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Abstract: Thermoacoustic engine systems convert heat power into acoustic power which is 

useful to pump heat or to generate electricity. To construct a robust and useful thermoacoustic 

device, both the acoustic power produced and the exergetic efficiency of this device should have 

acceptable and meaningful values. In order to attain this objective, an optimization study is 

strongly recommended and required. In the literature of thermoacoustic research, we found only 

some limited synthetic optimization methods. This paper presents a new study that incorporates 

the Particle Swarm Optimization (PSO) method for the first time in the thermoacoustic research 

in order to optimize the two objective functions, i.e. the acoustic power and the exergetic 

efficiency. The importance of using the PSO method in thermoacoustic research is highlighted 

and extensively investigated. In addition, significant conclusions, which are useful for the design 

of new thermoacoustic engines, are discussed. 
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1. Introduction 

 
The thermoacoustic phenomenon was first explained qualitatively a long time ago, in the year 1878, by 

Rayleigh
1
: “if heat be given to the air at the moment of greatest condensation, i.e. greatest density, or be 

taken from it at the moment of greatest rarefaction, the vibration is encouraged”. However, the first 

concrete theory and quantitatively accurate understanding to the thermoacoustic phenomenon was given a 

century later by Rott
2
. Based on Rott’s thermoacoustic approximation, Swift from Los Alamos National 

Laboratory and Garret from PEN State University have successfully led the field by making the first 

devices that produce a useful acoustic work
3,4

. Hence, the interest to thermoacoustic systems has been 

arisen and expanded. 

In fact, thermoacoustic systems have a lot of benefits. As an example, they can use any external energy 

sources, they have no or few moving parts, they are friendly environmental and they are low cost 

machines. Thus, to build a thermoacoustic device, it is sufficient to have a porous medium, stack or 

regenerator, sandwiched between hot and cold heat exchangers inside a resonator. Despite all these 
advantages, the exergetic efficiency of these devices is still relatively low and need to be improved by 

keeping, at the same time, an acceptable and meaningful value of the acoustic power produced by these 

devices. To reach this objective, the Particle Swarm Optimization (PSO) method is investigated in the 

present work. In contrast to the limited optimization methods recently appeared in the literature
5–7

, the 

PSO method performs very well in optimizing a complex problem with a large number of parameters, 

such as thermoacoustic problems, without needing a huge amount of calculation time and space in the 

actual computers. Also, the PSO method can do a multi-objective optimization, i.e. exergetic efficiency 

and acoustic power produced by a thermoacoustic device, for the same problem in one single simulation. 

The reminder of this paper is organized as follows. Section 2, an introduction to the PSO method is 

presented. In section 3, the thermoacoustic equations, developed by Rott and written by Swift
8
, are 
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rewritten in a dimensionless numbers. The PSO method is applied to optimize the exergetic efficiency, the 

acoustic power and their product in section 4. This paper is ended up with conclusions and perspectives 

for future works.     

 

2. Introduction to the Particle Swarm Optimization method 

 

PSO is an iterative method that tries to maximize or minimize a function or problem in a known 

search-space of dimension N. Every problem has multiple candidate solutions, called particles, which are 

characterized by their positions and velocities over mathematical formulae. The PSO was invented by 

Kennedy and Eberhart
9
 in 1995, inspired by social behavior of bird flocking or fish schooling. 

 
Suppose the function to be optimized, f, is defined as: 

       �

�� ��� � �������
�	 ���� � �
�	� � ����

 

Where��	 �is the position vector of one particle. Then, let P be the number of particles in the swarm, 

where each particle has a position vector of dimension N. So, the position vector of a particle i is defined 

as��	
�, where�� � ��� � �, and��	
 is its velocity. 

Let k be the number of iterations, then the algorithm for maximizing a function can be summarized as: 

 

I- Initialize the position vector,��	�
 , the function���

�	�
 � and the velocity vector,��	�
 , for each particle    

II- For each iteration,�� � ��� � � 

o For each particle,�� � ��� � � 

o Evaluate the fitness value of the function,���

�	�
� at position��	�
, 
o If���

�	�
� � �����
 
�	����
 �, then������
 
�	����
 � � ��

�	�
� and��	����
 � �	�
, where������
 
�	����
 � is the best 

value retained by a particle i at position��	����
   

o If ���

�	�
� � ������ 
�	����� � , then ������� 
�	����� � � ��

�	�
�  and ��	����� � �	�
 , where ������� 
�	����� �  is the 

global best value retained at position��	�����
 

o Update particle velocity,��	�� 
 , by using the appropriate mathematical formulae 

o Update particle position,��	�� 
 , where��	�� 
 ���	�
 !��	�� 
  

o If stopping conditions are satisfied, go to step III 

III- Report results and terminate. 

 

In this paper, the constriction method is used to calculate the update particle’s velocity
10,11

: 

 

�	�� 
 � "#$%&�	�
 ! �#'&'())	 
"��� * +�	����
 , �	�
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Where,�())	�
"��� and ())	%
"��� are two random vectors in which each component goes from zero to one. 

The velocity��	 is limited to�/�	0
1� �	0234. This constriction method has a high success rate
12

, and hence, it 

decreases the risk of premature convergence to non-optimal points.  

 

3. Dimensionless number of thermoacoustic equations 

 

The thermoacoustic equations, derived by Rott and written by Swift
8
, are rewritten in dimensionless 

numbers by using Table 1. Then, as we are only interested in what is happening inside the stack, the 

studying zone is reduced to the stack. Howerver, the position of the studying zone varies in the resonator. 

So the position in the stack, �5, varies between�/�65 , 75
. 8 �65 !

75
. 4, (see Figure 1), where��65 is the center of 
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the stack, and 95 is the length of the stack. Besides, the oscillating pressure propagating, in an ideal gas in 

the direction��5 of a channel with a cross-sectional area A, is supposed to be: 

 

:25 � ;<

� , =�>�.?35 ! =>@�.?35� ����

 

where,�= is the traveling-standing-wave ratio, " A = A �. It is equal to 1 for a pure traveling-wave, 0.5 

for a pure standing-wave, and 0 for a pure reflecting traveling-wave,�;< is the drive ratio, ;< � B
BCD, : is 

the pressure amplitude and :C� is the mean pressure. 

 

Table 1: dimensionless number definitions of 

parameters 

 

 

 
Figure 1: the studying zone and the stack’s 

position in the resonator 

 

 

The derivation of the time-averaged acoustic power EFGH35I produced in a length E�5 of the channel is 

given as: 

 

JFKH L5I
J35 �  

MND5
JMND5
J35 </O�4FGH35I !

 
.MND5

JMND5
J35 P/,O�4P/:Q25RN25 4 ,

STUBCD
.6TVW X:2

5 X. , ST6TVY
.UBCD XR25 X.  ����

 

where,�:25  and�R25  are the oscillating pressure and velocity, ZN�5 is the gas mean temperature which is 

supposed to be linear throughout the stack, �ZN�5 � MND
MT � Z[5 !

\35@3]5�^
5
_ `

75 
� , Z[5� , and its axial thermal 

gradient 
JMND5
J35 �


 @Ma5�
75 , �bc and 

 
VW are the acoustic viscous resistance and the acoustic thermal resistance, 

respectively,�bc � deC� f
@�T
�5��
X @�T
�5�X_ and� VW �

U@ 
U

g
BCD f
,h�+i5j�b-�, O� is a combined of the spatial averaged 

thermoacoustic functions, �O� � 
�T
�5�@�T+�5jkV-�

kV@ �+ @�T
�5�- , h�
i5�  is the spatial averaged of a complex 
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thermoacoustic function which depends on the specific channel geometric, for two infinite parallel plates, 

h�
i5� � lmno�
�5�
�5 , i5 � Va

pqr%�,  st is the viscous penetration depth,��b is the Prandtl number,�eC� is the 

mean density for an ideal gas,�d is the angular frequency, u is isobaric to isochoric specific heat ratio,�v� 

is the sound speed at Z�,�b[ is the hydraulic radius of the stack,�</�4 and�P/�4 are the real and imaginary 

parts, the tilde represents the conjugate number.  

The heat flux, �FwH35I , which is a combination of two terms, an internal heat flux and a 

thermal-conduction, is equal to: 

 

FwH35I � x 6T
.gST

 
yD5 f z

JBQ{5
J35 :25
hQ�
i5� , |�} ! UBCDMT

6TST~ ��"
5  

yD5
JMND5
J35� ,

UMT
BCD6TST /
� , ���� JMN�

5
J35 ! ��� JMND5

J354  ����

 

where, ��"5 � 6�Df/�4
.g~yT
 @��� �

JB{5
J35�

.
 , �e�5 � y�D

yT �
MT
MND �

 
MND5  and e� � BCD

VMT , | � hQ�
i5� ! \�T+�5jkV-@�QT
�5�`

 ����  and 

vB� is the isobaric heat capacity.  

Approximately, the acoustic power produced or consumed by a stack or a regenerator can be calculated 

as the sum, throughout the stack, of the derivation of the time-averaged acoustic power EFGH35I produced 

in a length�E�5, so: 

 

�FGH � 5I � 75
� � 
  MND5

JMND5
J35 </O�4FGH35I !

 
.MND5

JMND5
J35 P/,O�4P/:Q25RN25 4 ,

STUBCD
.6TVW X:2

5 X. , ST6TVY
.UBCD XR25 X.�X3]�5�
�   �	��

 

Where, � is the discretization number of the stack, �6
5  is the center position of the i
th

 interval step of 

the stack. 

Supposing that a system receives a quantity wH[5  of heat from a heat source which has an imposed hot 

temperature �Z[5 , and the system produces a quantity �,�FGH 5I  of acoustic power, then the exergetic 

efficiency is defined as: 

 

��3 � @Ma5�FKH 5I
+Ma5@ -�Ha5

  �
��

 

Where, FwH[5I is the heat added to the system at position��[5  and can be calculated by using Eq. (5), and 

�FGH 5I is determined by using Eq. (6).  

 

4. Optimization using PSO method 

 
We are interesting in maximizing three functions. The first one is the exergetic efficiency of the 

thermoacoustic engine, ���3 , the second one is the acoustic power produced by the stack of a 

thermoacoustic engine, �FGH 5I. The last function is the product between the acoustic power produced by 

the stack and the exergetic efficiency, ��� �*��F�H �5I that is useful specially to find a tradeoff between the 

best of���� and��F�H �5I, because, as we will see later, when ���� is in its maximum, �F�H �5I has a low value, 

and vice versa, so, it is better to design a thermoacoustic device based on this function. 
In this paper, we concern ourselves by studying a 3D search-space dimension problem composed from, 

the hydraulic radius of a parallel-plate stack,�b[, the center of the stack in the resonator, �65 and the 

traveling-standing-wave ratio, =. Where,��65 � /75. 8
75
. ! #$�4, b[ � /#$��8 #$��4�� and�= � /#$�8 �4. These 

three parameters are studied to see their influence on the maximum cost functions mentioned above, ���, 

�F�H �5I and ��� * �F�H �5I. 
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Table 2: PSO evolution for each function optimized and their results 

�
 

The other parameters are fixed as followed: the mean pressure is 25 bars, the hot and cold temperature 

are 893K and 293K respectively, the dimensionless length of the stack, 95 � "#""%�, the drive ratio is 

chosen to 5% and the frequency is equal to 50Hz while the gas used is Helium.  

In fact, the drive ratio, hot temperature and cold temperature values determine the size of the hot and 

cold heat exchangers. In addition, the variation of�= means those boundary conditions are changing. So, 

once the optimization function is done, boundary conditions must be chosen to match the value of =.     
The particle swarm optimization toolbox developed by Birge

13
 is used to optimize the desired 

functions. The number of particles is equal to 24. Then, each optimization function is run over 10 times. 

As results show in Table 2, the best value of the exergetic efficiency is�$'#&'� whereas its acoustic 

power is relatively low at a value of 6.98e-5, and its corresponding parameters are = � "#�, which means 

a resonator tube with two closed end boundary conditions, b[ � "#����� � s� � "#���� and �65 � "#'�. 

On the other hand, the best value of the acoustic power is 122.8e-5 where the exergetic efficiency 

corresponding to this value is very low, 1.8% and while, �= � � , which means a circled resonator 

tube,�b[ � s� � "#���� and��65 � "#��. 

The optimization results of ��3 and��FGH � 5I agreed with the work of Kang
6
. Obviously, the definition 

of�� in Kang work is different than the one in this paper. In fact, Kang found that the best value of the 

normalized acoustic power gain is when = � "#��, but this value is not matching the best value of the 

acoustic power itself. To calculate the acoustic power gain in the Kang’s paper, we must multiply the 

normalized acoustic power gain by 
B_

�My�D6T_ �
� ! =.�. If this transfer condition is taken into account, we 

will find that the best value of the acoustic power gain is when the wave is a pure traveling, that is to say 

= � � in this paper. 

As we saw, the best value of exergetic efficiency leads to a relatively low acoustic power, while the 

best value of the acoustic power matches fairly low exergetic efficiency. So it might not be useful to 

design a thermoacoustic device based only on the best value of the exergetic efficiency or on the acoustic 

power. Hence, it is of prime importance to optimize the product between the exergetic efficiency and 

acoustic power as a tradeoff solution between the best values of the acoustic power and exergetic 
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efficiency. Consecutively, the best value of this product is when�= � "#��, b[ � "#����� � s� � "#���� 

and ��65 � "#"��$  which corresponds to ���� � �&����  and ��F�H �5I � %'#&'> , � . In fact, this 

optimization function could give an explanation to the empirical study presented by Backhaus and 

Swift
14

. 

 

5. Conclusions and perspectives 

 

The PSO method has been successfully applied to the optimization of the acoustic power, the exergetic 

efficiency and their product of a thermoacoustic engine. In this first application PSO method to 

thermoacoustic problems, a simple model of a thermoacoustic engine was presented and studied. The 

acoustic pressure is supposed to be known, and only the variations of three parameters are studied, the 

stack’s hydraulic radius, the stack’s position in the resonator and the traveling-standing-wave ratio while 

other parameters are fixed.  

As a result, the optimal solution of the acoustic power is obtained when the wave is a pure traveling 

and when the hydraulic radius is in the order of the thermal penetration depth. However, in this case, the 

exergetic efficiency is quite low. To reach highest exergetic efficiency, the thermoacoustic engine must 
work with a pure standing-wave, while the hydraulic radius has to be lower than the penetration depth and 

the corresponding acoustic power has to be low. As it is not much useful to build a thermoacoustic engine 

only based on higher exergetic efficiency with lower acoustic power or on higher acoustic power with 

lower exergetic efficiency, the product between acoustic power and exergetic efficiency is also studied. 

Such function is more realistic as it leads to both a good exergetic efficiency and acoustic power. The 

corresponding traveling-standing-wave ratio is in the order of 0.6 while the hydraulic radius is shorter 

than the thermal penetration depth.  

Regarding the interesting results given by the use of the PSO method, future work will focus on 

studying more complicated thermoacoustic devices by trying to calculate the acoustic pressure instead of 

imposing it and to take into account a large search-space dimension problem. 
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