
SOFTWARE TESTING, VERIFICATION ANDRELIABILITY
Softw. Test. Verif. Reliab. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.456

A taxonomy of model-based testing approaches

Mark Utting1,∗,†, Alexander Pretschner2 and Bruno Legeard3

1School of Computing and Mathematical Sciences, University of Waikato, New Zealand
2Certifiable Trustworthy IT Systems, Karlsruhe Institute of Technology, Germany

3Smartesting and Laboratoire d’Informatique de l’Université de Franche-Comté, Besançon, France

SUMMARY

Model-based testing (MBT) relies on models of a system under test and/or its environment to derive test
cases for the system. This paper discusses the process of MBT and defines a taxonomy that covers the
key aspects of MBT approaches. It is intended to help with understanding the characteristics, similarities
and differences of those approaches, and with classifying the approach used in a particular MBT tool.
To illustrate the taxonomy, a description of how three different examples of MBT tools fit into the
taxonomy is provided. Copyright q 2011 John Wiley & Sons, Ltd.

Received 21 September 2009; Revised 2 December 2010; Accepted 2 February 2011

KEY WORDS: model-based testing approaches; taxonomy; survey

1. INTRODUCTION

Testing aims at showing that the intended and actual behaviours of a system differ, or at gaining
confidence that they do not. The goal of testing is failure detection: finding observable differences
between the behaviour of the implementation and the intended behaviour of the system under test
(SUT), as expressed by its requirements.

Model-based testing (MBT) is a variant of testing that relies on explicit behaviour models that
encode the intended behaviours of an SUT and/or the behaviour of its environment. Test cases
are generated from one of these models or their combination, and then executed on the SUT. The
use of explicit models is motivated by the observation that traditionally, the process of deriving
tests tends to be unstructured, not reproducible, not documented, lacking detailed rationales for
the test design, and dependant on the ingenuity of single engineers. The idea is that artefacts that
explicitly encode the intended SUT and possibly environment behaviours can help mitigate these
problems.

The ideas of MBT, then dubbed specification-based testing, date back to the seventies [1]. Recent
emphasis on model-based and test-centered development methodologies as well as the level of
maturity of technology from the area of formal verification have led to a strong increased interest
in the subject in the past decade, both in the academic field and in industry. Recent surveys by
Hierons et al. [2] as well as Dias-Neto et al. [3] provide a comprehensive overview of the abundant
technical literature in the MBT field. Dias-Neto et al. analyse 271 papers and count more than 219
different MBT approaches that have been proposed, often with associated tools. With so many
approaches in the field, it can be a daunting task for a practitioner or researcher to make sense

∗Correspondence to: Mark Utting, School of Computing and Mathematical Sciences, University of Waikato, Private
Bag 3105, Hamilton, New Zealand.

†E-mail: marku@cs.waikato.ac.nz

Copyright q 2011 John Wiley & Sons, Ltd.

M. UTTING, A. PRETSCHNER AND B. LEGEARD

of the myriads of technical proposals. This can stifle the adoption of MBT technology in industry
and limit the further improvement of MBT approaches.

Contribution. This paper helps by developing a taxonomy of six essential dimensions that
characterize the different MBT approaches, with examples of how several typical tools fit into
that taxonomy. A classification of many more commercial and academic MBT tools using this
taxonomy is available from a web site [4]. The focus of this paper is on MBT for functional
testing, given that this is currently the main industrial usage of MBT. Moreover, the taxonomy is
oriented towards users of MBT. It provides a framework for comparing and qualitatively assessing
tools and techniques.

Intended limitations. The perspective on MBT adopted in this paper is inherently bound to the
notion of choice: tools generate tests from test models. These test models, by their very nature,
do not specify single tests but rather sets of possible tests, and it is up to an MBT tool to choose
tests from this set (Section 3.5). This is why keyword-based testing or test description languages
and tools [5] are not included in this paper, even though those approaches are sometimes called
model-based as well.

This paper provides concepts and a frame of reference for assessing model-based tools. Evalu-
ating the pragmatics of MBT tools, such as their ease of use, speed, interoperability, support for
evolving requirements (e.g. generating tests for the subset of the requirements that have changed),
or support for traceability (i.e. relating the generated tests back to the model, or even back to the
informal system requirements) is important in practice. However, these issues are shared by many
kinds of software engineering tools and are independent of the dimensions in this taxonomy.

Research results in more theoretical aspects of MBT are outside the scope of this paper. Moreover,
while the paper contains an overview of the process of MBT (see Section 2), it deliberately does
not discuss the empirical evidence for the effectiveness of MBT or its limitations, since this has
been done elsewhere [6, Chapter 2]; see also References [7–14]. Detailed examples of modeling
and test generation using several kinds of MBT tools are provided in the literature [6, 15].

Organization. Section 2 introduces the fundamental concepts of MBT along with the terminology
used. Section 3 describes the taxonomy, which is used in Section 4 to classify a collection of
MBT tools in an exemplary manner. Section 5 discusses the related work, and Section 6 draws
the conclusions.

2. PROCESS AND TERMINOLOGY

This section is used to fix the terminology and to describe the general process of MBT.
A test suite is a finite set of test cases. A test case is a finite structure of input and expected

output: a pair of input and output in the case of deterministic transformative systems, a sequence
of input and output in the case of deterministic reactive systems, and a tree or a graph in the case
of non-deterministic reactive systems. The input part of a test case is called test input.

MBT encompasses the processes and techniques for the automatic derivation of abstract test
cases from abstract models, the generation of concrete tests from abstract tests, and the manual
or automated execution of the resulting concrete test cases. The assumption here is that models
are specified with languages that are sufficiently precise to allow, in principle, a machine to derive
tests from these models.

A generic process of MBT then proceeds as follows (Figure 1).
Step 1. A model of the SUT is built from informal requirements or existing specification

documents. This model is often called a test model, because the abstraction level and the focus
of the model are directly linked with the testing objectives. In some cases, the test model could
also be the design model of the SUT, but it is important to have some independence between the
model used for test generation and any development models, so that errors in the development
model are not propagated into the generated tests [16]. For this reason, it is usual either to develop
a test-specific model directly from the informal requirements, or to reuse just a few aspects of
the development model as the basis for a test model, which is then validated against the informal

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

A TAXONOMY OF MODEL-BASED TESTING APPROACHES

Adaptor + Env

Test
Selection
Criteria

Requirements

Test Case
Specification

Model

Verdicts

Test
Cases

Test
Script

(1)

(2)

(3)

(4)(4)

SUT

Figure 1. The Process of Model-Based Testing.

requirements. Validating the model means that the requirements themselves are scrutinized for
consistency and completeness, and this often exposes requirements errors.

In terms of MBT, the necessity of validating the model implies that the model must be simpler
(more abstract) than the SUT, or at least easier to check, modify, and maintain. Otherwise, the
efforts of validating the model would equal the efforts of validating the SUT. Throughout this paper,
the term ‘abstraction’ will be used to denote both the deliberate omission of detail in the model
and the encapsulation of details by means of high-level language constructs (see Section 3.1).
The test model can reside at various levels of abstraction. The most abstract variant maps each
possible input to the output ‘no exception’ or ‘no crash’. It can also be abstract in that it neglects
certain functionality, or disregards certain quality-of-service attributes such as timing or security
[17, Section 3.1].

On the other hand, the model must be sufficiently precise to serve as a basis for the generation
of ‘meaningful’ test cases. This means that the tests generated from the model should be complete
enough in terms of actions, input parameters and expected results to provide real added value. If
not, the test design job still has to be done manually, and there is little added value in generating
tests from the model.

Step 2. Test selection criteria are chosen, to guide the automatic test generation so that it
produces a ‘good’ test suite—one that fulfills the test policy defined for the SUT. Defining a clear
test policy and test objectives for a system and associated development project is part of all testing
methods such as TMap R© [18] or the ISTQB guidelines [19] that are widely used in industry. In
such methods, the test policy and test objectives are formalized into Test Plan documents, which
define the scope of testing and the various testing strategies and techniques that will be used in
the project for each testing level (e.g. unit testing, integration testing, system testing, acceptance
testing).

Test selection criteria can relate to a given functionality of the system (requirements-based
test selection criteria), to the structure of the test model (state coverage, transition coverage,
def–use dataflow coverage), to data coverage heuristics (pairwise, boundary value), to stochastic

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

M. UTTING, A. PRETSCHNER AND B. LEGEARD

characterizations such as pure randomness or user profiles, to properties of the environment, and
they can also relate to a well-defined set of faults.

Step 3. Test selection criteria are then transformed into test case specifications. Test case
specifications formalize the notion of test selection criteria and render them operational: given a
model and a test case specification, some automatic test case generator must be capable of deriving
a test suite (see Step 4). For instance, ‘state coverage’ of a finite state machine (FSM) might
translate into a set of test case specifications such as {reach s0,reach s1,reach s2, . . .}, where
s0,s1,s2, . . . are all the states of the FSM. A test case specification is a high-level description of
a desired test case.

Step 4.Once the model and the test case specifications are defined, a set of test cases is generated,
with the aim of satisfying all the test case specifications. The set of test cases that satisfy a test
case specification with respect to the model can be empty, in which case the test case specification
is said to be unsatisfiable. Usually, however, there are several or many test cases that satisfy it, and
the test case generator will choose just one of those test cases. Some test generators may spend
significant effort in minimizing the test suite, so that a small number of generated test cases cover
a large number of test case specifications.

Step 5. Once the test suite has been generated, the test cases are run. Test execution may be
manual—i.e. by a physical person—or may be automated by a test execution environment that
provides facilities to automatically execute the tests and record test verdicts. Sometimes, especially
for non-deterministic systems, the generation and running of the tests are dovetailed together,
which will be called online testing in this paper.

Running a test case includes several steps. Recall that model and SUT reside at different levels
of abstraction, and that these different levels must be bridged [16]. For example, an abstract test
case for a bookshop web site might be checkPrice(WarAndPeace)=$19.50, where checkPrice is
the name of the webservice to be used, WarAndPeace is the book to be queried, and $19.50 is the
expected result. Executing a test case then starts by concretizing the test inputs (e.g. to obtain a
detailed web services call) and sending that concrete data to the SUT (see step 5-1 in Figure 1).
Second, the resulting concrete output of the SUT (e.g. a page of XML) must be captured and must
then be abstracted to obtain the high-level expected result (a price) that can then be compared
against the expected result (step 5-2 in Figure 1). The component that performs the concretization
of test inputs and abstraction of test outputs is called the adaptor, because it adapts the abstract
test data to the concrete SUT interface.

A test script is some executable code that executes a test case, abstracts the output of the SUT,
and then builds the verdict. Note that an adaptor is a concept and not necessarily a separate software
component—it may be integrated within the test scripts.

To summarize, MBT involves the following major activities: building the model, defining test
selection criteria and transforming them into operational test case specifications, generating tests,
conceiving and setting up the adaptor component (if the generated tests are to be executed auto-
matically, the adaptor is usually a significant proportion of the workload) and executing the tests
on the SUT. The model of the SUT is used as the basis for test generation, but also serves to
validate requirements and check their consistency.

3. THE TAXONOMY

The definition of the process gives rise to six dimensions of MBT approaches. Along with possible
instantiations of each dimension, these are presented in this section. The dimensions are largely
independent of each other, but not entirely: for instance, if a project is concerned with a continuous
rather than a discrete system, this is likely to limit its choice of modelling paradigm, of test
selection criteria, and of test case generation technology.

Figure 2 gives an overview of the taxonomy. The ‘A/B’ alternatives at the leaves indicate
mutually exclusive alternatives, while the curved lines indicate alternatives that are not necessarily
mutually exclusive (for example, some tools may use more than one test generation technology,
and it is common and desirable to support several kinds of test selection criteria).

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

A TAXONOMY OF MODEL-BASED TESTING APPROACHES

Criteria

Discrete / Hybrid / Continuous

Transition–Based
History–Based
Functional
Operational

Pre–Post or Input Domains

Characteristics

Stochastic

Structural Model Coverage
Data Coverage
Requirements Coverage
Test Case Specifications

Fault–Based
Random&Stochastic

Data–Flow

Input–only / Input–Output

Random generation
Search–based algorithms
Model–checking
Symbolic execution
Theorem proving
Constraint Solving

Deterministic / Non–Det.

Untimed / Timed

Online

Offline

Model
Specification

Test
Generation

Test
Execution

Paradigm

Scope

Technology

Test Selection

On/Offline

Figure 2. Overview of the Taxonomy.

The choice of these six dimensions directly reflects the process introduced in Section 2. Step 1
(building the model) is reflected by the three dimensions within the model specification category:
scope, characteristics, and modelling paradigm. Steps 2 and 3 (choosing test selection criteria and
building test case specifications) are reflected by the test selection criteria dimension within the
test generation category. Step 4 (generating tests) is reflected by the technology dimension with
the test generation category. Step 5 (running tests) is reflected by the on/offline dimension of the
test execution category.

Other perspectives that give rise to a taxonomy of MBT and that do not start from the process
can, of course, also be justified. For instance, one could also start from the different artefacts that
are developed or used in that process, e.g. models, test specifications, test drivers, properties, tests,
etc. The rationale for the decision to use the process as a basis is that it is easier to agree on the
activities of the process, and thus to justify the completeness of the taxonomy, than to agree on the
different relevant artefacts. This, of course, does not mean that such a different taxonomy would
not be valuable as well.

3.1. Model scope

The first dimension is the scope of the model, which is classified into a binary decision: does the
model specify only the inputs to the SUT, or does it specify the expected input–output behaviour
of the SUT? The input-only models are generally easier to specify, but they have the disadvantage
that the generated tests will not be able to act as an oracle. The generated tests may implement an
implicit ‘robustness’ oracle, such as checking that the SUT does not crash or throw any exceptions,
but they cannot check the correctness of the actual SUT output values, since the model does not
specify the expected output values. So input-only models produce weak oracles that are incapable
of verifying the correctness of the SUT functional behaviour.

Input–output models of the SUT not only model the allowable inputs that can be sent to the
SUT, but must also capture some of the intended behaviour of the SUT. That is, the model must

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

M. UTTING, A. PRETSCHNER AND B. LEGEARD

be able to predict in advance the expected outputs of the SUT for each input, or at least be able
to check whether an output produced by the SUT is allowed by the model or not.

Input models can be seen as models of the environment. Attacker models in security testing
are a prominent example; Markov chains used for statistical testing are a second one. The most
abstract model of any environment is one that fully nondeterministically emits all possible inputs
to the SUT. An attacker model encodes some possible behaviours of the environment, so is less
abstract; specific functionalities can also be encoded in this way [20]. The most concrete, or least
abstract, version of an environment model would specify precisely those inputs that can be sent
to the SUT, but such very concrete environment models rarely occur in practice.

Similarly, the model of the SUT can be provided at different levels of abstraction. The most
abstract version is found in robustness testing and need not be specified explicitly: the model
that reacts to any input with ‘no exception thrown.’ More concrete versions specify some of
the behaviour to be tested [17], and models that are as precise as the implementation are also
conceivable, though rare because of the cost of developing and validating them.

In practice, whenever an MBT model has input–output scope, it specifies some aspects of the
environment and also some aspects of the SUT, possibly at differing levels of abstraction.

3.2. Model characteristics

Model characteristics relate to the incorporation of timing issues, to nondeterminism, and to the
continuous or event-discrete nature of the model. These model characteristics are typically chosen
based on what kind of SUT is being tested.

Timing issues are particularly relevant in the large class of real-time systems. Because of the
additional degree of freedom, these systems are notoriously hard to test. Applying the ideas of
MBT to real-time systems is the subject of intense research activities [21].

Nondeterminism can occur in the model and/or the SUT. If the SUT exhibits jitter in the time
or value domains, this can often be handled when the verdict is built (which might be possible
only after all input was applied). If the SUT exhibits genuine nondeterminism, as a consequence
of concurrency, for instance, then it is possible that test stimuli as provided by the model depend
on prior reactions of the SUT. In these cases, the non-determinism must be catered for by the
model, and also by the test cases (they are not sequences anymore, but rather trees or graphs).
Finally, nondeterminism in the model can be used for testing deterministic systems. One example
is using non-deterministic timeouts to avoid a detailed timing model (e.g. [8, p. 395]).

In terms of dynamics, models can be discrete, continuous, or a mixture of the two (hybrid).
Most work in MBT has focused on event-discrete systems, but continuous or hybrid models are
often common in many embedded systems. Like model-based real-time testing, testing continuous
systems are the subject of on-going research [21].

The distinction between different characteristics is important, because it impacts the choice of
the modelling paradigm, technology for test case generation, and the interleaving of generating
and executing tests (online versus offline).

3.3. Model paradigm

The third dimension is what paradigm and notation are used to describe the model. There are
many different modelling notations that have been used for modelling the behaviour of systems
for test generation purposes. It is convenient to group them into the following paradigms, adapted
from van Lamsweerde [22]. These paradigms are also used in the MBT state-of-the-art survey
provided by Dias-Neto et al. [3]. The overview paper of Hierons et al. [2] discusses many of these
paradigms in more detail.

State-Based (or Pre/Post) Notations. These model a system as a collection of variables, which
represent a snapshot of the internal state of the system, plus some operations that modify those
variables. Each operation is usually defined by a precondition and a postcondition, or the postcon-
dition may be written as explicit code that updates the state. Examples of these notations include
Z, B, VDM, JML, OCL, and the C#-plus-preconditions used by Spec Explorer (Section 4).

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

A TAXONOMY OF MODEL-BASED TESTING APPROACHES

In the special case where a pre/post notation is used in an input-only model, there is obviously no
postcondition, so the pre/post notation is reduced to describing the domains of the input variables
and the relationships between variables. This is called an input-domain notation—it is widely used
by pairwise testing tools, for example AETG [23].

Transition-based Notations. These focus on describing the transitions between different states
of the system. Typically, they are graphical node-and-arc notations, like FSMs, where the nodes of
the FSM represent the major states of the system and the arcs represent the actions or operations
of the system. Textual or tabular notations are also used to specify the transitions. In practice,
transition-based notations are often made more expressive by adding data variables, hierarchies
of machines and parallelism between machines. Examples of transition-based notations used for
MBT include FSMs themselves, statecharts (e.g. UML State Machines, Statemate statecharts, and
Simulink Stateflow charts), labelled transition systems and I/O automata.

History-based Notations. These notations model a system by describing the allowable traces
of its behaviour over time. Various notions of time can be used (discrete or continuous, linear or
branching, points or intervals etc.), leading to many different kinds of temporal logics.

Message-sequence charts and related formalisms are also included in this group. These are
graphical and textual notations for specifying sequences of interactions between components.

Functional Notations. These describe a system as a collection of mathematical functions. The
functions may be first-order only, as in the case of algebraic specifications, or higher-order, as in
notations like HOL. For an example of the use of algebraic specifications for MBT, see the work
of Gaudel and LeGall [24].

Operational Notations. These describe a system as a collection of executable processes, executing
in parallel. They are particularly suited to describing distributed systems and communications
protocols. Examples include process algebras such as CSP or CCS as well as Petri net notations.
Slightly stretching this category, hardware description languages like VHDL or Verilog are also
included in this category.

Stochastic Notations. These describe a system by a probabilistic model of the events and input
values and tend to be used to model environments rather than SUTs. For example, Markov chains
are used to model expected usage profiles, so that the generated tests exercise that usage profile.

Data-Flow Notations. These notations concentrate on the data rather than the control flow.
Prominent examples are Lustre, and the block diagrams of Matlab Simulink, which are often used
to model continuous systems.

In practice, several paradigms can be represented in one single notation. For example, the UML
notation offers both a transition-based paradigm, with state machine diagrams, and a pre–post
paradigm, with the OCL language. The two paradigms can be used at the same time in a test
model. For example, this helps to express both the dynamic behaviour and some business rules
on discrete data types. Another example is Matlab, which models embedded real-time systems
using a combination of Simulink block diagrams (a data-flow notation) and Stateflow statecharts
(a transition-based notation).

3.4. Test selection criteria

The fourth dimension defines the facilities that are used to control the generation of tests. MBT
tools can be classified according to which kinds of test selection criteria they support. Note that
these selection criteria indirectly define properties of the generated test suites, including their
fault detection power, cardinality, complexity, etc. While most of these criteria are not unique to
MBT but also apply to more traditional forms of testing, they are a major distinguishing feature
between currently available MBT tools, which is why they make for an important dimension
of this paper’s taxonomy. The following subsections briefly review the most commonly used
criteria.

Defining the ‘best’ criterion is not possible in general. It is the task of the test engineer
to configure the test generation facilities and choose adequate test selection criteria and test
case specifications to meet the project test objectives, e.g. functionality, robustness, security, or
performance.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

M. UTTING, A. PRETSCHNER AND B. LEGEARD

Structural Model Coverage Criteria. These criteria exploit the structure of the model, such as
the nodes and arcs of a transition-based model, or conditional statements in a model in pre/post
notation.

The modelling notation often suggests specific kinds of structural coverage criteria. For example,
when the model uses a pre–post notation, some coverage criteria that are commonly used are:
cause–effect coverage, and coverage of all disjuncts in the postcondition. For algebraic modelling
notations, coverage of the axioms is an obvious coverage criterion.

For transition-based models, which use explicit graphs containing nodes and arcs, there
are many graph coverage criteria that can be used to control test generation. Some of the
coverage criteria commonly used are all nodes (that is, all states), all transitions, all transition-
pairs, and all cycles. The FSM isomorphism-checking methods developed for testing protocols
(W-method, Wp-method, D-method etc.) [25, 26] are also based on structural coverage of FSM
models.

Another set of structural coverage criteria is useful for exercising complex boolean decisions
within models. This same need arises in white box testing (code-based testing), so many of the
well-known code-based structural coverage criteria [27, 28] that require certain combinations of
atomic conditions and decisions to take certain values, have been adapted to work on models.
Similarly, many data-flow coverage criteria [29] for code have been adapted to models. These
criteria can be applied to any modelling notation that contains variables (see [6, Chapter 4] for a
detailed presentation of structural coverage criteria).

Data Coverage Criteria. These criteria deal with how to choose a few test values from a
large data space. The basic idea is to split the data space into equivalence classes and choose
one representative from each equivalence class, with the hope that the elements of this class are
‘equivalent’ in terms of their ability to detect failures. Pairwise and N-way coverage criteria [30]
are popular forms of data coverage criteria. For ordered data types, the partitioning of a range of
values into equivalence classes is usually complemented by picking extra tests from the boundaries
of the intervals. Boundary analysis [31] and domain analysis [32, Chapter 7] are widely accepted
as fault detection heuristics and can be used as coverage criteria for test generation (for comparison
with random testing, see the respective seminal papers [33–36] and the summary by Gaston and
Seifert [37]).

Requirements-Based Coverage Criteria.When elements of the model can be explicitly associated
with informal requirements of the SUT, coverage can also apply to requirements. For example, if
requirement numbers are attached to transitions of a UML state machine or to predicates within
the postconditions of a pre–post model, then test generation can aim to cover all requirements.

Ad hoc Test Case Specifications. Explicit test case specifications can obviously be used to control
test generation. In addition to the model, the test engineer writes a test case specification in some
formal notation, and these are used to determine which tests will be generated. For example, they
may be used to restrict the paths through the model that will be tested, to focus the testing on heavily
used cases, or to ensure that particular paths will be tested. The notation used to express these test
objectives may be the same as the notation used for the model, or it may be a different notation.
Notations commonly used for test objectives include UML Sequence diagrams, FSMs, regular
expressions, temporal logic formulae, constraints, and Markov chains (for expressing intended
usage patterns). This family of coverage criteria relates to the scenario-based testing approach
(e.g. [38–40]) where test cases are generated from descriptions of abstract scenarios.

Random and Stochastic Criteria. These are mostly applicable to environment models, because
it is the environment that determines the usage patterns of the SUT. The probabilities of actions
are modelled directly or indirectly [41, 42]. The generated tests then follow an expected usage
profile.

Fault-based Criteria. These are mostly applicable to SUT models, because the goal of testing is
to find faults in the SUT. One of the most common fault-based criteria is mutation coverage. This
involves mutating the model, then generating tests that would distinguish between the mutated
model and the original model. The assumption is that there is a correlation between faults in the
model and in the SUT, and between mutations and real-world faults [9, 43].

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

A TAXONOMY OF MODEL-BASED TESTING APPROACHES

3.5. Test generation technology

One of the most appealing characteristics of MBT is its potential for automation. Given the test
model and some test case specifications, test cases can be derived stochastically, or by using dedi-
cated graph search algorithms and search-based techniques, model checking, symbolic execution,
deductive theorem proving, or constraint solving.

Random generation of tests is done by sampling the input space of a system. In the case of
reactive systems, finite traces can be selected randomly by sampling the input space and applying
it to the model of the SUT in order to infer the expected output part. A random walk on the model
may result in test suites with different characteristics. Random walks can also be performed on
environment models given in the form of (stochastic) usage models, and obviously, this results in
certain transition probabilities for the SUT [44].

Search-based algorithms for model-based test generation include graph search algorithms such
as node or arc coverage algorithms (e.g. the Chinese Postman algorithm [45], which covers each arc
at least once), as well as other search-based algorithms such as metaheuristic search, evolutionary
algorithms (e.g. genetic algorithms), and simulated annealing. This field has been of burgeoning
interest for many researchers in recent years, particularly for automated test data selection [46].

(Bounded) model checking is a technology for verifying or falsifying properties of a system. For
certain classes of properties, model checkers can yield counterexamples when a property is not
satisfied. The general idea of test case generation with model checkers is to first formulate test case
specifications as reachability properties, for instance, ‘eventually, a certain state is reached, or a
certain transition fires’ (e.g. [47, 48]). A model checker then, by searching for counterexamples
for the negation of the property, yields traces that reach the given state or that eventually make
the transition fire. Other variants use mutations of models or properties to generate test suites.

Symbolic execution runs an (executable) model not with single input values but with sets of
input values (e.g. [49–51]). These are represented as constraints. In this way, symbolic traces
are generated: one symbolic trace represents many fully instantiated traces. The instantiation to
concrete values must obviously be performed in order to get test cases for a SUT. Symbolic
execution is guided by test case specifications. Often enough, these boil down to reachability
statements as in the case of model checking. In other cases, test case specifications are given as
explicit constraints, and the symbolic execution is guided by having to respect these constraints.

Deductive theorem proving can also be used for the generation of tests (e.g. [52, 53]), particularly
with provers that support the generation of witness traces or counterexamples. One variant is
similar to the use of model checkers where a theorem prover replaces the model checker. Most
often, however, theorem provers are used to check the satisfiability of formulas that directly occur
as guards of transitions in state-based models. A theorem prover can compute assignments for the
variables that occur in the guards and that, in turn, give rise to values of the respective input and
output signals. A sequence of such sets of signals then becomes the test case.

Constraint solving is useful for selecting data values from complex data domains, e.g. in
combinatorial n-wise testing. It is also often used in conjunction with other methods such as
symbolic execution, graph search algorithms, model-checking or theorem proving [54, 55] where
specific relationships between variables in guards or conditions are expressed as constraints and
efficiently solved by dedicated constraint solvers.

Test generation tools often use several techniques to complete the difficult task of automated
test generation from a model. For example, theorem proving may be used to detect transition
unreachability, while constraint solving is used in the same test generation engine for test data
selection.

3.6. Test execution

The last dimension is concerned with test execution and the relative timing of test case generation
and test execution.

Test execution is done either online or offline from the test generation. Some tools (like Spec
Explorer, described in the next section) support both approaches.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

M. UTTING, A. PRETSCHNER AND B. LEGEARD

With online testing, the test generation algorithms can react to the actual outputs of the SUT.
This is sometimes necessary if the SUT is non-deterministic, because the test generator can see
which path the SUT has taken, and follow the same path in the model (Section 3.2). Offline testing
means that test cases are generated strictly before they are run. Offline test generation from a
non-deterministic model is more difficult, and involves creating test cases that are trees or graphs
rather than sequences.

The advantages of offline testing, when applicable, are directly connected to the generation of a
test repository. The generated tests can be managed and executed using existing test management
tools, which means that fewer changes to the test process are required. One can generate a set of
tests once, then execute it many times on the SUT (e.g. regression testing). Also, the test generation
and test execution can be performed on different machines or in different environments, as well
as at different times. Test suites can be split and applied to many SUTs in parallel. It is also
possible to perform a separate test minimization pass over the generated test suite, to reduce the
size of the test set. Moreover, testing real-time systems may be impossible if test generation is too
time-consuming. Finally, if the test generation process is slower than test execution, then there are
obvious advantages into doing the test generation phase just once.

Note that the generated test cases may be executed manually or automatically. Manual test
execution means that a human tester executes each generated test case by interacting with the
SUT, following the instructions in the test case, whereas automated test execution means that the
generated test is already an executable test script of some form. However, this distinction between
manual and automated test execution is not included in the taxonomy because in practice, all
approaches can support both manual and automatic execution of the generated tests (provided that
suitable interfaces exist for automating the execution, which is not always the case, as shown by the
example of testing ‘a car’ by driving it). For example, if each generated test case is just a sequence
of keywords, it could be executed manually, or one can write an adaptor program that reads those
keywords and executes them automatically. Automatic execution typically requires more work, to
develop an adaptor program or library, but some of this overhead can be ameliorated if the adaptor
code is reused for many different tests or for several different versions of the generated tests.

4. CLASSIFICATION OF TOOLS

This section classifies some typical MBT tools within the dimensions defined in Section 3. The
purpose is to show the characteristics of those tools and the choices made for each dimension in
order to target various application domains. This shows that the taxonomy is useful for discrimi-
nating between different MBT tools.

4.1. AETG

In combinatorial testing the issue is to reduce the large number of possible combinations of input
variables to a few ‘representative’ ones. AETG (Automatic Efficient Test Generator [23]) is a
model-based test input generator for combinatorial testing. To reduce the number of generated test
inputs, it uses a pair-wise algorithm to ensure that all combinations of the data values for each
pair of variables are tested. It also supports all-triples or all-quadruples testing. The oracle for
each test input has to be provided manually. There are a large number of related tools dedicated
to pair-wise testing (www.pairwise.org). A typical application domain for this approach is to test
different configurations, for example, device combinations or possible options for configuring some
product.

Scope of the model: This is a typical input-only model, that is, a model of the environment.
Pair-wise testing (and other n-way testing) uses a simple static model of the input data of the SUT,
defining the domains of variables and any unauthorized combinations of values.

Model Characteristics: Models are untimed and discrete. The choice between determinism and
non-determinism is not applicable, since AETG models do not provide expected output.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

A TAXONOMY OF MODEL-BASED TESTING APPROACHES

Modelling Paradigm: Models are expressed using the ‘input domain’ paradigm, which is a
special case of the pre/post paradigm (data domains plus constraints).

Test Selection Criteria: This tool uses data coverage criteria such as all-pairs coverage.
Technology Generation of test inputs using n-way search algorithms.
Online/offlineAETG (and the other tools of the same category) generates tests for offline manual

execution, or automated offline execution with manual development of the associated test scripts.

4.2. JUMBL

The J Usage Model Builder Library (JUMBL) [44] is an academic model-based statistical testing
tool [41], developed at the University of Tennessee. JUMBL supports the development of statistical
usage-based models using Markov chains, the analysis of models, and the generation of test cases.
Test inputs are generated by traversing the usage model while respecting transition probabilities:
the test cases with greatest probability are generated first. The usage model does not provide the
expected response of the system. Similar tools include the Matelo system from ALL4TEC [56].

Scope of the model: The usage model represents the intended use of software, as defined by the
specification, so it is a model of the expected environment and is input data only.

Model Characteristics: Models are untimed and discrete. The choice between determinism and
non-determinism is not relevant, since only test inputs are generated and SUT behaviour is not
modelled.

Modelling Paradigm: JUMBL models are written in a transition-based notation for describing
Markov chain usage models. A Markov chain usage model has a unique start state, a unique final
state, a set of intermediate usage states, and transition arcs between states. The transition arcs are
labelled by the corresponding event and the probability of occurrence. Transition probabilities are
based on expected use of the SUT.

Test Selection Criteria: JUMBL uses random and statistical test selection criteria (based on the
transition arc probability of the usage model).

Technology: Automated generation of test inputs using statistical search algorithms and the
Markov model.

Online/offline: The generated test cases need to be translated into a script language of a test
execution environment (or executed manually). The JUMBL primarily uses an offline approach,
but also provides an API for relating the test execution results back to the model for statistical
analysis.

4.3. Microsoft Spec Explorer

Spec Explorer [57] was developed within Microsoft Research during the last seven years and is
used extensively within Microsoft on a daily basis. It has now been productized, and is planned
to be released with Visual Studio 2010. It provides a model editing, composition, exploration,
and visualization environment within Visual Studio, and can generate offline .NET test suites or
execute tests as they are generated (online). Other examples of commercial MBT tools that use
behavioural test models are Qtronic from Conformiq [58] and CertifyIt from Smartesting [59].

Scope of the model: The input model of Spec Explorer is a SUT input–output model, which is
typically composed from several simpler models. The model provides the oracle for each generated
test case. Preconditions associated with the action methods of C# models can be used to model
some environmental assumptions.

Model Characteristics: Models are untimed and discrete. Non-determinism is supported by
distinguishing controllable actions from observable actions–the latter may be generated sponta-
neously by the SUT.

Modelling Paradigm: State-based models are written in C# (extended with preconditions), and
a regular expression notation is used to specify history-based (trace-based) models/scenarios. The
C# models can have internal state and parameterized methods with complex parameters. Multiple
models written in these notations are composed to obtain the final SUT model.

Test Selection Criteria: Spec Explorer provides several strategies for managing the exploration
of the model, including data coverage of parameter values and the state space (the state space can

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

M. UTTING, A. PRETSCHNER AND B. LEGEARD

be restricted by several grouping and slicing techniques), and structural model criteria such as
covering all transitions. A regular expression can also be used as an explicit test case specification—
when it is composed with a general C# model of a SUT it can restrict the generated tests to focus
on that scenario.

Technology: It uses algorithms similar to bounded model checking to explore the model and
generate tests.

Online/offline: It supports both online and offline testing.

5. RELATED WORK

The last three decades have seen substantial research in the area of MBT. Broy et al. have provided
a comprehensive overview of research in the field [60], see also the surveys of Dias-Neto et al.
[3] and Hierons et al. [2]. An early focus of this research was conformance testing between
FSMs; see Gargantini’s review [61]. Binder’s book concentrates on the idiosyncrasies of testing
object-oriented software [62]. Research topics deal with the underlying algorithms, theory, and
technology of MBT. The focus of this paper is more on the user perspective of MBT and evaluating
and comparing different MBT approaches and associated tools. In the last few years, the field of
MBT has moved from a research topic to an emerging practice in the industry, with increasing
commercial tool support.

Tools for test case generation have been surveyed by several authors. The 2002 survey by Alan
Hartman [63] in the context of an EU-funded research project is now outdated. More recent surveys
include that by Belinfante et al. [64] as well as that by Götz et al. [65]—the latter is a detailed
study of nine commercial MBT tools, but is in German only. While rather comprehensive, these
surveys were not based on an underlying taxonomy.

A recent systematic review of state-based MBT tools by Shafique and Labiche [66] gives a
detailed classification of nine commercial and research MBT tools. The review covers only a
subset of the taxonomy defined here, focussing on tools that use state-based models (i.e. Model
Paradigm=Transition-Based‡)to model the SUT behavior (i.e. Model Scope=Input–Output), and
excluding MBT tools for embedded systems (i.e. limited to Model Characteristics=Discrete). The
review does not discuss Test Generation Technology, nor whether the tools support Timed/Untimed
models or Deterministic/Non-Deterministic models. The most interesting difference is that the
review classifies the Test Selection Criteria into four groups: its model-flow criteria and script-
flow criteria are both subsets of the Structural Model Coverage of this taxonomy, while its data
criteria and requirement criterion correspond to Data Coverage and Requirements Coverage of
the taxonomy respectively. The review does not discuss Random & Stochastic or Fault-Based
test selection criteria (it would be useful to add these to the review), and classifies Test Case
Specifications (ie. user-defined scenarios) as just another kind of model-flow criteria. In contrast,
the taxonomy here views ad hoc test case specifications as completely distinct from structural
model coverage criteria, because test case specifications are user-defined, whereas structural model
coverage criteria are used to automate the selection of tests. Thus ad hoc test case specifications
allow users a high degree of control over test generation, which is not possible using just structural
model coverage criteria. The review also reports on several tool characteristics related to the
convenience of using a given tool, such as whether models can be edited, checked, and debugged
within the tool or via a separate tool, and the degree of automation for generating various kinds of
test scaffolding code (e.g. adapter code, oracle code, test stubs). So the review is complementary
to the taxonomy in that it classifies several example tools, within a subset of the taxonomy, in
great detail.

Dias-Neto et al. have performed a systematic review and classification of the MBT research
literature, based on keyword searches of six digital libraries [67]. They found 599 papers

‡Eight of the tools in the review use FSM/EFSM models, while Spec Explorer starts with a Pre–Post model, then
expands it into an FSM model.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

A TAXONOMY OF MODEL-BASED TESTING APPROACHES

and analyzed 271 of those papers from between 1990 and August 2009 that were available
online and were about MBT. In those papers, they identified 219 different approaches to MBT.
They classified the approaches according to 29 different attributes, such as whether the models
used UML or not, whether the goal was functional or non-functional testing, the testing level
(system/integration/unit/regression testing), the level of automation, and various other attributes
about the model, the test generation process and the software development environment within
which MBT was used. This review complements the taxonomy presented in this paper, because
the review gives a very detailed view of many existing MBT approaches, while the taxonomy
gives a higher-level way of classifying both existing and future MBT approaches. For example,
the review lists 48 different MBT modeling notations [68], while the taxonomy groups these
into seven modelling paradigms. Another difference is that while the review covers four of the
taxonomy dimensions, it does not have any attributes that directly correspond to the Model Scope
(input-only or input–output) or On/Offline dimensions. In some cases, it is possible to infer the
model scope, based on the kind of the model that was used, but in general these two dimensions
capture important information about an MBT approach that is missing from the review attributes.

Dias-Neto et al. also performed an e-mail survey of 34 MBT researchers, asking them to rank
18 MBT-related attributes, to determine which are the most important attributes when classifying
or selecting MBT approaches [69]. The highest-ranked attribute was the kind of model used, which
is the first top-level dimension of the taxonomy in this paper, and the next two highest attributes
were the test generation criteria and coverage, which correspond to the Test Selection Criteria
dimension of the taxonomy. The On/Offline dimension of the taxonomy was omitted from the
survey, but is included in the taxonomy because it has a major impact on both the theory and
practice of MBT: it has a theoretical impact on the kinds of SUT that can be tested (online is better
for non-deterministic SUTs), and has a strong practical impact on the integration of MBT into
existing software testing processes (offline is easier to integrate, while online is more disruptive).

6. CONCLUSIONS

The idea of MBT is to use an explicit abstract model of a SUT and/or its environment to
automatically derive tests for the SUT: the behaviour of the model of the SUT is interpreted as
the intended behaviour of the SUT. This approach is particularly appealing because it assigns a
threefold use to models: they are used to come to grips with precise requirements descriptions,
they can be used as parts of specification documents, and they can be used for test case generation.

The emerging nature and increasing popularity of the field of MBT have led to a large body
of publications. But there is currently a lack of a unifying conceptual framework, which makes
it difficult to compare different approaches. The taxonomy of this paper provides the essential
characteristics of the various mainstream approaches to MBT, both academic and industrial. The
usefulness of the taxonomy has, in a deliberately exemplary manner, been demonstrated by clas-
sifying several MBT tools w.r.t. its dimensions.

Taxonomies have been proposed in several areas of computer science, such as runtimemonitoring
[70], mining of source code repositories [71] and software product lines [72]. Such taxonomies
help to clarify the key issues of the field and show the possible alternatives and directions. They
can be used to classify tools and to help users to see which approaches and tools fit their specific
needs most closely. The development of a taxonomy for a given field requires that field to have a
certain maturity, and sufficient experience with different approaches. It appears justified to assert
that MBT has now reached a sufficient level of maturity for a taxonomy to be important and
useful.

The technology of automated model-based test case generation has matured to the point where
the large-scale deployment of this technology is underway. In terms of positive failure-detecting
effectiveness, the body of evidence is rather large. In terms of cost effectiveness, there is room for
further empirical investigations, including the analysis of the conditions (organizational, qualifica-
tion of the team for example) that increase the effectiveness of the approach.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

M. UTTING, A. PRETSCHNER AND B. LEGEARD

In addition to empirical studies, there are several research challenges, first in the definition
of domain-specific test selection criteria that are empirically underpinned in terms of their fault
detection power. Second, the tool support for building, versioning, and debugging models could
be improved, and there is a need for more methodological guidance on how to build models for
test generation. Third, the question of MBT for non-functional requirements such as security or
usability, as well as performance, is still an open issue. Finally, the performance of test generation
and the improvement of test generation techniques is also an area of on-going research, with the
potential to further improve the scalability of current MBT approaches and tools.

REFERENCES

1. Chow TS. Testing software design modeled by finite-state machines. IEEE Transactions on Software Engineering
1978; 4(3):178–187.

2. Hierons R, Bogdanov K, Bowen J, Cleaveland R, Derrick J, Dick J, Gheorghe M, Harman M, Kapoor K,
Krause P, Lüttgen G, Simons A, Vilkomir S, Woodward M, Zedan H. Using formal specifications to support
testing. ACM Computing Surveys 2009; 41(2):9:1–9:76.

3. Dias Neto AC, Subramanyan R, Vieira M, Travassos GH. A survey on model-based testing approaches: a systematic
review. WEASELTech ’07: Proceedings of the 1st ACM International Workshop on Empirical Assessment of SW
Engineering Languages and Technologies. ACM: New York, NY, U.S.A., 2007; 31–36.

4. Utting M, Legeard B. Commercial model-based testing tools, 2010. Available at: http://www.cs.waikato.ac.nz/
research/mbt/Tools.pdf [Accessed November 2010].

5. Willcock C, Deiss T, Tobies S, Schulz S, Keil S, Engler F. An Introduction to TTCN-3. Wiley: New York, 2005.
6. Utting M, Legeard B. Practical model-based testing. A Tools Approach. Morgan Kaufman: Los Altos, CA, 2007.
7. Dias-Neto A, Subramanyan R, Vieira M, Travassos GH, Shull F. Improving evidence about software technologies:

A look at model-based testing. IEEE Software 2008; 25(3):10–13.
8. Pretschner A, Prenninger W, Wagner S, Kühnel C, Baumgartner M, Sostawa B, Zölch R, Stauner T. One

evaluation of model-based testing and its automation. Proceedings of the ICSE’05, St Louis, U.S.A., 2005;
392–401.

9. Paradkar A. Case studies on fault detection effectiveness of model based testing generation techniques. Proceedings
of the ICSE 2005 Workshop on Advances in Model-based Software Testing (A-MOST’05), St Louis, U.S.A.,
vol. 30, 2005; 1–7.

10. Horstmann M, Prenninger W, El-Ramly M. Case studies. Model-based Testing of Reactive Systems (Lecture Notes
in Computer Science, vol. 3472), Broy M, Jonsson B, Katoen J-P, Leucker M, Pretschner A (eds.). Springer:
Berlin, 2005; 439–461.

11. Bernard E, Legeard B, Luck X, Peureux F. Generation of test sequences from formal specifications: GSM 11.11
standard case-study. SW Practice and Experience 2004; 34(10):915–948.

12. Blackburn M, Busser R, Nauman A. Why model-based test automation is different and what you should know to
get started. Proceedings of the International Conference on Practical Software Quality and Testing, Washington,
DC, U.S.A., 2004.

13. Farchi E, Hartman A, Pinter SS. Using a model-based test generator to test for standard conformance. IBM
Systems Journal 2002; 41(1):89–110.

14. Dalal SR, Jain A, Karunanithi N, Leaton JM, Lott CM, Patton GC, Horowitz BM. Model-based testing in
practice. Proceedings of the ICSE’99, Los Angeles, U.S.A., 1999; 285–294.

15. Jacky J, Veanes M, Campbell C, Schulte W. Model-based Software Testing and Analysis with C#. Cambridge
University Press: Cambridge, 2008.

16. Pretschner A, Philipps J. Methodological issues in model-based testing. Model-based Testing of Reactive Systems
(Lecture Notes in Computer Science, vol. 3472), Broy M, Jonsson B, Katoen J-P, Leucker M, Pretschner A
(eds.). Springer: Berlin, 2005; 281–291.

17. Prenninger W, Pretschner A. Abstractions for Model-Based Testing (Electronic Notes in Theoretical Computer
Science, vol. 116). Elsevier: Amsterdam, 2005; 59–71.

18. Koomen T, vander Aalst L, Broekman B, Vroon M. TMap Next, for Result-driven Testing. UTN Publishers:
Hertogenbosch, The Netherlands, 2006.

19. Graham D, Veenendaal EV, Evans I, Black R. Foundations of Software Testing: ISTQB Certification. International
Thomson Business Press: Stanford, U.S.A, 2008.

20. Philipps J, Pretschner A, Slotosch O, Aiglstorfer E, Kriebel S, Scholl K. Model-based test case generation for
smart cards. Proceedings of the 8th International Workshop on Formal Methods for Industrial Critical Systems,
2003; 168–192.

21. Berkenkötter K, Kirner R. Real-time and hybrid systems testing. Model-based Testing of Reactive Systems
(Lecture Notes in Computer Science, vol. 3472), Broy M, Jonsson B, Katoen J-P, Leucker M, Pretschner A
(eds.). Springer: Berlin, 2005; 355–387.

22. van Lamsweerde A. Formal specification: A roadmap. Proceedings of the ICSE’00, Limerick, Ireland, 2000;
147–159.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

A TAXONOMY OF MODEL-BASED TESTING APPROACHES

23. Cohen D, Dalal S, Fredman M, Patton G. The AETG system: An approach to testing based on combinatorial
design. IEEE TSE 1997; 23(7):437–444.

24. Gaudel M, LeGall P. Testing data type implementations from algebraic specifications. Proceedings of the Formal
Methods and Testing (Lecture Notes in Computer Science, vol. 4949). Springer: Berlin, 2008; 209–239.

25. Aho A, Dahbura A, Lee D, Uyar MU. An optimization technique for protocol conformance test generation based on
UIO sequences and rural chinese postman tours. IEEE Transactions on Communications 1991; 39(11):1604–1615.

26. Lee D, Yannakakis M. Principles and methods of testing finite state machines—A survey. Proceedings of the
IEEE 1996; 84(2):1090–1126.

27. Zhu H, Hall P, May J. Software unit test coverage and adequacy. ACM Computing Surveys 1997; 29(4):366–427.
28. Ntafos S. A comparison of some structural testing strategies. IEEE TSE 1988; 14(6):868–874.
29. Frankl P, Weyuker E. An applicable family of data flow testing criteria. IEEE TSE 1988; 14(10):1483–1498.
30. Grindal M, Offutt J, Andler S. Combination testing strategies: A survey. Technical Report ISE-TR-04-05, George

Mason University, 2004.
31. Kosmatov N, Legeard B, Peureux F, Utting M. Boundary coverage criteria for test generation from formal

models. Proceedings of the 15th International Symposium on SW Reliability Engineering, St Malo, France, 2004;
139–150.

32. Beizer B. Black-Box Testing: Techniques for Functional Testing of Software and Systems. Wiley: New York,
1995.

33. Hamlet D, Taylor R. Partition testing does not inspire confidence. IEEE TSE 1990; 16(12):1402–1411.
34. Duran J, Ntafos S. An evaluation of random testing. IEEE TSE SE 1984; 10(4):438–444.
35. Gutjahr W. Partition testing versus random testing: The influence of uncertainty. IEEE TSE 1999; 25(5):661–674.
36. Nair V, James D, Ehrlich W, Zevallos J. A statistical assessment of some software testing strategies and application

of experimental design techniques. Statistica Sinica 1998; 8:165–184.
37. Gaston C, Seifert D. Evaluating coverage-based testing. Model-based Testing of Reactive Systems (Lecture Notes

in Computer Science, vol. 3472), Broy M, Jonsson B, Katoen J-P, Leucker M, Pretschner A (eds.). Springer:
Berlin, 2005; 293–322.

38. Wittevrongel J, Maurer F. Scentor: Scenario-based testing of e-business applications. WETICE ’01: Proceedings
of the 10th IEEE International Workshop on Enabling Technologies. IEEE Comp Society: Washington, DC, 2001;
41–48.

39. Tsai WT, Saimi A, Yu L, Paul R. Scenario-based object-oriented testing framework. QSIC 03, Dallas, U.S.A.,
2003; 410.

40. Julliand J, Masson P-A, Tissot R. Generating security tests in addition to functional tests. AST’08, 3rd
International Workshop on Automation of Software Test. ACM Press: Leipzig, Germany, 2008; 41–44. Available
at: http://doi.acm.org/10.1145/1370042.1370051.

41. Walton G, Poore J. Generating transition probabilities to support model-based software testing. Software: Practice
and Experience 2000; 30(10):1095–1106.

42. Musa J. Software Reliability Engineering (2nd edn). Artech House: Bloomington, U.S.A., 2004.
43. Andrews J, Briand L, Labiche Y. Is mutation an appropriate tool for testing experiments. Proceedings of the

ICSE’05, St Louis, U.S.A., 2005; 402–411.
44. Prowell S. Jumbl: A tool for model-based statistical testing. Proceedings of the HICSS’03. IEEE: New York,

2003; 337.3.
45. Kwan M. Graphic programming using odd and even points. Chinese Mathematics 1962; 1:273–277.
46. McMinn P. Search-based software test data generation: A survey. Journal of Software Testing, Verification and

Reliability 2004; 14(2):105–156.
47. Offutt A, Liu S, Abdurazik A, Ammann P. Generating test data from state-based specifications. Journal of

Software Testing, Verification and Reliability 2003; 13(1):25–53.
48. Hong H, Lee I, Sokolsky O, Ural H. A temporal logic based theory of test coverage and generation. Proceedings

of the TACAS’02, 2002; 327–341.
49. Pretschner A. Classical search strategies for test case generation with constraint logic programming. Proceedings

of the Formal Approaches to Testing of Software, Aalborg, Denmark, 2001; 47–60.
50. Marre B, Arnould A. Test sequences generation from LUSTRE descriptions: GATEL. Proceedings 15th IEEE

Conference on Automated Software Engineering, Grenoble, France, 2000; 229–237.
51. Colin S, Legeard B, Peureux F. Preamble computation in automated test case generation using constraint logic

programming. Journal of Software Testing, Verification and Reliability 2004; 14(3):213–235.
52. Dick J, Faivre A. Automating the generation and sequencing of test cases from model-based specifications.

Proceedings of the 1st International Symposium of Formal Methods Europe, Odense, Denmark, vol. 670, 1993;
268–284.

53. Helke S, Neustupny T, Santen T. Automating test case generation from Z specifications with Isabelle. Proceedings
of the 10th International Conference on Z Users, Reading, U.K., vol. 1212, 1997; 52–71.

54. Clarke D, Jéron T, Rusu V, Zinovieva E. Stg: A symbolic test generation tool. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’02) (Lecture Notes Computer Science, vol. 2280). Springer: Berlin,
2002; 470–475. Available at: http://www.irisa.fr/vertecs/Publis/Ps/2002-TACAS.ps.gz [March 2011].

55. Colin S, Legeard B, Peureux F. Preamble computation in automated test case generation using constraint logic
programming. Journal of Software Testing, Verification and Reliability 2004; 14(3):213–235.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

M. UTTING, A. PRETSCHNER AND B. LEGEARD

56. All4TEc, 2010. Available at: http://www.all4tec.net/index.php/All4tec/matelo-concept.html [March 2011].
57. Veanes M, Campbell C, Grieskamp W, Schulte W, Tillman N, Nachmanson L. Model-based Testing of Object-

Oriented Reactive Systems with Spec Explorer (Lecture Notes in Computer Science, vol. 4949), ch. 2. Springer:
Berlin, 2008; 39–76.

58. Conformiq, 2010. Available at: http://www.conformiq.com/products.php [March 2011].
59. Smartesting, 2010. Available at: http://www.smartesting.com [March 2011].
60. Broy M, Jonsson B, Katoen J-P, Leucker M, Pretschner A (eds.). Model-based Testing of Reactive Systems

(Lecture Notes in Computer Science, vol. 3472). Springer: Berlin, 2005.
61. Gargantini A. Conformance Testing. Model-based Testing of Reactive Systems (Lecture Notes in Computer

Science, vol. 3472), Broy M, Jonsson B, Katoen J-P, Leucker M, Pretschner A (eds.). Springer: Berlin, 2005;
87–111.

62. Binder RV. Testing Object-oriented Systems: Models, Patterns, and Tools. Addison-Wesley: Reading, MA, 1999.
63. Hartman A. Model-based test generation tools. Tech. rep., AGEDIS Project, 2002. Available at:

http://www.agedis.de/documents/ModelBasedTestGenerationTools cs.pdf.
64. Belinfante A, Frantzen L, Schallhart C. Tools for test case generation. Model-based Testing of Reactive Systems

(Lecture Notes in Computer Science, vol. 3472), Broy M, Jonsson B, Katoen J-P, Leucker M, Pretschner A
(eds.). Springer: Berlin, 2005; 391–438.

65. Götz H, Nickolaus M, Roner T, Salomon K. Modellbasiertes Testen. Heise Zeitschriften Verlag GmbH: Hannover,
Germany, 2009.

66. Shafique M, Labiche Y. A systematic review of model based testing tool support. Technical Report SCE-10-04,
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada, May 2010.

67. Dias-Neto AC, Travassos GH. A picture from the model-based testing area: Concepts, techniques, and challenges.
Advances in Computers 2010; 80:45–120.

68. Dias-Neto AC, Travassos GH, Subramanyan R, Vieira M. Characterization of model-based software testing
approaches. Technical Report ES-713/07, PESC-COPPE/UFRJ, 2007. Available at: http://www.cos.ufrj.br/
uploadfiles/1188491168.pdf.

69. Dias Neto AC, Travassos GH. Surveying model based testing approaches characterization attributes. ESEM
’08: Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM: New York, NY, U.S.A., 2008; 324–326.

70. Delgado N, Gates AQ, Roach S. A taxonomy and catalog of runtime software-fault monitoring tools. IEEE
Transactions on Software Engineering 2004; 30(12):859–872.

71. Kagdi H, Collard M, Maletic J. Towards a taxonomy of approaches for mining of source code repositories.
SIGSOFT SW Engineering Notes 2005; 30(4):1–5.

72. Krueger CW. Integration testing in software product line engineering: A model-based technique. FASE’07:
Proceedings of Fundamental Approaches to Software Engineering (Lecture Notes in Computer Science). Springer:
Berlin, Heidelberg, 2007; 321–335.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
DOI: 10.1002/stvr

