
FESCA 2008

An I/O automata based approach to verify
component compatibility: application to the

CyCab car

Samir Chouali, Hassan Mountassir, Sebti Mouelhi 1

Laboratoire d’Informatique de l’Université de Franche-Comté - LIFC
16, route de Gray - 25030 Besançon cedex, France

Abstract

An interesting formal approach to specify component interfaces is interface automata based approach,
which is proposed by L. Alfaro and T. Henzinger. These formalisms have the ability to model both the
input and output requirements of components system. In this paper, we propose a method to enrich
interface automata by the semantics of actions in order to verify components interoperability at the levels
of signatures, semantics, and protocol interactions of actions. These interfaces consist of a set of required
and offered actions specified by Pre and Post conditions. The verification of the compatibility between
interface automata reuse the L.Alfaro and T.Henzinger proposed algorithm and adapt it by taking into
account the action semantics. Our approach is illustrated by a case study of the vehicle CyCab.

Keywords: component based systems, interface compatibility, I/O automata.

1 Introduction

Interface formalisms play a central role in the component-based design of many
types of systems. They are increasingly used thanks to their ability to describe, in
terms of communicating interfaces, how a component of a system can be composed
and connected to the others. An interface should describe enough information about
the manner of making two or more components working together properly. Several
approaches and models based on components have been proposed notably those of
Szyperski [10] and Medvidovic [7]. Most of these models specify the components
behaviors, the connectors ensuring their communications and the services provided
or requested. Assembling components is performed by passing through different
levels of abstraction, from the conception of the software architectures ADL until the
implementation using platforms like CORBA, Fractal or .NET. The crucial question
that arises to the developers is to know if the proposed assembling is correct or not.

1 Email: {chouali, mountassir, mouelhi}@lifc.univ-fcomte.fr
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs



In this paper, our interests concern components which are described by interface
automata. These interfaces specify action protocols: scheduling calls of component
actions. As some related works, we can mention the model in [3] where the protocols
are associated to the component connectors. Others works as the ones in [9], the
authors proposed a comparison between models at three grades of interoperability
using the operation signatures, the interfaces protocols and the quality of service.
The protocols in [6] based on transitions systems and concurrency including the
reachability analysis. The composition operation is essential to define assembly
and check the surety and vivacity properties. The approach in [8] aims to endow
the UML components to specify interaction protocols between components. The
behavioral description language is based on hierarchical automata inspired from
StateCharts. It supports composition and refinement mechanisms of system be-
haviors. The system properties are specified in temporal logic. In [4], the authors
define a component-based model Kmelia with abstract services, which does not take
into account the data during the interaction. The behavior described by automata
associated to services. This environment uses the tool MEC model-checker to verify
the compatibility of components. Other works consider real-time constraints [5].
The idea is to determine the component characteristics and define certain criteria
to verify the compatibility of their specifications using the tool Kronos.

The works of L.Alfaro and T.Henzinger [1,2], allows to specify component in-
terfaces by interface automata. These interfaces are specified by automata which
are labelled by input, output, and internal actions. The composition of interfaces is
achieved by synchronizing actions. Our approach reuse this model and strengthen-
ing it by taking into account the action semantics to ensure a more reliable verifica-
tion of components interoperability. The paper is organized as follows: In section 2,
we describe the interface automata as well as the definitions and the algorithm used
to verify the compatibility between component interfaces. In section 3, we present
our approach to verify the interface compatibility, and we apply the approach to
the case study of the vehicle CyCab in section 4. We conclude our work and present
perspectives in section 5.

2 Input/Output Automata

The I/O automata are defined by Nancy A.Lynch and Mark.Tutle [12] as a labelled
transition systems. They are used to model distributed and concurrent systems.
The set of actions in an I/O automata are composed of input actions, output actions,
and hidden actions. These actions are enabled in every state of the system.

Definition 2.1 An I/O automata is a tuple A = 〈Q,Σinp, Σout, Σint, δ, I〉, such
that:

• Q is a set of states.
• Σinp, Σout, Σint, represent respectively a set of input action, a set of output action,

and a set of internal actions. They are mutually disjoint. We denote by Σ =
Σinp ∪ Σout ∪ Σint a set of actions.

• δ ⊆ Q× Σ×Q is a set of transitions.
• I is the non empty set of initial states.

2



2.1 Interface automata

The interface automata are introduced by L.Alfaro and T.Henzinger [1,2], to model
component interfaces. These automata are I/O automata where it is not necessary
to enable input actions in every system’s state. Every component is described by one
interface automaton. In an interface automaton, output actions define the called
actions by a component in his environment. They describe the required actions of
a component. They are labelled by the symbole ”!”. Input actions describe the
offered actions of a component. They are labelled by the symbole ”?”. Internal (or
hidden) actions are enabled actions inside a component by the component himself.
They are labelled by the symbole ”;”.

2.1.1 Composition and Compatibility
In this section we present the approach of L.Alfaro a T.Henzinger [1,2] to verify
the compatibility of components which are specified by interface automata. The
following definition presents the composition of two interface automata.

Definition 2.2 Let A1 = 〈Q1, ΣI
1,Σ

O
1 ,ΣH

1 , δ1, I1〉,
A2 = 〈Q2,ΣI

2, Σ
O
2 , ΣH

2 , δ2, I2〉, be two interface automata. The set Σ1 ∪Σ2 is denote
by share(A1, A2). The automata A1, A2 are composable if : (ΣI

1 ∩ΣI
2) = ∅)∧ (ΣO

1 ∩
ΣO

2 = ∅) ∧ (ΣH
1 ∩ Σ2 = ∅) ∧ (ΣH

2 ∩ Σ1 = ∅)

Note that if two interface automata A1 and A2 are composable then
share(A1, A2) = (ΣI

1 ∩ ΣO
2 ) ∪ (ΣI

2 ∩ ΣO
1 ).

The following definition presents the synchronized product of two interface au-
tomata.

Definition 2.3 Let A1 = 〈Q1, ΣI
1,Σ

O
1 ,ΣH

1 , δ1, I1〉,
A2 = 〈Q2, ΣI

2,Σ
O
2 ,ΣH

2 , δ2, I2〉, be two composable interface automata. The product
A1 ×A2 is defined by 〈Q1 ×Q2, Σinp,Σout,Σint, δ, I1 × I2〉 such that :

• Σinp = (ΣI
1 ∩ ΣI

2) \ partage(A1, A2),
• Σout = (ΣO

1 ∩ ΣO
2 ) \ partage(A1, A2),

• Σint = (ΣH
1 ∩ ΣH

2 ) \ partage(A1, A2),
• ((q1, q2), a, (q′1, q

′
2)) ∈ δ if :

· a 6∈ share(A1, A2) ∧ (q1, a, q′1) ∈ δ1 ∧ q2 = q′2
· a 6∈ share(A1, A2) ∧ q1 = q′1 ∧ (q2, a, q′2) ∈ δ2

· a ∈ share(A1, A2) ∧ (q1, a, q′1) ∈ δ1 ∧ (q2, a, q′2) ∈ δ2

In the following, we present the set of illegal state (deadlock states) in the
product of two interface automata.

Definition 2.4 Let A1 = 〈Q1, ΣI
1,Σ

O
1 ,ΣH

1 , δ1, I1〉,
A2 = 〈Q2,ΣI

2, Σ
O
2 , ΣH

2 , δ2, I2〉, be two interface automata.
the set of illegal states in the product A1 ×A2 is denoted by Illegal(A1, A2) =

{(q1, q2) ∈ Q1 ×Q2/∃a ∈ share(A1, A2) such that,
(a ∈ σO

1 ∧a ∈ σI
2)∨(a ∈ σO

2 ∧a ∈ σI
1)∨(a ∈ σO

1 ∧a ∈ σI
2∧(q1, a, q′1) ∈ δ1∧(q2, a, q′2) ∈

δ2) ∨ (a ∈ σI
1 ∧ a ∈ σO

2 ∧ (q1, a, q′1) ∈ δ1 ∧ (q2, a, q′2) ∈ δ2)}
3



The set of illegal states describes the states in which the shared actions between
the interface automata do not synchonize. So, on these states a component require
(or offer) an action which is not offered (or required) by the environment.

In this approach, the verification of the compatibility between a component
C1 and a component C2 is obtained by verifying the compatibility between their
interface automata A1 and A2.Therefore, one verify if there is a helpful environment
where it is possible to assemble correctly the components C1 and C2. So, one
suppose the existence of such environment which accepts all the output actions of
the automaton of the product A1 ×A2, and which do no not call any input actions
in A1 ×A2.

The verification steps of the compatibility between A1 and A2 are listed below.

(i) verify that A1 and A2 are composable,

(ii) calculate the product A1 ×A2,

(iii) calculate the set of illegal in A1 ×A2,

(iv) calculate the bad states in A1 × A2 : the states from which the illegal state
are reachable by enabling only the internal action or the output actions (one
suppose the existence of a helpful environment),

(v) eliminate from the automaton A1×A2, the illegal state, the bad state, and the
unreachable states from the initial states,

(vi) after performing the above step, if the automaton A1 × A2 is empty then the
interface automata A1, A2 are not compatible, therefore C1 and C2 can not
assembled correctly in any environment.

The complexity of this approach is linear on the size of the both interface au-
tomata.

3 Considering action semantics in the verification of
interface automata compatibility

We present an approach to verify the compatibility between component interfaces
based on the I/O automata and the approach of L.Alfaro and T.Henzinger [1].The
contribution of our approach compared to the one presented in [1], is the considera-
tion of the action semantics in the component interfaces and in the verification of the
component compatibility. In [1], one verify component compatibility by considering
only action signatures. We consider, that action signatures are not sufficient to
decide on the component compatibility using an approach based on I/O automata.

We propose to annotate transition in interface automata by pre and post condi-
tion of actions. We adapt the compatibility verification algorithm presented in [1],
to take into account pre and post of actions.

In the following definitions we formalise the adaptations on the L.Alfaro and
T.Henzinger approach in order to introduce action semantics in the interface au-
tomata.

We introduce a finite set of variables x ∈ V with their respective domain Dx.
The definition 3.1 presents interface automata with pre and post conditions of

actions.

4



Definition 3.1 Let A = 〈Q,Σinp, Σout,Σint, P re, Post, δ, I〉, be an I/O automaton
such that :

• Q is a set of states.
• Σinp, Σout, Σint, represent respectively a set of input action, a set of output action,

and a set of internal actions. They are mutually disjoint. We denote by Σ =
Σinp ∪ Σout ∪ Σint a set of actions.

• Pre et Post are respectively the set of preconditions and the set postconditions
of a component actions. . The preconditions and the postconditions are predicate
over the set of variables V and their respective domain Dx.

• δ ⊆ Q× Pre× Σ× Post×Q is the set of transitions.
• I is the non empty set of initial states.

The following definition presents the condition to compose two interface au-
tomata.

Definition 3.2 Let A1 = 〈Q1, ΣI
1,Σ

O
1 ,ΣH

1 , P re1, Post1, δ1, I1〉,
A2 = 〈Q2,ΣI

2, Σ
O
2 , ΣH

2 , P re2, Post2, δ2, I2〉, be two interface automata. The set Σ1∪
Σ2 is denote by share(A1, A2). The automata A1, A2 are composable if : (ΣI

1∩ΣI
2) =

∅) ∧ (ΣO
1 ∩ ΣO

2 = ∅) ∧ (ΣH
1 ∩ Σ2 = ∅) ∧ (ΣH

2 ∩ Σ1 = ∅)
Note that if two interface automata A1 and A2 are composable then

share(A1, A2) = (ΣI
1 ∩ ΣO

2 ) ∪ (ΣI
2 ∩ ΣO

1 ).
In the following definition we define the synchronized product of two interface

automata.

Definition 3.3 Let A1 = 〈Q1, ΣI
1,Σ

O
1 ,ΣH

1 , P re1, Post1, δ1, I1〉,
A2 = 〈Q2, ΣI

2, Σ
O
2 , ΣH

2 , P re2, Post2, δ2, I2〉, be two composable interface automata.
The product A1 × A2 is defined by 〈Q1 × Q2,Σinp,Σout, Σint, P re, Post, δ, I1 × I2〉
such that :

• Σinp = (ΣI
1 ∩ ΣI

2) \ partage(A1, A2),
• Σout = (ΣO

1 ∩ ΣO
2 ) \ partage(A1, A2),

• Σint = (ΣH
1 ∩ ΣH

2 ) \ partage(A1, A2),
• ((q1, q2), P re, a, Post, (q′1, q

′
2)) ∈ δ if :

· a 6∈ share(A1, A2)∧(q1, P re1, a, Post1, q
′
1) ∈ δ1∧q2 = q′2∧Pre ≡ Pre1∧Post ≡

Post1
· a 6∈ share(A1, A2)∧(q2, P re2, a, Post2, q

′
2) ∈ δ2∧q1 = q′1∧Pre ≡ Pre2∧Post ≡

Post2
· a ∈ share(A1, A2) ∧ ((q1, P re1, a, Post1, q

′
1) ∈ δ1 ∧ a ∈ ΣI

1) ∧
((q2, P re2, a, Post2, q

′
2) ∈ δ2 ∧ a ∈ ΣO

2 ) ∧ Pre ≡ (Pre2 ⇒ Pre1) ∧ Post ≡
(Post1 ⇒ Post2)

· a ∈ share(A1, A2) ∧ ((q1, P re1, a, Post1, q
′
1) ∈ δ1 ∧ a ∈ ΣO

1 ) ∧
((q2, P re2, a, Post2, q

′
2) ∈ δ2 ∧ a ∈ ΣI

2) ∧ Pre ≡ (Pre1 ⇒ Pre2) ∧ Post ≡
(Post2 ⇒ Post1)

The following definition presents the set of illegal states in the product of two
interface automata.

5



Definition 3.4 Let A1 = 〈Q1, ΣI
1,Σ

O
1 ,ΣH

1 , P re1, Post1, δ1, I1〉,
A2 = 〈Q2,ΣI

2, Σ
O
2 , ΣH

2 , P re2, Post2, δ2, I2〉, be two interface automata.
the set of illegal state in the product A1 × A2 is denoted by Illegal(A1, A2) =

{(q1, q2) ∈ Q1 ×Q2/∃a ∈ share(A1, A2) such that,
(a ∈ σO

1 ∧a ∈ σI
2)∨(a ∈ σO

2 ∧a ∈ σI
1)∨(a ∈ σO

1 ∧a ∈ σI
2∧(q1, P re1, a, Post1, q

′
1) ∈ δ1∧

(q2, P re2, a, Post2, q
′
2) ∈ δ2∧((Pre1 ⇒ Pre2)∧(Post2 ⇒ Post1) is not valid))∨(a ∈

σI
1 ∧ a ∈ σO

2 ∧ (q1, P re1, a, Post1, q
′
1) ∈ δ1 ∧ (q2, P re2, a, Post2, q

′
2) ∈ δ2 ∧ ((Pre2 ⇒

Pre1) ∧ (Post1 ⇒ Post2) is not valid))}.
The set of illegal states describes the states in which the shared actions between

the interface automata do not synchonize. So, on these states we have two cases:

• a component requires (or offers) an action which is not offered (or required) by
the environment.

• a component requires (or offers) an action which is offered (or required) by the en-
vironment but the actions required (or offered) by the component is incompatible
at the semantic level with the action offered (or required) by the environment.

In this approach, the verification of the compatibility between a component
C1 and a component C2 is obtained by verifying the compatibility between their
interface automata A1 and A2.Therefore, one verify if there is a helpful environment
where it is possible to assemble correctly the components C1 and C2. So, one
suppose the existence of such environment which accepts all the output actions of
the automaton of the product A1 ×A2, and which do no not call any input actions
in A1 ×A2.

In order to verify the compatibility between two components C1 and C2, it is
necessary to verify of the compatibility between their respective interface automata
A1 and A2. So, one verify if there is a helpful environment (other components)
where it is possible to assemble correctly the components C1 and C2. So, one
suppose the existence of such environment which accepts all the output actions of
the automaton of the product A1 ×A2, and which do no not call any input actions
in A1 ×A2.

Remark 3.5 The verification steps in this approach are the same as the ones pre-
sented in the section 2.1.1(the same steps as in [1]). However, in our approach we
consider the action semantics in :

• the interface automata definition,
• the product of two interface automata,
• the definition of the illegal states.

Consequently, our approach does not increase the linear complexity of the veri-
fication algorithm.

4 The CyCab case study

Several approaches have been proposed to study the concept of CyCab [11]. It is
a new means of electrical transportation conceived basically for freestanding trans-
port services. It is totally controlled by a computer system and it can be driven

6



automatically according to many modes.
The goal of the CyCab is to allow to a clients to use the vehicle to move from one

station to another. To illustrate this concept, we consider the following environment
requirements and functionalities of CyCab:

• A CyCab has and appropriate road where stations are marked by sensors.
• We propose that the driving of the CyCab is guided by the information received

from the station, which allows to situate the CyCab compared the station.
• There is no obstacle in the road.
• The vehicle has a starter.
• The vehicle has also an emergency halt button.

����������

���	
	���


��������

����
�	

�	
�	��

������������������

�	
��	
�

�	����	���



�
��

��	
��

��	
��


�

�
���� 
�

�
����



�
��

Figure 1. The UML model of the CyCab components.

The CyCab and its environment can be seen as an abstract system composed
of four components: the vehicle, the halt emergency button, the starter and the
station. The figure 1 represents the UML model of component based system CyCab.

• The emergency halt button can be activated at every moment during the CyCab
moves. It is specified by sending a signal emergency!.

• The starter allows to start the CyCab in order to move.
• The station is materialized by a sensor that receives signals from vehicle giving

the vehicle position (position? ). The station send as consequence a signal (far!
or halt! ) to the corresponding vehicle to indicate if it is far from the station or
not.

7



�������������	�

���
����
����	


���
 ��� ��	�
��� ��	�
��� ��	�


�����	
��
����	� �������	�
�������	�

���
����
�����	


������������	�

	
��
 ���
 ���������

�������	�
�������	�

�������������������	�

������������������	�

�����������

��	��
�

�����	
��
����	�

	
��


���	����

���������


����������	��

� �

�

�

�

��������	�
����	�

�

������������������	�

�������	�
����	�

��	�


� �

Figure 2. The CyCab interface automata

• The vehicle sends a signal position! to the station to know if it is near from the
station or not and it receives signals (far? or halt? ) from the station as response.
The vehicle sends also a signal reset! to the component emergency halt button
in order to reset the system after activating the emergency button.

In this section, as shown in the figure 2, we apply the proposed approach to
specify firstly all interfaces of the four components. Secondly, we verify the com-
patibility between two components Vehicle and Station. Assume that Av and As

are respectively two interface automata associated to the components Vehicle and
Station. Let V = {car, station, starter, position} be the set of variables their re-
spective domains are {moving, stopped}, {reached, notreached}, {active, inactive},
{known, unknown}.

The automaton Av is given by the tuple 〈Qv, ΣI
v, Σ

O
v , ΣH

v , P rev, Postv, δv, Iv〉
where:

• Qv = {1, 2, 3, 4};
• ΣI

v = {halt, start, emergency, far};
• ΣO

v = {position, reset};
8



• ΣH
v = ∅;

• Prev = {V PrH, V PrS, V PrE, V PrF, V PrP, V PrR} where:
· V PrH ≡ car = moving is the precondition of the method halt ;
· V PrS ≡ car = stopped ∧ starter = active is the one of the method start ;
· V PrE ≡ car = moving is the the one of the method emergency ;
· V PrF ≡ car = moving ∧ station = not reached is the one of the method far ;
· V PrP ≡ car = moving∧position = unknown is the one of the method position;
· V PrR ≡ starter = inactive is the one of the method reset ;

• Postv = {V PsH, V PsS, V PsE, V PsF, V PsP, V PsR} where:
· V PsH ≡ car = stopped ∧ starter = active is the postcondition of the method

halt ;
· V PsS ≡ car = moving is the one of the method start ;
· V PsE ≡ car = stopped∧ station = not reached∧ starter = inactive is the the

one of the method emergency ;
· V PsF ≡ station = not reached is the one of the method far ;
· V PsP ≡ car = moving ∧ position = known is the one of the method position;
· V PsR ≡ starter = active is the one of the method reset.

• δv is the set of transition relation;
• Iv = {1}

The automaton As is given by the tuple 〈Qs, ΣI
s,Σ

O
s , ΣH

s , P res, Posts, δs, Is〉
where

• Qs = {1, 2};
• ΣI

s = {postion};
• ΣO

s = {halt, far};
• ΣH

s = ∅;
• Pres = {SPrP, SPrH, SPrF} where:
· SPrP ≡ car = moving∧position = unknown is the precondition of the method

position;
· SPrH ≡ car = moving is the one of the method halt ;
· SPrF ≡ car = moving ∧ station = not reached is the the one of the method

far ;
• Posts = {SPsP, SPsH, SPsF} where:
· SPsP ≡ car = moving ∧ position = known is the precondition of the method

position;
· SPsH ≡ car = stopped ∧ station = reached ∧ starter = active is the one of

the method halt ;
· SPsF ≡ car = moving ∧ station = not reached is the the one of the method

far ;
• δs is the set of transition relation;
• Is = {1}

The composition of the two interfaces Av and As is possible because the
set Shared(Av,As) = {position, halt, far} 6= ∅. The synchronized prod-

9



��������������

����	��
����

�������
�
��
�����

������������������

�� ��� ���

��� ���

��������������

��������
����

���

��������� ����������

��������������������������������

Figure 3. Illegal states in the product Vehicle⊗Station

uct between them as shown in the figure 3, have as pre and post condi-
tions of operations Prev⊗s = {PrS, PrP, PrH, PrF, PrE, PrR} and Postv⊗s =
{PsS, PsP, PsH, PsF, PsE, PsR} where

• PrP ≡ V PrP ⇒ SPrP ;
• PrH ≡ SPrH ⇒ V PrH;
• PrF ≡ SPrF ⇒ V PrF ;
• PrS ≡ V PrS;
• PrE ≡ V PrE;
• PrR ≡ V PrR;
• PsP ≡ SPsP ⇒ V PsP ;
• PsH ≡ V PsH ⇒ SPsH;
• PsF ≡ V PsF ⇒ SPsF ;
• PrS ≡ V PsS;
• PrE ≡ V PsE;
• PrR ≡ V PsR.

We apply the algorithm detailed in the previous section to compute the synchro-
nized product automaton:

• After computing the set of illegal states in the product, we obtain the set
Illegal(Av,As) = {32, 12}. The state 32 is an illegal state because from the state
3 in the automaton Vehicle, the postcondition of the input shared action, halt?,
do not imply the precondition of the corresponding output action, halt!, from the
state 2 in the component Station (V PsH ; SPsH). In fact, the component
Vehicle offer the actions halt which provokes strictly the vehicle halt, while the
component Station solicit an action halt which provokes the the vehicle halt and

10



the station reach.
• Next, we compute by performing a backward reachability analysis from Illegal

states which traverses only internal and output steps, all states thus reachable.
The resulting set is {11, 21, 42} and so the set of unreachable states is {41}

• Finally, we remove all incompatible and unreachable states {11, 21, 42, 32, 12, 41}
and from the product automaton to obtain their composite automaton Av ‖ As.
The set of remaining states is empty and so, the two interfaces Vehicle and Station
are not compatible.

Remark 4.1 If we apply the approach proposed by L.Alfaro and T.Henzinger [1]
on the same use case, we can detect a compatibility between the components Vehicle
and Station, which is contrasted by considering the semantics of the action halt.

5 Conclusion and perspectives

The proposed work in this paper is a methodology to analyze the compatibility
between component interfaces. We are inspired by the method proposed by L. Al-
faro and T. Henzinger where interfaces are described by protocols modeled by I/O
automata . We improved these automata by pre and post conditions of component
actions in order to handle the action semantics in the verification of interface com-
patibility. This verification is made up of two steps. The first determines if two
components are composables or not by checking some conditions on the actions fea-
sibility by considering their semantics. The second aims is to detect inconsistencies
between the sequences of action calls given by communicating protocols. This phase
is obtained by considering the synchronized product of interface automata. These
results are applied on the case study of the autonomous vehicle CyCab.

In this context, we are interesting for two research directions. The first consists
in implementing a verification tool which takes into account pre and post conditions
of actions to check compatibility between interfaces. The second concerns composite
components and their refinement to define under which conditions a set of assembled
components satisfies constraints of the composite component.

References

[1] L. Alfaro and T. A. Henzinger. Interface automata. In 9 th Annual Aymposium on Foundations of
Software Engineering, FSE, pages 109-120. ACM Press, 2001.

[2] L. Alfaro and T. A. Henzinger. Interface-based design. Engineering Theories of Softwareintensive
Systems (M. Broy, J. Gruenbauer, D. Harel, and C.A.R. Hoare, eds.), NATO Science Series :
Mathematics, Physics, and Chemistry, 195 :83-104, 2005.

[3] Robert Allen and David Garlan. A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology, 6(3): 213-249, July 1997.

[4] Pascal Andr, Gilles Ardourel, and Christian Attiogb. Behavioural Verification of Service Composition.
In ICSOCWorkshop on Engineering Service Compositions,WESC05, pages 77-84, Amsterdam, The
Netherlands, 2005. IBM Research Report RC 23821.

[5] J.-P. Etienne and S. Bouzefrane. Vers une approche par composants pour la modlisation dapplications
temps rel. In (MOSIM06) 6me Confrence Francophone de Modlisation et Simulation, pages 1-10, Rabat,
2006. Lavoisier.

[6] Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Behaviour analysis of software architectures. In
WICSA1 : Proceedings of the TC2 First Working IFIP Conference on Software Architecture (WICSA1),
pages 35-50, Deventer, The Netherlands, The Netherlands, 1999. Kluwer, B.V.

11



[7] Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework for software
architecture description languages. Software Engineering, 26(1): 70-93, 2000.

[8] S. Moisan, A. Ressouche, and J. Rigault. Behavioral substitutability in component frameworks : A
formal approach, 2003.

[9] Becker Steffen, Overhage Sven, and Reussner Ralf. Classifying software component interoperability
errors to support component adaption. In Crnkovic Ivica, Stafford Judith, Schmidt Heinz, and Wallnau
Kurt, editors, Component Based Software Engineering, 7th International Symposium, CBSE 2004,
Edinburgh, UK, Proceedings, pages 68-83. Springer, 2004.

[10] C. Szyperski. Component Software. ACM Press, Addison-Wesley, 1999.

[11] Baille Grard, Garnier Philippe, Mathieu Herv and Pissard-Gibollet Roger. The INRIA Rhône-Alpes
Cycab. INRIA technical report, Avril 1999.

[12] N. Lynch and M. Tuttle, Hierarchical Correctness Proofs for Distributed Algorithms, 6th ACM Symp
on Principles of Distributed Computing,137-151, ACM Press,1987.

12


