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Abstract – Wind turbines proliferation in industrial and residential applications is facing the 

problem of maintenance and fault diagnosis. Periodic maintenances are necessary to ensure an 

acceptable life span. The aim of this paper is therefore to assess impedance spectroscopy 

contribution to the failure diagnosis of doubly-fed induction generator-based wind turbines. 

Indeed, impedance spectroscopy is already used for the diagnosis of batteries, fuel cells, and 

electrochemical systems. For evaluation purposes, simulations are carried-out on a 9-MW wind 

farm consisting of six 1.5-MW wind turbines connected to a 25-kV distribution system that exports 

power to a 120-kV grid. In this context, two common failures are investigated: phase grounding 

and phase short-circuits. In addition, generator stator resistance variation is also considered for 

performance evaluation of impedance spectroscopy. Copyright © 2013 Praise Worthy Prize S.r.l. 

- All rights reserved. 
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Nomenclature 

WT  = Wind Turbine; 

DFIG = Doubly-Fed Induction Generator; 

IS  = Impedance Spectroscopy; 

E  = Voltage; 

I  = Current; 

Z (R) = Impedance (Resistance). 

I. Introduction 

A quantitative analysis of real wind turbine failure 

data has shown important features of failure rate values 

and trends. A failures number distribution check-off is 

reported in Fig. 1 for Swedish, Danish and German wind 

power plants that occurred between 1994 and 2004 [1]. 

These figures show that approximately 45% of failures 

were linked to the electrical system, sensors and 

blades/pitch components. The experience feedback of 

wind turbine industries states that the major concern is on 

the electrical system. Typical failures include: dynamic 

air gap irregularities, generator bearing failure, stator and 

rotor winding; insulation failures, inter-turn short circuits 

in stator windings, broken rotor bar or cracked rotor end-

rings and harmonic degrading. 

In particular, DFIG-based WT failure diagnosis seems 

to become an active area of research. Indeed, many 

papers are devoted to this topic [2-7]. 

I.1. What about Wind Turbine Failure Diagnosis? 

Many techniques and tools have been developed for 

wind turbine electric generator condition monitoring in 

order to prolong their life span as discussed in [8]. 

 
 

(a) Failures number distribution 
for Swedish wind power plants (2000-2004). 
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(b) Failure rates for Danish and German wind power plants. 

 

Fig. 1. Wind turbine failure rates [1]. 
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Some of these techniques used the existing and pre-

installed sensors, which may measure speed, output 

torque, vibrations, temperature, flux densities, etc. These 

sensors are managed together in different architectures 

and coupled with algorithms to allow an efficient 

monitoring of the system condition [9]. Those methods 

have shown their effectiveness in electric motor 

condition monitoring. From the theoretical and 

experimental point of view, the well-established methods 

are: electrical quantities signature analysis (current, 

power, etc.), vibration monitoring, temperature 

monitoring and oil monitoring. 

In the case of wind turbines, it has been shown that 

failures in the drive train could be diagnosed from the 

generator electrical quantities. The advantage of 

signature analysis of the generator electrical quantities is 

that those quantities are easily accessible during 

operation. For steady-state operations, the Fast Fourier 

Transform (FFT), the PSD (Power Spectral Density) and 

other techniques based upon them, as for example the 

STFT (Short-Time Fourier Transform), are widely used 

in the literature. However, in the case of variable speed 

offshore wind and marine turbines, FFT is difficult to 

interpret and it is difficult to extract the variation features 

in time-domain, since the operation is predominately non 

stationary due the stochastic behavior of the wind speed. 

To overcome this problem, advanced signal processing 

techniques have been proposed. They are compared and 

evaluated in [4-5]. 

I.2. What is Specifically Proposed? 

The aim of this paper is to evaluate the 

appropriateness of particular technique that is impedance 

spectroscopy [10]. Indeed, impedance spectroscopy has 

already been used for the diagnosis of batteries, fuel 

cells, and electrochemical systems [11-14]. In this 

context, IS appears as a promising failure diagnosis 

technique. It is the method of choice for characterizing 

the electrical behavior of systems in which the overall 

behavior is determined by a number of strongly coupled 

processes. 

The current availability of commercially made, high-

quality impedance bridges and automatic measuring 

equipment covering the millihertz to megahertz 

frequency range is an extra justification to explore IS 

WTs failure diagnosis. IS should become increasingly 

popular as more and more engineers understand its 

theoretical basis and gain skill in the interpretation of 

impedance data. 

I.3.Investigated Failures 

Various failures can affect a wind turbine DFIG. In 

grid codes context, the two frequent failures are phase 

grounding and phase short-circuits [15]. In addition, 

DFIG stator resistance variation is also considered for IS 

diagnosis performance evaluation. 

II. Impedance Spectroscopy 

II.1. Definitions 

Impedance spectroscopy is a general term that 

subsumes the small-signal measurement of the linear 

electrical response of a material of interest (including 

electrode effects) and the subsequent analysis of the 

response to yield useful information about the physico-

electrochemical properties of the system (Fig. 2). 

Analysis is generally carried-out in the frequency 

domain, although measurements are sometimes made in 

the time-domain and then Fourier transformed to the 

frequency domain, see [16] for an in-depth review. 

While 
 

E
R

I
                (1) 

 

is a well-known relationship, its use is limited to only 

one circuit element (the ideal resistor). An ideal resistor 

has several simplifying properties: It follows Ohm’s law 

at all current and voltage levels; its resistance value is 

independent of frequency; AC current and voltage 

signals through a resistor are in phase with each other. 

Industry applications contain circuit elements with more 

complex behavior, and then impedance is used instead of 

resistance. Like resistance, impedance is a measure of the 

ability of a circuit to resist the flow of electrical current. 

Unlike resistance, impedance is not limited by the 

simplifying properties above-listed. 

Electrochemical or electrical impedance is usually 

measured by applying an AC potential to an element and 

measuring the current through it. Applying a sinusoidal 

potential excitation leads to an AC current signal 

response. This current signal can be analyzed as a sum of 

sinusoidal functions (Fourier series). 

Electrochemical impedance is normally measured 

using a small excitation signal. This is done so that the 

system response is pseudo-linear. In a linear (or pseudo-

linear) system, the current response to a sinusoidal 

potential will be a sinusoid at the same frequency but 

phase-shifted (Fig. 2). The excitation signal has the 

following form 
 

0 sintE E t               (2) 

 

 
 

Fig. 2. Sinusoidal current response in a linear system. 
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In a linear system, the response signal It, is phase-

shifted and has a different amplitude I0. 

 

0 sin( )I I t               (3) 

 

Figure 3 is the Lissajous representation which 

describes the system complex harmonic motion. When 

the input to an LTI (Linear Time Invariant) system is 

sinusoidal, the output is sinusoidal with the same 

frequency. An LTI system produces an ellipse. The 

equivalent Nyquist plot is given by Fig. 4 (for a 1
st
 order 

system). 

Using Euler relationship 

 

cos sinje j    , 

 

it is possible to express the impedance as a complex 

function. The potential is described as 

 

0

j t

tE E e                (4) 

 

and the current response as 

 

0

j t

tI I e                 (5) 

 

The impedance is then represented as a complex number 

 

0 0( ) (cos sin )jE
Z Z e Z j

I

             (6) 

 

The impedance is therefore expressed in terms of a 

magnitude Z0, and a phase shift . In Fig. 4, it should be 

noticed that the y-axis is negative and that each point on 

the Nyquist plot is the impedance at a given frequency. 

 

 
 

Fig. 3. Lissajous representation. 

 

 
 

Fig. 4. Nyquist plot with impedance vector. 

Low frequency data are on the right-side of the plot and 

higher ones are on the left-side. On the Nyquist plot, the 

impedance can be represented as a vector of |Z0| 

amplitude. The angle between this vector and the x-axis 

is  (= argZ). 

Nyquist plots have one major shortcoming by 

considering the frequency as an implicit variable. 

Data can be plotted either in the frequency- or in time-

domain. A transform can be used to switch between the 

domains. The Fourier transform takes time-domain data 

and generates the equivalent frequency-domain data. 

II.2. Impedance Measurement Process 

The impedance measurement entire process is 

summarized by Fig. 5. It mainly consists in three steps, 

after measuring the current and the voltage: 

1. PWM noise rejection using a sample frequency 

adjusted to a division of the PWM one. Then the 

analog-to-digital conversion results in the 

extraction of desired components of current and 

voltage ripples. 

2. Current and voltage ripples complex expression 

calculation using a Discrete Fourier Transform 

(DFT) algorithm that gives measured signals real 

and imaginary parts. DFT has been adopted to 

achieve good accuracy even if measured signals 

exhibit residual perturbation. 

3. Spectral impedance computation from the current 

and voltage, according to the following. 

 

 arg ( )( )
( ) ( ) ( )

( )

j Z jU j
Z f Z j eZ j

I j


    


     (7) 

 

where 

 

 

arg ( )

arg ( )

( ) ( ) ( )

( ) ( ) ( )

j U j

j I j

U f U j eU j

I f I j eI j





    


   

 

III. Evaluation of the IS-Based Failure 

Diagnosis Approach 

In order to assess impedance spectroscopy 

contribution to the DFIG-based WT failure diagnosis, a 

9-MW wind farm Matlab-Simulink


 case study is used 

for simulation purposes, as illustrated by Fig. 6. 

 

 
 

Fig. 5. Impedance measurement process. 
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Fig. 6. 9-MW wind farm Matlab-Simulink case study. 

 

The wind farm consists in six 1.5-MW wind turbines 

connected to a 25-kV distribution system that exports 

power to a 120-kV grid through a 30-km, 25-kV feeder. 

A 500-kW resistive load and a 0.9-MVAR (Q = 50) filter 

are connected at the 575-V generation bus. Here the wind 

speed is maintained constant at 10-m/sec. The control 

system uses a torque controller in order to maintain the 

speed at 1.09-pu. The reactive power produced by the 

wind turbine is controlled at 0-MVAR. 

The goal is to measure the impedance by applying a 

single-frequency voltage or current to the studied system. 

In this case, amplitude and phase-shift (or real and 

imaginary parts) are measured, using either analog circuit 

or FFT analysis of the response [17]. As the aim is to 

focus on the DFIG diagnosis, Figs. 7 and 8, gives 

respectively the Bode and Nyquist diagrams of a healthy 

DFIG. 

III.1. Phase Grounding Failure 

Figures 9 and 10 show phase grounding effects on the 

measured impedance. As it is expected, the measured 

impedance is equal to zero (Fig. 10). 

III.2. Phase Short-Circuits 

In this case, an asymmetrical short-circuit is applied 

between the DFIG phase A and B. Figure 11 and 12 give 

respectively Bode and Nyquist impedance plots of phase 

A (similar results are obtained for phase B). 

The faulty curve of Fig. 11 (red dashed line) is below 

the healthy one as expected. When a short-circuit occurs, 

the current magnitude increases and consequently the 

impedance magnitude decreases. 
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Fig. 7. Bode diagram of a healthy DFIG. 

 

 
 

Fig. 8. Nyquist diagram of a healthy DFIG. 
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Fig. 9. DFIG Bode diagram with phase grounding. 

 

HV generator phase groundingHV generator phase grounding

 
 

Fig. 10. DFIG Nyquist diagram with phase grounding. 
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Fig. 11. DFIG Bode diagram with phase short-circuit 

(between phases A and B). 

III.3. DFIG Stator Resistance Variation 

A 100% stator resistance increase, which emulates 

temperature effect, is considered. This particular failure 

can be easily detected thanks to the DFIG magnitude 

Bode diagram (Fig. 13). The stator resistance variation 

induces a constant offset over the whole frequency range. 

The Nyquist diagram (Fig. 14) shows that the imaginary 

part of the impedance is equal to that of the healthy 

DFIG, while the real parts are different. 

10 MVA generator stator phase short-circuits10 MVA generator stator phase short-circuits

 
 

Fig. 12. DFIG Nyquist diagram with phase short-circuit 

(between phases A and B). 
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Fig. 13. DFIG Bode diagram with stator resistance variation. 

 

 
 

Fig. 14. DFIG Nyquist diagram with stator resistance variation. 

 
This result clearly indicates that parameter variation is a 

resistance one and not an inductance one. 

III.4. What about Failure Diagnosis? 

Impedance spectroscopy allows developing a database 

for a healthy system (generator). A comparison with this 
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database will therefore lead to failure diagnosis. Indeed, 

the above-presented failure analysis clearly shows that 

each failure has its own IS-based signature (impedance) 

as illustrated by Table 1. 

IV. Conclusion 

This paper dealt with DFIG-base wind turbine failure 

diagnosis using impedance spectroscopy. This is a first 

attempt to evaluate impedance spectroscopy failure 

diagnosis performance. For evaluation purposes, 

simulations where carried-out on a 9-MW wind farm 

consisting of six 1.5-MW wind turbines. In this context, 

two common failures were investigated: phase grounding 

and phase short-circuits. In addition, generator stator 

resistance variation where also considered for 

performance evaluation of impedance spectroscopy. 

Failure characteristic Bode and Nyquist diagrams have 

shown that impedance spectroscopy allows having 

typical signatures and could be considered as a promising 

failure diagnosis tool. 
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