In the caseuef Eell want to achieve good performances for the proposed
(FC) systems, the diagnosis issue is strongly tinkdéth diagnosis approach.

costs, reliability, and durability considerations. The paper is organized as follows. In section &,dhtabase
Various diagnosis approaches for FC systems haem beon which the analysis is made is presented. Thdt fau
developed. These include model-based approachdisgnosis system will also be briefly presentedSéaction 3
(Kozlowski etal. 2001; Burford etal. 2004) and gray or the diagnosis methodology is described in moreildetand
black-box model approaches using fuzzy logic (Hietal, the section 4 presents the results of the study.

2004), neural networks (Nitscheat 2004). Non-parametric
identification by Markov parameters have also been
presented (Tsujioku et al, 2004), as well as a yuzz
clustering-based FC diagnosis approach (Hissal,e2007).
The last ones use in particular for the informatietrieval,
the electrochemical impedance spectrometry (EI)is T The database that was used in this work was bftdt ¢he
technique allows measuring the impedance of thexperimentation on a twenty-cell PEMFC (Polymer
investigated system over a large frequency bandiwifihe Electrolyte Membrane Fuel Cell) stack, which waeraped
real and imaginary parts of the system impedaneettaus under various conditions, comparable to real-lidaditions,
calculated from the measured current and voltatgergting especially when various faults occur. This stackswa
component, and usually the data is presented iryguist assembled with commercial perfluorosulfonic MEAs,
plot (Wasterlain etal, 2009). EIS measurements not onlygraphite bipolar plates and electrodes with 100area. The
have the capability to encompass in one representatexperiments and EIS measurements have been pedforme
various information about the state-of-health &f #ystem, using a 2kW test bench developed in-lab. The erpartal
but also they can used efficiently to highlight thBuence of generated operating conditions, were based on cidnal
changes in operating Therefore, the EIS seems toa beexperimental design at 2 levels (cf. Tablel). This
powerful tool for the diagnosis process of manyteys, experimental design deals with the impact of figetérs on
including fuel cell (FC) systems. the operating conditions:

In this article, the use a pattern-recognition-base the anodic relative humidity (RHa) [35%, 75%],
methodology for diagnosis purposes is exploredjemiising - the cathodic relative humidity (RHc) [35%, 75%],

EIS measurements as the support database. Thisufart - the anodic stoichiometry factor (FSa) [1.8, 3],
methodology has the advantage of not requiringprygical - the cathodic stoichiometry factor (FSc) [2, 3jda

modeling of the FC system. With this approach, we at - the FC temperature (T) [60°C, 80°C].

detecting faults automatically in the dataset dadsify them

1. INTRODUCTION

2. DATABASE CONSTITUTION



The stack is then operated, and faults, from drying
flooding, are triggered by varying one or severaigmeters.
EIS spectra are measured for a current densitysoAtm?2.

Out of the 2 possible experimental conditions (when the
factors are modified), only 16 were initially codesied,

because of their relevance for the initial objextivBut the
critical conditions induced by some of these testshe FC

performances and stability, have made impossiblestord

EIS measurements under the chosen current density.

Therefore only 11 experimental points were achigieedhat

particular current density. These experimental {30in 3. DIAGNOSIS METHODOLOGY
obtained with the variations over the five previgus

mentioned factors, are presented in Table 1

This information about the different failure modesdl be
'gnportant in the following methodology for the idiication
of data representing a faulty behavior. Indeedit agll be
presented in Section 3.3., each fault mode wilubeful as a
class label, and for the diagnosis task.

The proposed methodology consists in three prihcpEps.
First, features are extracted from the initial EIS
measurements in order to generate descriptors. & lieaiture
selection step, where we select a representatiaoesfrom
the extracted features is achieved. This not onightes to

Table 1: Presentation of the different operatingditions
and the different factors

Test RHa(%)| RHc(%)| Fsa| Fsc 1; remove non—releyant or redundant feat_ure, but ilccalso

Nb. Q) increase the quality of the results. And finally foe last step

1 35 35 3 5 60 of classification is carried out with the two wigelsed
classifiers: the k-nearest neighbors (k-NN), angl Bisher's

2 35 75 1.8 2 60 Linear Discriminant Analysis (LDA).

3 35 75 1.8 3 80

4 35 75 3 2 80 3.1 Feature extraction

5 35 75 3 3 60

6 75 35 1.8 2 60 The aim of this step is to select a representaiparce for
the data that will be used in the classificatioapstThis

/ 75 35 3 2 80 choice of representation space is an essential fstephe

38 75 75 1.8 ) 30 proposed methodology, because of its potential fiisne
Indeed, and these benefits include:

9 IE) 75 1.8 3 60 - facilitating data visualization and data undendiag

10 75 75 3 2 60 - reducing the measurements and storage requirement
- reducing training, utilization, and computationi@ines

11 75 75 3 3 80 (and errors)

o - defying the curse of dimensionality to improve
Each EIS measurement consists in 42 measuremertte of performances (Guyon at, 2003 and Bishop, 2006).

real and imaginary parts, for 42 different frequegac

In total, 231 impedance spectra were recordedeabtfiputs Rather than using a global fitting of the measuneneeirve
of the FC stack, that represent 21 spectra permiexpe stack to extract features, the approach adopted here diréctly
(the stack impedance is measured one time, and then select points on the spectra and to use them assiripr the
parallel, each spectrum per individual cell and @euerience classification step. The main advantage, especiéty
was recorded (220 impedance spectra in total). Moggnbedded application, is the fact that these featware
information can be found in (Wasterlainagt 2009) measureable features, and require no additional computations
Taking into account the analysis presented in (@fi&8h et for the extraction task.

al, 2009), and taking into consideration the opeatinysing expert knowledge, the feature extraction ®isin
parameters, the classification of five failure megeesented two different approaches:

in Table 2 will be considered in what follows.

o ) ) - In the first case (Fff, features are extracted by selecting
Table 2: Distribution of the data with the correspmg out of the EIS spectra couples of a real part atsd i

degradation modes corresponding imaginary part at a given frequenthe
Fault mode | gravity test Nr. Nr. EIS chosen frequency being evenly distributed across th
drying moderate| 1,6 42 available (measured) frequency bandwidth. The etdch
minor 7 21 features are the real and imaginary parts of pdéisn at the
Fault-free 3 21 frequencies:
flooding moderate] 2,4,8,10 84 o f=5kHz: Rer=suiz IMi=s42),
minor 59 42 + =500 Hz: Re=5001z | Mi=500H2),
slight 11 21 =50 Hz: Rer=sonz IMk=s5012),

* =5 Hz! Re=snz IM=sh2),



* =775 mHz: Re=775mhz |Mi=775m47), and

« =50 mHz: Re=somz | Mi=s0mh2)-
With this method, a total of 12 features are thusagted.
- In

the second case (RE particular points or

hyperparameters are extracted from the spectra.seThe

represent measures that have been presented amiutiant
features in a previous study (Wahdamale2008, Hissel et
al, 2007). These hyperparameters include:

« the internal resistanc&)

+ the polarization resistancBy,s)

2. Secondly, for each feature, the class-feature
correlation coefficient is evaluated. Because the
class attribute is a discrete attribute whereas the
features are continuous ones, weighted correlation
coefficients are used, and given by the following
formula:

k
fey = z p(C=c)) D’X,,,y 2)
i=1

where X, is a binary attribute that takes value 1 when X ha

» the real and imaginary parts of the minimal pointalue x, and O otherwise.

(Remin andlmy,)

< the real and imaginary parts of the breaking pofnt

the spectrumReyrear, | Moreax)
e the value of the maximal phaggax
This gives 7 extracted features.

In both cases (FE1 and FE2), there are many cteckla

variables. This shows redundancy in the extraceadufes.
This redundancy could lead to the
performances of classification methods. Indeed, aim®unt
of data required to obtain a statistically sounsuliegrows
exponentially with the dimensionality. Therefores ¢he
amount of available data is limited, it is neceggarproceed
to a dimensionality reduction through a features#bn step.

3.2 Feature selection

As presented in section 3.1, the points of the tspein

general and the extracted features in particutargapecially
correlated. This could have a negative impact enrésults.
Therefore, it could be interesting to use a featgkection
method that considers this information. The proddeature
selection is a correlation-based method. One afdteantages
is to be a pre-processing step independent fronchib&e of
the predictor in the classification step (Kohaviakt 1997;

Guyon, 2003) Correlation-based feature selection method

uses hypothesis based on the following heurisond
feature subsets contain features highly correlated with the
class, yet uncorrelated with each other (Hall, 2000)

The method that was used, is a correlation-basetthote
presented by M. Hall in (Hall, 1999). This corr@atbased
feature selection (CFS) is a heuristic approachttiies into
account the usefulness of individual features fedjzting a
class label, along with the level of inter-correlatamong
the features.

The feature selection step is developed as follows:

1. First, for all features, the standard linear catieh

3. Finally, the subset of feature is chosen with the
highest heuristic "merit" that quantifies the
relevance of a subset, and that is given by:

k Ey
Jk+k Uk -1)F,,

merit _s =

()

reduction of the

where k is the number of selected features in the
subset Sy, is the mean class-feature correlation

(¥oS8) , and r,, the average feature-feature

intercorrelation. (Guyon, 2003; Hall, 1999, 2000,
Ghisselli 1964).

The feature selection procedure, as described abweae
applied for the features extracted in the firstecésE1), and
the ones extracted in the second case (FE2). Hsiddd to
the selection of subsets of relevant features, features
identified as highly correlated with the classese(efore
potentially discriminant for the following clasgiéition step),
but slightly correlated with each other.

- For FE1, five features were select®-soonz, |Mk=s00Hz;

I M=51z, | Mk=775mHz, AN Mk=50mpiz-

For FE2, three features were select®d; Ryoia and @max
This subset is particularly interesting, becausesél et

al (2007), and Wahdame etl (2008), while using
approaches different from the approach presentekisn
paper (fuzzy clustering for the former, and
experimental-design-based modeling technique fer th
latter), have also identified them as relevantuess for
FC diagnosis.

The scatterplot matrix of the features extractethasecond
case is presented in Figure 1. Different colors aratkers
present each class and its associated data.

In general, a feature #1 is correlated with anofbature #2
when the data projected on features #1 and #2 tieatie

coefficient between pairs of variables (X,Y) argepresentation of the a distinctive pattern sucline. For

evaluated, and are given by:
Z(Xi _/?,-)(J/,- _J7/)
Ixy = —— =
\/Z(Xi _Xi)2 D\/Z(y/ _yi)2

1)

example, the subplots in the diagonal of the sqatiematrix
correspond to the representation of one parametesus
itself, hence the visualization of a line. On thées hand,
when no distinctive pattern is observed, then

corresponding features are uncorrelated. In additiwhen
clusters of data can be identified on the subptbg

the



corresponding variables can be considered as reldfioa
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Data in blue correspond of minor drying (Min. D)

- Datain green correspond to moderate drying (Mgd. D

77 — Data in red correspond to slight flooding (Sli. F)
- Datain cyan correspond to minor flooding (Min. F)
o - Data in magenta correspond to moderate floodingd(NFp

- Datain orange correspond to the fault-free datal(Free)

Figure 1: Scatterplot of the different featuresrasted by the
FE, method

3.3 Classification methods

The classification task, final stage of the progbapproach
consists in assigning labels on new data (test det3ed
labeled training data. This process is divided iattearning
phase, where the classification method is trainmed training
data, and a test phase, where the classifier autaim the
training phase is used to label new data. In trse & the
present dataset, labels correspond to the gravitheofault
modes (e.g. minor drying, fault-free mode, etcnd ahe
dataset is impedance spectra of the FC, represdytdate
representation space chosen in Section 3.2.

For this classification task, two methods have tested: the
multiclass linear discriminant analysis and the elamest
neighbor rule.

Linear discriminant analysis (Bo etal, 2002; Hastie etl,
2001)

The classification algorithm that is used here imdticlass
linear discriminant analysis (LDA); it learns
boundaries in the input space by assuming that elasls is
modeled by one probability density, and all probgbi
densities have the same covariance matrix.

k nearest neighbor classifier
Unlike the LDA, the k-nearest neighbor (k-NN) cliéiss is a
distance-based supervised classifier which onlysictans the

valuable classification.

neighborhood around the data point we want to ifjass
the case of k=1, the k-NN algorithm works as fokowiven
a setD ={(x, X,),...,(X,,Y,)} of labeled data, to determine

the class of the test point x, the method searohesthe

nearest point tox with regard to a chosen metric (in our case
the Euclidian distance):

j =argmin|x -x| (4

The nearest-neighbor rule for classifying x is to assign it the
label associated witlx; . Then(x,y,) is the solution. In the

case of k nearest neighbors, k of the nearest heighare
gathered, a vote is proceeded, and the class ofmihst
neighbors wins. This means that the kNN classifiedata
example according to a majority vote of its k neargata
examples with regard to a chosen metric.

4. RESULTS AND DISCUSSION

The classified training data consists of = 174 EIS
measurements and the test dataset npf = 57 EIS
measurements; this is ratio of 75% and 25% fromtthal
database. A cross-validation approach was adoptegdess
the performance of each classifier (Bo af 2002). The
database was randomly split into four subsets; ezl uhree
of them as the training set to learn the classifeard the
remaining subset was used as the test set to éstitha
performances obtained with the trained classiflérese two
steps were repeated four times, each time leaving ao
different subset for testing. The results were aged over
the four test sets.

The results were analyzed according to the global
classification error (in %) and the confusion nees
between the true and the estimated classes forthall
observations in the database. The results obtaiigd the
two feature extractions methods (FE1, FE2) and tthe
classifiers (LDA, kNN) are reported in Tables [3-8] these
tables, the rows correspond to the true class, edsethe
columns correspond to the predicted class. To aeathe
performances of a classification task, one lookshat two
numbers:

-false positive rate: these rates are given byetbments of a
row of the confusion matrix that are not the disgoones.
The false positive rate is the proportion of negatiases (i.e.
data points that belong to other classes thandsigrzed one)

limea that are incorrectly classified as positive;

-true positive rate: corresponding to the numbérergby the
diagonal numbers of the matrix, the true positigte ris the
proportion of positive cases (i.e. data points thetually
belong to a given class) that are classified cdigreas
positive.



The results reveal good classification performandespite
some misclassification between contiguous clagbesfalse-
positive rate is low, both when the LDA or the kNN
classifiers are used. Indeed, they present for slasses very
high values for true positive rates, and small ealtor false
positive rates. Furthermore, false positive ratgmpear
between classes that are close with regard to téreityg of
the degradation; for example in Table 4, 4.8% adhsl
flooding defects is classified wrongly as belongittg the
fault-free class. This tends to confirm the exmeralysis of
the degradations of the stack, i.e. degradatiossek can be
put in a graduation scale. It can be observed thatkNN
classifier using the FE1 features gives the highest
classification rate (99.6%).

Table 3: Results obtained with the nearest neighlamsifier
combined with the first feature extraction methB&1)

Table 5: Results obtained with the nearest neighlamsifier

combined with the second feature extraction me{k&?)

Predicted Classes
classif. Mod. Min. Fault- Sli. Min. Mod.
rate (%) D D free F F F
Mod. D 976 | O 0 0 2.4 0
Min. D 4.8 85.7 | O 0 0 9.5
@ Fault-free | O 0 95.2 0 0 4.8
S L Sli.F 0 0 4.8 905 | O 4.8
S | Min.F 0 0 0 0 952 | 4.8
o | Mod. F 1.2 1.2 1.2 0 1.2 95.2
E Global test error rate (%) :94.3
Accuracy Nr. of nearest neighbors: 3
Selected featuregRin, Roolas @max]
merit value: 0.38

Table 6: Results obtained with the linear discriamin
analysis classifier combined with the second featur

Predicted Class extraction method (FE2)
classif. Mod. Min. | Fault- Sli. Min. | Mod .
rate (%) D D free E E E Predicted Classes
Mod. D 100 0 0 0 0 0 classif. Mod. Min. Fault- Sli. Min. Mod.
Min. D 0 100 | O 0 0 0 rates (%) D D free F D D
» |Faultfree 0 0] 100 0 0 0 Mod.D 976 | O 0 0 24 0
o [SI.F 0 0 48 952 | 0 0 ¢ | Min. D 4.8 9521 0 0 0 0
g | Min.F 0 0 0 0 100 | O @ | Fault-free | 0 0 95.2 0 0 4.8
O [Mod.F 0 0 0 0 0 100 | | & [Sh.F 0 0 0 952 ] 0 4.8
5 Global test error rate (%) :99.€ o | Min. F 0 0 24 4.8 88.0|] 4.8
| Accuracy Nr. of nearest neighbors: 1 E Mod.F 12 1.2 1.2 1.2 1.2 94.0]
Selected feature$Ra=soonz IMi=so0Hz M=z Globall test error rate (%) :93.9
IM=775mHa IMi=s0mkz] Accuracy training error rate (%)93.1
merit value: 0.53 Selected feature Rint, Roolas @max]
merit value: 0.38

Table 4: Results obtained with the linear discriamin
analysis classifier combined with the first featartraction
method (FE1)

6. CONCLUSIONS

This article has presented a pattern recognitiokl REel

Predicted Classes
classif. Mod | Min. | Fault- | Sli. Min. | Mod
rate (%) .D D free F F .F
Mod. D 100 0 0 0 0 0
Min. D 0 100 0 0 0 0
" Fault-free | 0 0 95.2 4.8 0 0
o Sli. F 0 0 4.8 952 | 0 0
2 | Min. F 0 0 0 0 100 0
O | Mod. F 0 0 0 0 0 100
8 Global test error rate (%) :99.1
| Accuracy | training error rate (%)98.9
Selected featureqRe=soonz IMi=s00Hz IMi=s17
IM=775mHz IMt=s0mHz]
merit value: 0.53

cell fault diagnosis approach that uses EIS measemes. It
involves first a feature extraction step, duringiahh points
are extracted from the EIS spectra. This helpsr late
facilitate data visualization and problems linked the
phenomenon of curse dimensionality. A selectiorcedore
to keep only relevant features then takes placethedast
phase of classification gives the fault diagnosithe studied
data. Because of the correlation and redundantesssu
particularly linked to the evolution of the spectrgth the
fault occurrences, a correlation-based feature ctefe
criterion had to be used.

Simulations on actual data set have shown thatra ve
high accuracy for fault prediction can be achiewaed] can be
as high as 99%. However, because all the data everacted
from only one PEM fuel cell stack, further studimsist be



carried out with more data, containing
information from various kinds of stacks. This abidad to a
generic approach of PEM fuel cell diagnosis.
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