Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics
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We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer
based on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with ran-
domly defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired
computational unit, intrinsically differing from the Turing machines. This recent paradigm consists
in expanding the input information to be processed into a higher dimensional phase space, through
the nonlinear transient response of a complex dynamics excited by the input information. The
computed output is then extracted via a linear separation of the transient trajectory in the complex
phase space. The hyperplane separation is derived from a learning phase consisting in the resolution
of a regression problem. The processing capability originates from the nonlinear transient, resulting
in nonlinear transient computing (NTC). The computational performance is successfully evaluated
on a standard benchmark test, namely a spoken digit recognition task.

PACS numbers: 42.54.Sf, 05.45.-a, 89.70.Eg

The brain research and neural network computing
communities proposed independently in the early 2000
novel computational principles [1], which are suspected to
mimic actual calculation and processing tasks that have
been observed and studied in the brain. This computa-
tional principles referred to as Echo State Network (ESN
[2]), or Liquid State Machine (LSM, [3]), and also with
the generic term Reservoir Computing (RC), are defi-
nitely different with respect to the standard Turing Ma-
chine principles widely implemented in electronic digital
processors. Instead of processing the calculation tasks
step by step with static states stored in memories, this
new principle is based on computational power developed
by complex nonlinear transient motion developed in the
high dimensional phase space of a nonlinear system ex-
cited by an input signal representing the information to
be processed. The complex dynamics is usually materi-
alized by a network of neurons (as in the brain), or by
any spatially extended network of coupled nonlinear dy-
namical nodes.

The corresponding generic architecture is depicted in
Fig. 1(a), where strong similarities can be seen compared
to standard recurrent neural networks (RNN): an input
layer is dedicated to the injection of the input informa-
tion (input connectivity matrix W') into a complex in-
terconnected network of dynamical nodes (internal net-
work connectivity matrix WP); an output layer (read-
out matrix WR) is dedicated to the extraction of the
result, computed from the nonlinear transient developed
by the network dynamics consequently to the injected
input signal. Since one of our aim is to transpose these
concepts into Physics and into a real world experimen-
tal demonstrator, our system will be referred in the re-
maining part of the paper, as NTC (Nonlinear Transient
Computing [4]). NTC is suggested with the intention to
reflect more clearly the actual physical origin of the ap-
proach, in a way which is expected to be more meaningful
for physicists and for the nonlinear dynamics community,
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FIG. 1: (Color online) Principles of an NTC. Left: with a
spatially extended dynamical network. Right: with a multiple
delay feedback dynamics.
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although historically the computer or brain science com-
munity are referring to ESN, LSM or RC.

There are at least two strong differences in NTC com-
pared to RNN: (i) the internal network structure WP is
assumed to be fixed, and not to be optimized according
to a learning procedure as it is for RNN. This feature
is particularly suited to a physical implementation, since
reconfiguration flexibility typically brought by a numeri-
cal implementation of the RNN, is not required anymore.
(#) A second difference compared to RNN consists in the
fact that the learning procedure in NTC is strongly sim-
plified. It is reduced to the determination of Read-Out
coefficients (matrix W!), which can be easily calculated
from a simple regression technique.

A significant innovation in NTC was recently proposed
and implemented electronically [5] vie the introduction
of a delay dynamics instead of the classical network of
dynamical nodes. This implemented original theoreti-
cal solution appeared also as a convenient technical one,
since it provides a simpler way for real-world physical im-
plementation, compared to the usually adopted topology
of a network [6]. Such an approach can be justified by a
known analogy between a delay dynamics and a spatio-



temporal one (as a RNN). Both are infinite dimensional,
and the space-time representation of a delay dynamics
was already proposed 20 years ago [7], introducing on
the one hand a discrete time variable corresponding to
one delay step forward, and on the other hand a vir-
tual continuous space variable corresponding to the short
time-scale fluctuations within a time delay interval. As
illustrated in Fig. 1(b), virtual nodes in a delay dynamics
can be defined as temporal positions within a time delay
interval 7p, which are separated by a “node distance” d1
[5]. This fixes the number of virtual nodes within a time
delay intervalle, N = 7p/d7 (150 in our case). The con-
nectivity of the resulting virtual spatio-temporal network
is achieved via two dynamical mechanisms. The neigh-
boring nodes are linearly coupled via the characteristic
time 7 of the oscillator impulse response h(t) (67 ~ 7/5
for an optimal adjacent node spacing, as found in [5]).
Additionnally to this “short distance” coupling, long dis-
tance ones are also present. The proposed multiple delay
topology results in a denser internal dynamics connectiv-
ity of the equivalent network, with however still a sparse
connectivity involving only N1 nodes among the N possi-
ble ones. Each node is thus subject to a nonlinear trans-
formation (function f[z ]) applied to a linear combination,
with random weights w , of a few Ny “previous nodes”
randomly defined among the N possible ones. Each cor-
responding delay is defined as k; d7p, k; € [1,..., N] for
it =1to Ni (= N/10).

Compared to the very recent NTC demonstrations
with delay dynamics [5, 8, 9], we propose an original pho-
tonic implementation of RC where the dynamical vari-
able is the wavelength of a tunable laser, and also a
multiple delayed feedback topology intended to enhance
the internal connectivity of the equivalent dynamical net-
work. While evaluating the processing capability of our
approach through its performance on a standard bench-
mark test of spoken digit classification, we found that our
multiple delay photonic system with a reduced number
of nodes, exhibits a comparable computational efficiency,
with word error rate (WER) of the same order as the best
results achieved so far for the same test.

The operating principles of our NTC can be summa-
rized as follow [see Fig. 1(b)]. An input information to
be processed is exciting each virtual spatial node of the
NTC dynamics; this node addressing procedure is practi-
cally performed by temporal division multiplexing, con-
sisting in a random spreading of each input sample over
all the nodes within a time delay interval. The spread-
ing is ruled by a sparse and random input connectivity
matrix W' applied to each of the original information
samples. Each sequence of a spread input information
undergoes: (%) a nonlinear transformation, operating on
a randomly weighted linear combination of N; delayed
feedback; (iz) a linear filtering via an impulse response
h(t), which is limiting the rate of change in the feedback
loop. The computed output of the NTC is obtained by a
read-out procedure, corresponding to a linear separation
of the transient motion in the Np—nodes dynamics phase
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FIG. 2: (Color online) Optoelectronic wavelength setup per-
forming an NTC as a multiple delay feedback dynamics.

space. The read-out coeflicients w,? are determined ac-
cording to a learning phase, which consists in solving a
regression problem from known pairs of transient/output.
The experimental setup is depicted in Fig. 2. It is
based on an optoelectronic architecture originally de-
signed to display an Ikeda-like nonlinear delay dynam-
ics [10]. The nonlinear function (f[z] = sin?(x + ®)) is
provided by a tunable interference phenomena: an imbal-
anced birefringent interferometer is seeded by the light
emitted at ~ 1.5 pm by a tunable two-electrode Dis-
tributed Bragg Reflector (DBR) laser diode. The wave-
length is varied through an injection current Ipgr thus
changing the interference condition, while another elec-
trode (current I) serves as the usual input for setting
the output power. The interferometer output is detected
by a photodiode, and an electronic feedback circuit per-
forms the bandpass filtering ruling the dynamics of the
oscillator (impulse response h(t)). This filtered signal is
the one used for the NTC read-out. The input informa-
tion is added to the filtered signal, the resulting sum be-
ing nonlinearly transformed through f[z], and multiple-
delayed by an FPGA (Field Programmable Gate Array)
board. The FPGA is programmed to perform a flexible
and reconfigurable multiple delay line, in which several
elementary FIFO (First In First Out) memories are im-
plemented together with weights wk for each delay. The
weighted sum of the multiple delayed signal is amplified,
combined with an offset, and serves finally as the input
drive Ippg of the laser wavelength tuning electrode. The
normalized dynamics can be written as follows:
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where x is the output of the bandpass filter (also the
signal used for the read-out), u is the input data, ®q
is an offset phase ruling the operating point along the
nonlinear sin? —function, /8 is the loop gain set by the
feedback amplification, and zy is a formal integration



constant which garanties a zero mean value for the band-
pass filter output. The delayed feedback coefficients w,]?i
are programmed in the FPGA, they are randomly defined
from a uniform distribution; as already stated, they are
introduced for an enhanced internal connectivity com-
pared to the single delay case [5, 8, 9]. The response
times # = 1.59 ms and 7 = 7.95 us are associated to the
low and high cut-off frequencies (100 Hz and 20 kHz) of
the bandpass filter respectively, and 67 ~ 1.59 us is the
elementary time delay determining the spacing between
two adjacent virtual nodes. There are N = 150 differ-
ent nodes, and N; = 15 randomly distributed delayed
feedbacks, the largest delay being NoT ~ 238 us.

In order to ensure a stable fixed point solution in an
input-free operation, the feedback gain S has to be set
below the oscillation threshold defined as 1, calibrated
experimentally as the minimum gain leading to a ris-
ing oscillation, while the nonlinear function is operating
around its maximum linear slope. In the experiment j
is set to ca. 0.5. The amplitude of the input informa-
tion is set so that it induces a large scan of the nonlinear
function (around 1-2 extrema, typically Au ~ 7).

Each single input information consists of a sequence
of samples, each of which has to be spanned over all the
nodes within a time delay. The spanning is performed by
an input connectivity matrix W7, randomly but uniquely
defined for each input information. The temporal wave-
form to be injected in the setup, is derived from a com-
puted matrix product between W' and a M., the latter
being a 2D representation of the input information (the
digit cochleagram in the case of the spoken digit recog-
nition task, see below). The resulting matrix, after be-
ing horizontally unfolded, results in a 1D waveform u(t),
which is injected into the multiple delay dynamics via the
programming of an arbitrary waveform generator (AWG,
Lecroy ArbStudio 1102). For each input information sig-
nal, the full transient response is recorded by a digital
scope. An off-line post-processing is then performed for
both the training and testing stages. The training con-
sists in the resolution of a regression problem, and re-
sults in the definition of N read-out coefficients wi that
are leading to an optimally correct output, for each in-
put information belonging to a training subset. The effi-
ciency of such an optimal read-out is finally evaluated on
a complementary subset of input/output pairs. In princi-
ple, the FPGA could also be programmed to implement
a direct on-line read-out, as soon as the coefficients are
known. This configuration would result in a real-time
processing, for which the processing time would be only
limited by the analogue bandwidth of the delay dynami-
cal system. For the sake of simplicity, this testing phase
was fully processed off-line, right after the training phase.

In order to evaluate the processing efficiency, we
performed a standard task typically used in other RNN
or NTC reports [5, 8, 9], and consisting in spoken digit
recognition. The main goal of this standard classification
test is to recognize a pronounced digit among the ten
possible ones from 0 to 9. The spoken digit data base
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FIG. 3: (Color online) Illustration of the NTC processing on
the spoken digits; example of the spatio-temporal representa-
tion for a digit “seven”.

corresponds to 500 digits extracted from the TI146 speech
corpus [11]. The digits are pronounced by 10 different
female speakers uttering 5 times the 10 digits. Following
a standard pre-processing task typically performed in
many similar acoustic speech recognition task, the 1D
acoustic waveform sampled at 12.5 kHz is transformed
into a 2D frequency-time representation (matrix M,),
a so-called cochleagram (the Lyon Ear Model), which
provides a monitoring of the average acoustic spectrum
(Ny = 86 frequency channels) evolving during the
spoken digit pronounciation time (Nj is typ. 80 samples,
varying between 32 and 130). The cochleagram repre-
sents the input information signal to be spread over the
nodes of the NTC dynamics. This spreading is achieved
via a sparsely and randomly determined connectivity
matrix W' with dimensions N x N + (sparsity 0.1, and
non-zero elements being +1 randomly distributed). The
2D input data to be injected in the NTC thus consists
of an N x N, matrix M, (see Fig. 3), with a number
of columns representing the digit duration (variable
number of samples N;). Each value of the N elements
(the index of a virtual node within 7p) of a column, is
thus built according to W!. The action of W' on the
cochleagram can be interpreted as a random contribution
of some selected frequency components at some selected
time. The resulting input matrix M, = W! x M, is
converted in a 1D signal, u(t) (programmed in the
AWG), simply by unfolding horizontally each successive
column of M,,. The input w(t) in Eq. (1) thus consists
of a sequence of Ny time intervals of length 7p, each of
which consisting of N samples defining the N virtual
node amplitudes to be addressed. The 1D transient x(t)
of the NTC, ruled by Eq. (1), can be represented in
the same 2D way, with a matrix M,, corresponding to
the spatio-temporal response of the node amplitudes.
The read-out of this transient response consists then
of a matrix product (WR)* x M, = B, expected to
result in a target output easily revealing the right digit
(matrix B). The optimal matrix Wg; is calculated
after a standard ridge-regression procedure (regression
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FIG. 4: (Color online) Experimental results. Left: transfert
functions for 15 (red) and 150 (black) delayed feedbacks with
random weights (theoretical curves in full lines, experimental
data in symbols). Right: WER histograms with 15 delayed
feedbacks and a total of 120 cross-validations.

parameter A = 1073),

Wope = argmin||(WH)"M, — B + X[WE?, - (2)

for which a training subset of 475 digits is used among
the 500 available in the data base. The complementary
subset of 25 digits is used to test the performance of
the learnt Wg;t. This training and testing procedure is
repeated for the 20 different possible partitions (cross-
validation). This results in the calculation of a WER,
which is statistically limited by the size of the 500 tests
actually performed during the cross-validation.
Excellent performances (within the limit of statistical
significance of 0.2%) have been obtained in terms of WER
for such a complex classification test. Figure 4 displays
the theoretical and experimental transfert functions of
our multiple delay feedback loops with random weights.
Their complex frequency dependence confirms that the
number of feedback loops, as well as the correct determi-
nation of the read-out weighting coefficients is a critical
process for the classification task. As shown in Fig. 4, the
average WER performance of our setup is 0.64+0.2% with

only 15 feedback delay lines, thereby implying that mul-
tiple feedbacks enable to achieve performances compara-
ble to state-of-the-art with a relatively limited number
of read-out parameters to compute. This result validates
the computational efficiency of our photonic NTC setup
performed by a multiple delay wavelength dynamics, and
it opens the way to the future optimization of delay dy-
namics NTC processors, via a more accurate conceptual
analogy between multiple delay dynamics and classical
network dynamics.

We have demonstrated experimentally the efficiency of
a photonic neuromorphic processor. The proposed setup
is based on a multiple delayed feedback wavelength dy-
namics providing an enhanced dynamical connectivity.
Additionnally to recent success in applications of com-
plex dynamics [12-14], photonic nonlinear delay dynam-
ics are confirmed as an efficient and flexible solution for
the practical implementation of NTC. Future work will
be devoted to ultra-fast photonic versions making use of
standard optical telecommunication devices and princi-
ples [13]. Processing speed for the recognition of a single
spoken digit is around 20 ms, but this can be improved
down to 100 ns with telecom grade devices. Photonic
NTC based on multiple delay dynamics should offer an ef-
ficient and ultra-fast hardware solution for future neuro-
morphic computers. Many fundamental issues still need
to be addressed (quantitative connections between delay
dynamics features and computational power, or optimal
topology and system architecture for advanced function-
alities such as plasticity and integrated learning capa-
bility). We also anticipate that information theory and
nonlinear dynamics should be explored together in order
to provide a theoretical framework capable of describing
and optimizing the computational efficiency provided by
delay dynamics-based NTC [15].
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