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Abstract posed on an interval and with periodic coefficients. The
We introduce a framework for computer-aided derivaderivation of a complex model involving complex geome-
tion of multi-scale models dedicated to arrays of microsydties and physics is generated by a process of generaliza-
tems. It relies on a combination of a asymptotic methodgon. The techniques of model derivation are using the
used in the field of partial differential equations with termmathematical tool called the Two-Scale Transform or un-
rewriting technigques coming from computer science. Iifiolding method, see [11], [4], [5]. The manner to express
our approach, a multi-scale model derivation is charactethem and their generalization comes from formal specifica-
ized by the features taken into account in the asymptotigon techniques in computer science, namely term rewriting
analyses. Its formulation consists in a derivation of a refand rewriting strategies [1, 6]. The software is written in
erence model associated to an elementary nominal modtsle symbolic computation language MapYeand it is in-
and in a set of transformations to apply to this proof untended to be connected to the finite element software pack-
il it takes into account the wanted features. In additiomges FreeFEM++ [8] and COMSOW for numerical sim-
to the reference model proof, the framework includes firgilation. In this paper we overview the mathematical and
order rewriting principles designed for asymptotic modetomputer science principles of our method in its current
derivations, and second order rewriting principles dedistate. First results of combination of elementary features
cated to transformations of model derivations. We applgre reported. A link with a finite element method software
the method to generate a family of homogenized models f@ illustrated on the multi-scale model of cantilever asray
second order elliptic equations with periodic coefficientslerived in [11] and studied in [9].
that could be posed in multi-dimensional domains, with

possibly multi-domains and/or thin domains. The transfefne methodology used for the software package design is
of asymptotic models into a finite element software packgescribed in [13] and is now outlined. Its kernel is the
age is illustrated through an example of a model of periodigyriting based languag8ymbtrans[2]. A multi-scale
cantilever arrays. model derivation is characterized by the features taken int

) ) . account in the asymptotic analyses. Its formulation con-
KEY WORDS: Multi-scale modeling, Rewriting, Homog- gists in a derivation of an elementary reference model and
enization, Symbolic computation in a set of transformations to apply to this proof until it
1. Introduction takes into accounts the wanted features. In addition to the
We are currently developing MEMSALab a software packteference model proof, the framework includes first order
age dedicated to asymptotic multiphysic model derivatiofeWwriting strategies designed for its derivation, and selco
applied to arrays of microsystems. It is based on asymgrder rewriting strategies, operating on first order strate
totic methods for systems governed by partial differentigdies, for its transformations. Rewriting operates on ex-
equations. Asymptotic analyses are applied for instance B§essions whose level of abstraction accurately refleets th
large periodic structures, with small ratio of their celtesi Mathematical framework. Their description follows a well
to their global size, or to thin structures, with small raifo defined grammar in order that they carry enough informa-
their thickness to their global size. Generally, the asymgion allowing for the design of the rewriting rules and the
totic models are computed much faster than the origingtrategies. Put together all these concepts can express and
ones. In this field, a lot of techniques have been devepuild proofs as first order strategies, and therefore peovid
oped. However, none of them have been implemented fhframework of symbolic computation.
a systematical approach to render it available to engineers
as a design tool. In fact, most published paper focus on
asymptotic model for given geometry and physics and ver . . .
few cover general casges. ansiderir){g the?:o)rqstant need fé@¥responding asymptojt\;c models are briefly recalled. We
faster and more reliable simulations, as well as the variefy,sider an interval = L(JE) QL ¢ R divided intoN (<)
of geometrical and physical features of microsystems it be =1 °
comes essential to find a general and systematic approaperiodic cells (or intervalsj2l-<, of sizee > 0 a small
Ours starts from a reference model derivation, and then emumber tending to zero in the asymptotic analysis, indexed
tend it to adapt new features and physics. The referenbg ¢, and with center.. The translation and magnification
model is a simple second order boundary value problefa! = (!¢ —z.)/e is theunit cell. The variables if2 and

Mathematical Formulation
e mathematical statement of the reference model and the



in Q! are denoted by andz'. The two-scale transform terms. The rewriting rulef(z) ~ g(z) applied to a term

T is an operator mapping functions defined in the physif(a) is a two-step operation. First, it consists in matching

cal domain( to functions defined in the two-scale domainthe left termf (z) with the input termf (a) by matching the

O x Q' where for thereference modelf = Q. Itis de- two occurences of the symbol of functignand by match-

fined by ing the rewriting variable: with the symbol of functionu.
(Tu)(ze, 2') = u(x, + ext) (1) Then, the resuly(a) of the rewriting operation is obtained

by replacing the rewriting variable occuring in the right

hand sidey(z) by the subterna that have been associated

to z. In case where any substitution is possible, as in the ap-

plication of f(b) — g(x) to f(a), we say that the rewriting

and then by extensidfi(u)(z%, z') = u(z. + c2') for all
28 € QL¢ and eache in 1,.., N(g). We consider® the
solution of a linear boundary value problem pose€in

d dus (z) . rule fails.
(@) — =) =finQ (2) We denote bye,, the subset oF: of the function symbols
u®=0onl, of arity n. For instance in the exampleandg belong to

31 while ¢ andb belong toX,. Two other common exam-
where the coefficient® is ¢Q2!-periodic. The weak for- ples of terms are the expressibntegral (?, f(z),z) and
mulation is obtained by multiplication of the differential diff (f(z), ) which represent the expressiofs f(x) dz
equation by a test function vanishing on the boundar df (x . :
agd applica)lq:ion of the Green formula,g y and%. Notice that[ntegral (S 23, diff 22, f € X1
. andzx, () € ¥,. For the sake of simplicity we often keep

/ o () dudv , _ / F@)o(z) da. (3) the symbolic mathematical notation to express the rewrit-
Q dx dx Q ing rules. In the following we see a term as an oriented,
ranked and rooted tree as it is usual in symbolic compu-
We assume that for some functioaf§z"') and f(z*), tation. We recall that in a ranked tree the child order is
E 0 0/ 4 important. For instance the tree associated to the term
T(a®) = a”andT(f) = f7(z*) + Ow(e)- (4 Integral(Q, f(z),x) hasIntegral as its root which has
. . three children in the orde®, f, x and f has one child:.
e o s A substonis a funiany © 4 > 7(%. ). The
the microscopic problem applicationof a substitutiorv to a term¢, denoted by (),
simultaneously replaces all occurrences of variablésin
0 00 dw | o Ow theiro-images. _ _
/ Y o ot de’ = —/ Y dx A rewriting rule, is a pair(l, ) wherel andr are terms in
@ " T(%, X); itwill also be denoted by ~ . We observe that
for any two termss, ¢, there exists at most one substitution
the homogenized coefficient and right-hand side are de-such thatz(s) = t. We mention that a rewriting rule
fined by stands for the rule application at the top position. It isenor
, useful to be able to apply a rule at arbitrary position, and
0 more generally to specify the way rules are applied. For
o'l = /Q1 a’ <1 + 3x1) dz' andf" = o fdets this purpose we next present a strategy language that allows
(5) tobuilt strategies out of basic constructors. To this ersl, w
introduce strategy constructor symbeols~, @, u, etc that
Proposition 1 The limitu® of Tw¢ is solution to the weak do not belong ta= U X. Informally, the constructor’;”

for all w Q'-periodic,

formulation stands for the compositioi,® ” for the left choice Some
0 0 for the application of a strategy to the immediate subterms
/ A Ly / FHLO ot (6) Of the input termy(x) for the fail as identity constructor,
q:  dxt dzf Q Child(j, s) applies the strategyto the ;™ immediate sub-

o o term, X is a fixed-point variable, angd is the fixed-point
for all test functionu? sufficiently regular or2* and van-  or the iterator constructor, its purpose is to define revarsi
ishing on its boundary. strategies. For example, the strategy.(s; X) stands for

.. . s; s;. .., thatis, itis the iteration of the application ofintil
3. Rewriting strategies a fixed-point is reached.
In this section we recall the rudiments of rewriting, namely

the definitions of terms over a signature, of substitutiath anpefinition 2 (Strategy) A strategy is inductively defined by
of rewriting rules. We introduce a strategy language thahe following grammar:
will allow to express all the useful rewriting strategies.

3.1 Term, substitution and rewriting rule. s u= lwr | ss | s@s | n(s) | Some(s)(7)
We start with an example of rewriting rule. We define a | Child(j,s) | X | pX.s

set of rewriting variablest = {z,y} and a set of func-

tion symbolsY = {f,g,a,b,c}. A term is a combina- Wherej € N. The set of strategies defined from a set of
tion of elements of¥ U X, for instancef(z), f(a) or rewriting rules in7 x 7 is denoted by57.

g(g(a,z), f(y)). We denoted by7 (X, X) the set of all



Example 3 Out of the basic constructors of strategiesboundary conditions. The grammar reads as

given in Definition 2, we built up some useful strategies.

The strategyT'opDown(s) applies the strategy to anin-  J == ® (F,5) | d [ V |

put termt in a top down way starting from the root, it stops Fun(f,[V,...,V],[C,...,C],K) |

when itsycceeds. Thatis, if the strategucceeds on some IndexedFun(7,V) |

subtermt’ of ¢, then it is not applied to the proper subterms

of #/. The strategyOuter Most(s) behaves exactly like Oper(4,[F,....3%,[V,.... V. [V,..., V], [d,....d]) |

TopDown(s) apart that if the strategy succeeds on some L1,
subtermy’ of ¢, then itis also applied to the proper subtermsR® ::= Reg(€2, [d, ..., d],{R,..., R}, R, F) |
of t’. The strategyBottomUp(s) (resp. InnerMost(s)) IndexedReg(T,V) |

behaves likeBottomUp(s) (resp. Inner Most(s)) but in
the opposite direction, i.e. it traverses a tetnstarting Lz,

from the leafs. The strategyormalizer(s) iterates the V = Var(z,R) | IndexedVar(V,V),
application ofs until a fixed-point is reached. @ ::=BC(c, R, F),

. - where the symbol$), d, ®, f, K, A, z andc hold for
3.2 .c.:ondn.:lonal rewrltlng - any function Symb0|5 iERegi EConsy EOpy EFuna ETypey
Rewriting with conditional rules, also known as condltlbnazopem Svar, aNdSpc. The arguments of a region term

rewriting, extends the basic rewriting with the notion ofg,qiis region name, the list of its space directions (e.8] [1

condition. A conditional rewrite rule is a triplet: for a plane in the variable&, z3)), the (possibly empty)
set of subregions, the boundary and the outward unit nor-
(l,7,0) mal. Those of a function term are its function name, the

list of the mathematical variables that range over its do-

wherec is a logical formula expressed in some logic. Thdnain, its list of boundary conditions, and its nature. Those

set of strategies defined over rewriting rufés-, ) € 7 x for an indexed region or variable or function term are its
T x T, is denoted bySt . ’ function or variable term and its index (which should be

discrete). For an operator term these are its name, the list
) ) of its arguments, the list of mathematical variable terms
4. A Symbolic Computation Framework for Model 5t it depends, the list of mathematical variable terms of
Derivation its co-domain (useful e.g. faF when the image cannot be
In this section we propose a framework for the two-scalgeduced from the initial set), and a list of parameters. Fi-
model proofs where the latter are formulated as rewritinggly, the arguments of a boundary condition term are its
strategies. We notice that the following framework aIIowstype, the boundary where it applies and an imposed func-
for the complete representation of the data. It does not refiyn, if there is one. For example, the imposed function is
on external structures such as hash tables. To this end, W& to0 for an homogeneous Dirichlet condition and there
define the syntax of the mathematical expressions by meagso imposed function in a periodicity condition. We shall

of a gramma. denote byTx (%, 0), T5(X,0), Tv(%,0), andTe (X, 0) the
set of terms generated by the grammar starting from the
4.1 A Grammar for Mathematical Expressions non-terminalR, &, V, andC. The set of all terms generated

The grammar includes four rules to built terms for mathby the grammar (i.e. starting fro, F, V, or €) is de-
ematical functionsF, regions®, mathematical variables noted by7g (X, 0). Finally, we also define the set of terms
V, and boundary condition§. It involves Xp.,, Yvar, T9(E,X) where each non-termindi, F, V, andC can be
Y Fun, Loper, aNd Xo,ns Which are sets of names of re- replaced by a rewriting variable itr. Equivalently, it can
gions, variables, functions, operators, and constantstso s be generated by the extensionbbtained by adding
sets of%y. Empty expressions ik g., and%r,,, are de- 2" with x € X in the definition of each non-terminal term.
noted by x and_L 5. The set of usual algebraic operationsOr, by addingV ::= z, with z € X" for each non-terminal
Yop = {+,—, %, /, "} is a subset oE,. The elements of N.

Yrype = {Unknown Test Known Lry,c} C o, Lrype 4.2 Short-cut Terms

denoting the empty expression, are to specify the nature ppy the sake of conciseness, we introduce shortcut terms
a function, namely an unknown function @s, u’, u_in  that are constantly used in the end of the pap@r:c
the proof), a test function (as v", v )|r::ava/ea(l)< formula- 75 (2 x), z € T9(Z, X) defined inQ, I € Tx(Z, X)
tion or another known function (as, /<, a”, f" ornri).  ysed for (discrete) indices,e 7v (%, X) used as an index
The boundary conditions satisfied by a function are speciefined inZ, u € 75 (5, X) oru(z) € T5(X, X) to express
fied by the elements ofsc = {d,n,pd,apd,t} C X910  that it depends on the variabteandu, the indexed-term
express that it satisfies Dirichlet, Neuman, periodic,-antpf the functionu indexed byi. Similar definitions can be

periodic or transmission conditions. The grammar also inyiyen for the other notations used in the proofes zf,
volve the symbols of functiongeg, Fun, IndexedFun, Q! 41 O/ ' y(af, z!) etc. S

IndexedReg, IndexedVar, Oper, Var, andBC that define T
regions, mathematical functions, indexed functions or reexample 4 For instanceQ) = Reg(, [2], §, [, n), where
gions or variables, operators, mathematical variables afd= Reg(T’, [|, #, Lx, L), n = Fun(n, [2/], [], Known),



2z’ = Var(z, Q') andQ’ = Reg(, [2], 0, L, L) refers 4.3 A Variable Dependency Analyzer

to a region-term representing a one-dimensional domaihe variable dependency analyz€¥ is related toeffect
named(?, oriented in the directionz,, with boundaryl’  systemsin computer science [12]. It is a function from
and with outward unit normak. The shortcull refersto  75(X, () to the setP(7v (X, 1)) of the parts ofTy (X, 0).

a region term representing the boundary naniedAn un-  When applied to a term € 75(X, (), it returns the set of
known function.(z) defined o2 satisfying homogeneous mathematical variables on whi¢liepends.

Dirichlet boundary condition.(z) = 0 onT is represented

by the function-termy(z) = Fun(u, [z], Cond(d, I',0), Example 6 For

Unknown) Wwherez = Var(z, Q). ov(z!, zh)

1\ YY 1

The operators necessary for the proof are the integral, the V= /m /Ql T(@@)y@(iﬁ& ) Ot dz*dz’*
derivative, the restriction operator (restricting a function -
defined on a region to the boundary), the two-scale trang 75 (X, 0), the set©(¥) of mathematical variables on
form T and other detailed in [13]. In addition, for mostwhich¥ depends is hence inductively computed as follows:
of the extensions of the reference proof we shall use the i1 i 1
discrete sum operator. Instead of writing operator-tersns a O(u(z)) = {z}, O(T(u(z), z)(z",z")) = {z*, 2"},
defined in the grammar, we prefer to use the usual math- Ov(zt, !
ematical expressions. The table below establish the corre- (v(af, ")) = {a*, 2"}, 9(%) = {2},
spondance between them, 1

du(at, ")

/ga@ = Oper(Integral,u, [z],]],[]), Oz L
1 Ou(at, zh)

Ou 9(/91 T(u(z), z)(a*, z )Tc@l) = {z'},

O(T(u(z), z)(z* z") ) = {zf,2'},

5o = Oper(Partial,u [o], [z], ), o
T
tr(u, z)(2’) = Oper(Restrictionu, [z], [2], []), and©(¥) = 0.
T(u,z)(z*, 2") = Oper(T, u, [z], [z*, 2], [¢]), 4.4 Formulation of the Symbolic Framework for
Z - = Oper(Sum, u;, [i], |, . Model Derivation
it T D Now we are ready to define the framework for two-scale

The multiplication and exponentiation involving two termsmOdeI derivation by rewriting. To do so, the rewrit-

f and g are written fg and f9 as usual in mathematics. mg(gul;i irzﬁr(e;tr/i\g;ed 'F%elierftcgggitir;%hst tzrrgﬁgami-
All these conventions has been introduced for terms iﬁS ’ G\=Hh A >¢ .
T(,0). For terms inT(X, X) as those encoutered in las generated by a grammar, not explicited here, combin-

rewriting rules, the rewriting variables can replace any Ofg—te{rcqulqTi(}E’|f(§|;vo'tir;nmgs%a!fa%:gilsoﬁ{?ﬁtﬁersdg
the above short cut terms. AV e p

pendency analyze®. The set of terms generated by this
Example 5 The rewriting rule associated to the Green rulegrammar is denoted by (X, X, G, ©, A).

reads A model derivation is divided into several intermediary
lemmas. Each of them is intended to produce a new prop-
ou ov , "
—uvdz~ — [ u=—dz+ [ tr(u)tr(v) ndz’. erty that can be expressed as one or few rewriting rules
oz oz to be applied in another part of the derivation. Since dy-
with the short-cutd’ = Reg(T, d1, 0, Lg, Lg), Q = namical creation of rules is not allowed, a strategy is cov-

Reg(2, d2, 0, T, n), z = Var(z, Q) andz’ = Var(z, ). ering one lemma only and is operating with a fixed set of
The other S)’/rﬁ’bola] 2 Q.T. dl. d2. n are rewfitﬁg rewriting rules. The conversion of a result of a strategy to

variables. and for instance a new set of rewriting rules is done by an elementary ex-
’ ternal operation that is not a limitation for generalizatio
Ou of proofs. The following definition summarizes the frame-

B = Oper(Partial,u,z, [],[]).
Applying this rule according to an approp(iate strategyy sa pefinition 7 The components of the quintupiet= (S, X,
the top down strategy, to a term (%2, ) like E, G, ©) provide a framework for symbolic computation to
af(2) derive multi-scale models. A two-scale model derivation is
U= / 5; 9(z) dz, expressed as a strategyc Sy, (s x),7, (5,x,5,0,4) Which
for a given variable termy and function termsf, g. As
expected, the result is

work of symbolic computation developed in this paper.

is applicable to an initial expressio® € 7 (%, 0).

In the end of this section we argue that this framework is
in the same time relatively simple, it covers tigerence
dg , modelderivation and it allows for the extensions presented
B /i 3, %2t /iﬂ@ dz in the next section.
B The grammar of terms is designed to cover all mathemati-
with evident notations for and 2’ cal expressions occuring in the proof of tieéerence model



as well as of their generalizations. A term produced bynulti-dimensional region§)' referenced by a set of vari-
the grammar includes locally all useful information. Thisables(z});, and s; is a second (trivial) generalization of
avoids the use of external tables and facilitates design of on the number of sub-regior(€;),, (Qg)j and (Q;)j
rewriting rules, in particular to take into account the con;, Q, Of and Q1. The rule so; is a generalization com-
text of subterms to be transformed. It allows also for loc

L ; , ining the two previous generalizations. First, we aim at
definitions, for instance a same name of variablean be transforming the strategy, into the strategyss or the

used in different parts of a same term with different meansyateqys,. To this end, we introduce two second order
ing, which is useful for instance in integrals. strategies witht = {v,2} and T > {i, j, Q, Qf, Q!
Each step in thg proof consists in replaqng parts of an SPartial, IndexedFun, IndexedV ar, IndezedReg),
pression according to a known mathematical property. This

is well done, possibly recursively, using rewriting rules t _ v v

gether with strategies allowing for precise localization. I = OUt@T‘MOSt(awaZ,)

5. Transformation of Strategies as Second Order  j, ._ m(g@gﬁ.7OuterM08t(Qﬁ;_)Qﬁ_).
Strategies - 7

For a given rewriting strategy representing a model proof, Outer Most(Q2'~Qj).

one would like to transform it to obtain a derivation of more

complex models. Transforming a strategye Sr(s.x)  Notice thatfl (resp.1L) applies the ruleo” < 2"
is achieved by applying strategies to the strategiself. 0z 0z

For this purpose, we consider two levels of strategies: tHe<~;, QﬁJ%Q?., and Q' Q) at all of the positions' of

first order onesSy (5, x) as defined in Definition 2, and the the input first order strategy so that

strategies of second order in such a way that second or- _ _

der strategies can be applied to first order ones. That is, 11 (s1) = sz andllz(s1) = s3.

the second order strategies are considered as terms in a set _ _ ]

T(Z, X) of terms wheré: stands for the set of second or-Oncell; andll; have been defined, they can be composed
der function symbols and& stands for the set second or-t0 producesss :

der rewriting variables. We notice that the (first ordergrul
l ~ r can be viewed as the term (I, r) with the symbol
~ at the root, and the (first order) strateg.s viewed as
the termu(X, s). The set of second order strategies will

be denoted byS. 5 = ; it is built up out of the second . L

Wre T p ot " mented in Mapl&M. The derivation of the reference model
order strategy constructors=, 3, @, Some, Child, 7, ... has been implemented using the langu&yenbtransof
The behavior of the strategies &5 ) is similar to the  gyrategies presented in [2]. It starts from an input term

one of first order strategies. In addition, we assume th@hich is the weak formulation (3) of the physical problem,

second order strategies transform first order strategies, t

which they are applied, into first order strategies. Ou v

In the following example, based on a mathematical prop- / /f v dg,

erty of T' stated in [13], we illustrate the extension of an

elementary strategy which is a rewriting rule. wherea = Fun(a,[Q],[ |, Known), v = Fun(u, [Q],

e | h o § o1 defi [Dirichlet], Unknown), v = Fun(u, [Q], [Dirichlet],
xample 8 Forthe sett’ = {i, j, z, 2%, x*, u, e} we define Test), @ = Reg(®, [1], 0, I, na), I' = Reg(T, [ ], 0,

(resp.

1:[21:[1(51) = Sgp3 Or 1:[11:[2(51) = S93.

6. Implementation and Experiments
The framework presented in Section 4.4 has been imple-

8)

51, 82, 53, aNd 23 four rewriting rules, L, Ly), Dirichlet = BC(Dirichlet, I',0) and where
ou . 197 (u, z)(z%, 21) the short-cuts of the operators are those of Section 4.2.
81 = T(a—, z) (2, 27) ~ = Bl The proof is divided into strategies corresponding to béock
v iy o1 ¢ 1 * of the proof, each ending by some results transformed into
forz & and(a?, 27) € QF x 7, rewriting rules used in the following blocks. The rewriting
. ou ¢ 1 10T (u, x) (2, 1) rules used in the strategies are FO-rules and can be classi-
52 = T(aTCi’x)(x x7) - ! fied into the three categories.
1 1
forz € Qand(af,2) € QF x O, e Usual mathematical rulesthat represents the proper-
ou ¢ 1 10T (u, x)(zf, 2") ties of the derivation and integration operators, such
§3 1= T(%,x)(x ) - Ol as the linearity, the chain rule, the Green rule, etc,
for z € Q; and (z*, 21) € Qg X 9}7 e Specialized rulesfor the properties of the two-scale
Icul
ou ¢ o1 10T (u, 96)(gcﬁ7 x!) caiculus,
§23 1= T(%ﬁf)(w L) PO e Auxiliary tools: for transformations of expressions
‘ 1 ’ ) ! format that are not related to operator properties such
forz € Q; and(a*, 27) € Q2 x Q. as the rule which transforms = ¢ into ) — ¢ = 0.
The rules; is encountered in the reference proes, is a INotice the difference witAlopDown which could not apply these

(trivial) generalization ofs; in the sense that it applies to rules at any position.



Table 1 summarizes the number of first order (FO) rules Usual Rules| Special Rules Aux. Tools
used in the reference model, by categories. Skeleton 53 14 28
The reference model has been extended to cover three dif-

ferent kinds of configurations. To proceed to an extension,

the new model derivation is established in a form that iSable 1: The number of first order rules used in the refer-
as close as possible of tieference proof.The grammar ence model.

and the dependency analyzer should be completed. Then,

the initial data is determined, and second order (SO) strate

gies yielding the generalized model derivation are found Usual Rules| Special Rules Aux. Tools
and optimized. As it has been already mentiorigdnd© Multi-Dim 6 0 4
have already been designed to cover the three extension Thin-Reg 5 0 0
The first generalization is to cover multi-dimensional rer Multi-Reg 3 0 0
gions, i.e.Q C R™ with n > 1. Whenn = 2, the initial
termis
o Ju v Table 2: The number of first order rules used in the three
ZZ/QB'TT dz = /iydg’ extensions
e £ L0x; Oz ; .
i=1 j=1 =t U=
whereQ = Reg(, [1,2], 0, [, nq), a;; = Indexed(
Indexed(a, j),4), i = Var(i, I), I = Reg(I, [1,2], 0, Usual Rules| Special Rules Aux. Tools
L%, Lg) and the choice of the test function is trivially de-| Multi-Dim 9 2 3
duced. Then, the model derivation is very similar to this Thin-Reg 0 0 0
of thereference modekee [11], so much so it is obtained| Multi-Reg 1 0 0
simply by applying the SO strate@y; defined in Example
8

The second generalization transforms teference model Table 3: The number of second order strategies used in the
into a model with several adjacent one-dimensional reextension of proofs.

terval i.e. Q@ C R. Form = 2, the initial term is the

same as (8) but witl2 = Reg(Q2, [1], {Q1, 2}, [, ng),

@ = Reg(21,[1], 0, I'1, ng, ), andQy = Reg(a, [1], 0,  implemented nor tested. To summarize the results about
[y, ng,). The two-scale geometries, all variables, all kindne principle of extension of strategies, we show its benefit
of functions and also the two-scale operators are defingfrough some statistics. In particular the main concerned
subregion by subregion. All definitions and properties aps the reusability and the extensibility of existing stoaés.

ply for each subregion, and the proof steps are the santgple 2 shows an estimate of the number of new FO-rules
after spliting the integrals over the complete regfdmto  for the three extensions in each category and for the first
integrals over the subregions. The only major change is #yr blocks.

the fourth step where the equalitif = uj at the inter-  Taple 3 shows the number of SO-strategies used in each
face betwee2, and(2; which is encoded as transmissionextension. Finally, Table 4 shows, the ratio of the modified
conditions in the boundary conditions@f andus. _ FO-rules and the ratio of the modified FO-strategies. The
The third extension transforms the multi-dimensionajeysability ratio is high since most of the FO-strategies de
model obtained from the first generalization to a model rejned in the skeleton model are reused. Besides very little
lated to thin cylindrical regions, in the sense that the dime nymber of SO-strategies is used in the extensions. This sys-
sion of 2 is in the order ot in some directions € 1% and  tematic way of the generation of proofs is a promising path
of the orderl in the others € I* e.9.Q = (0,1) x (0,¢)  that will be further validated within more complex config-
where/® = {2} andI* = {1}. The boundanyl" is split yrations for which the proofs can not obtained by hand. In

in two parts, the lateral palt,.; and the other partSoiner  the future, we plan to introduce dedicated tools to aid in the
Where the D|r|Ch|et boundary Condltlons are replaced bMesign Of Composition Of Severa| extensionsl

homogeneous Neuman boundary conditions%@. = 0.

In this special case the integrals of the initial term areave 7. Connection to FEM Software through an Example
region which size is of the order efo it is required to mul- In [11], a model of the mechanical behavior of elas-
tiply each side of the equality by the factiote to work with  tic periodic cantilever arrays was established and studied
expressions of the order @af Moreover, the macroscopic in [9], [10], [7]. Its derivation follows the same steps as
region differs from(, it is equal toQ2* = (0, 1) when the in the reference proof but in addition, it takes into account
microscopic region remains unchanged. With these maseveral features: multi-dimensional regions, thin regjon
changes in the definitions and the preliminary propertiesgector valued solutions, asymptotic scaling of the sofutio
the proof steps may be kept unchanged. and strongly heterogeneous coefficients. So, it can be de-
The mathematical formulation of the second and third exived by composing those elementary extensions. Its com-
tensions has been derived. This allows for the determinglete composition have not yet been build in MEMSALab,
tion of the necessary SO-strategies, but they have not besm here we only present its transfer into a finite element




Input model | Resulting mod.| % FO-rules| % FO-strateg.| e refer to [3] for a presentation of this method built with

Reference | Multi-Dim. 16.6% 5% two bilinear formsa(u, u), b(u, 1) and a linear forn(u)

Multi-Dim. Thin 0 0 defined foru € U andy € M whereU and M are two
Thin Multi-Reg. 0 2.5% functional spaces. Here, they are restricted to the form

necessary for the above model posed on a bidimensional

domain$2 with boundanyl",
Table 4: The ratio of modified FO-rules and FO-strategies.
a(u,u) = / LNVudzx,l(u) = / Fudx
Q

Q

software in a manner that will be generalized in the future. andb(u, p) - = /QRQ He do + /F B pp dv(13)

We adopt the f?irmlflatlon of Section 2*|n [7], that is posed, s ¢ proag possible choices of vector valued functionals
in a rectanglézy, z5) € (0, Lp) x (0, L) where the pa- 7 g, )~ constraintsRo (Vau, u), Rr(Vau,u) and right-
rameters. p andLg, represent respectively the base length, 5,4 sides”(Vu,u). The functionsi,, up are lagrange

in the macroscale direction and the cantilever scaled multipliers associated to the constraints. The associated
length in the microscale variable}. For simplicity, we equations are

denote the coordinates; andx} by = andy. The base . . .

is modeled by the Iinfe (O,L?g) located aty = 0. At —div(L(w)) + (OuRo(u)) (1) = F inQ

eachz corresponds a clamped cantilever oriented in the di- andL(u).n =00r Rp(Vu,u) =0inI"  (14)
rectiony € (0,L§). Only the bending displacement is wheren is the outward unit normal tb.

considered in the system motion. The base is governed by

an Euler-Bernoulli beam equation with two kinds of dis-
tributed forces. One is exerted by the attached cantilever
and the other is an external force denoted’gy The bend-
ing displacement, the bending coefficient and the width be
ing denoted bywg, R® and/., the base governing equa-
tion states as

Qg

RPO}w + LcRCO3we = fi. (9)

The base is assumed to be clamped, i.e. with boundary

conditions,
wg = O,wg =0 (10) Fig. 1. Geometry of an array of cantilevers

at both ends. The motion of the cantilevers is governed by
an infinite number of Euler-Bernoulli equations distribdt
along thez-direction,

RC9;. . we = fo (11

wherewc, fc andRC represent the bending displacement,
the distributed force and the bending coefficient. The can
tilevers are clamped in their base and free at their other ent
so the boundary conditions are

{ we = WRB andawa =0 aty=0 (12)

3§ywo = 5‘3yywc =0 aty = Lg.

. Fig. 2: Simulation results for an array of cantilevers
In total, the model is governed by (9-12). In the follow-

ing, we describe its implementation, féf cantilevers, in

a FEM software package using a two-dimensional geom- . o )

etry, see Figure 1. To do so, the fields; and we are Here, the qlomauﬁ) is split into three plecgﬁg UQpcU
taken independent gfandz respectively, and the problem {2c Se€ Figure 1The fourth order equations (9, 11) can-
(11, 12) is solved for theV cantilevers. The contribution NOt be directly written in the above framework. They are

d3wc in the base equation is therefore added as an intdfplemented as a system of first order equations

nal term. The implementation is described for a software Opwp = m1, Oxmi = ma, Opxma = ms,
package as COMSOM which is based on a mixed finite o )
element method with lagrangians on the form anddyms + (cR™n3 = fpin Q5 UQpc,

) Oywe = ny, Oyni = ng, Oyny = n3, Oynsz = fc in g,
L(u, p) = ga(mu) —l(u) + b(u, p). andd,ns = 01in Qpc.



The fieldswpg, we are defined 2, mq, mo, m3 are de- 5
fined inQp UQpe, ng is defined il U Qpc andny, no

are defined if2¢. The corresponding equations dre= 0

in all parts and for all fields. Posings = {(x,y) € Q|

r € {0,Lp}} x (0,L5), 'pe = {(z,y) € Q| y = 0}, 6
I'c = {(z,y) € Q¢ | y = LE}, and removing the in-
dices2 andI" of R since there is no ambiguity, the related
equations are

O, wp — .
FwB,wc = ( wi}c m > s RwB = 8yw3 n QB UQBC!

0, wp .
FwB,’wc = < ayw?é —n > ach = ame in Q¢,

RwB = wpg atFB,RwC =wc atl'ge, 8

Ozmy — ma
le,mg,mg = 8.’Em2 — ms3 ’
Ogzms + fcRCng — fB

Oy 10.
Rm.l,mgmlg = 8ym2 in QB U QBC;
8ym3
Ry, =m; atl'p, 11

_{ Oyni —no o Oz .
Fnl,nz - ( ayn2 —ng ) ,Rnl,ng = ( R in Qc, 12.

Rn1 =N atFBc, Rn2 = Ny ath,
an = 3yn3 — fc, Rn3 = (91713 in Qc, Rn3 =nsonlg,
an = (’9yn3, Rng = 8wn3 in QBC-

13.

Figure 2 illustrates this implementation for forces apgplie
to lines closed to the cantilever ends. It is noticed that thi
model simulation dramatically reduces computation time
and memory use compared to direct three-dimensional sim-
ulations.
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