
Leirios Test Generator: from Research

to Teaching, through Industry

Frédéric Dadeau, Jacques Julliand and Régis Tissot 1

Laboratoire d’Informatique
Université de Franche-Comté

16 route de Gray
F-25030 Besançon, FRANCE

Abstract

Once upon a time, at the far far away University of Franche-Comté, existed a research prototype named
BZ-Testing-Tools. This tool provided symbolic animation features and test generation from models written
as B abstract machines. Based on the scientific and industrial success of the tool, a company had been
created, named LEIRIOS Technologies. The BZ-Testing-Tools environment was transferred in the company
and redesigned, giving birth to the LEIRIOS Test Generator (LTG). This tool is now being used in the
industry by embedded software developers in order to assist them in the validation phase of their product.
LTG is still used in the computer science department of the University of Franche-Comté for which it
provides a tool support for the practical sessions of the software engineering courses. We illustrate the
features of the tool and its use as a teaching environment for the B method on a concrete application of
formal modelling. The main idea is that modelling for test generation is a motivating way to introduce
formal methods. Teaching the complete application of a model-based test generation process is thus made
possible by using the LTG tool. Our students are drawing a benefit from this experience and live happily
everafter, using formal methods.

Keywords: BZ-Testing-Tools, LEIRIOS Test Generator, B abstract machine, model-based testing.

1 Introduction

When designing a system by modelling it first, it is important to ensure two things.

First, that the model behaves as expected and satisfies some properties, and, second,

that the system conforms to the validated model. The first issue can be addressed

by employing proof techniques, even if they can only guarantee the preservation of

a given set of properties, but not that a system behaves as intended. The second

issue can either be solved by employing a dedicated methodology for designing the

software or by testing the implementation against the model.

The B method [Abr96] is a quitely used formal modelling technique that makes

it possible to describe a complete system, from an abstract model to its implemen-

tation, through refinement steps. Each step consists of adding new information in

the model w.r.t. the previous level. Proof obligations are associated to each step,

1 Email: {dadeau,julliand,tissot}@lifc.univ-fcomte.fr



F. Dadeau, J. Julliand, R. Tissot

in order to ensure the correctness of the whole workflow. At the abstract level,

establishing the proof obligations ensures the correctness of the model w.r.t. the

invariant properties, meaning that the initialization of the model establishes the

invariant, and the operations preserve it. At each refinement step, the proof obliga-

tions ensure that the newly added details preserve the coherence of the system w.r.t.

the previous abstract level. This approach is complete, and produces a fully-verified

system. Nevertheless, we have noticed that putting it into practice is not so simple,

and the targeted audience of this method, industrials and students, are reluctant to

use it.

Contrary to this “classical” use of B –where modelling objectives are to derive

a correct implementation from the model– we choose to apply an approach where

modelling does not aim at producing an implementation but aims at testing it. By

eluding the successive refinement steps and considering only one B machine with

a more or less large abstraction level, this approach is easier to use. Nevertheless,

the absence of refinement has to be balanced by other mechanisms in order to

related the abstract model with the concrete application. These mechanisms are

captured by the adaptation layer, mapping tables of operations of the model and

the commands available in the test bench. In this context, B is not restricted to

modelling program behaviors, but it can be used to model various systems, such as

an automotive windshild wiper controllers, or the security in an airport.

In 2001, the design of a complete framework dedicated to the B notation, that

takes these observations into account, started at the University of Franche-Comté,

in the LIFC computer science research laboratory. This environment, named BZ-

Testing-Tools [ABC+02], takes B abstract machines as input and uses them for

generating tests, through a black-box approach [Bei95]. First, BZ-Testing-Tools

(BZ-TT) provides a symbolic animator in order to validate the model. This semi-

automated process consists, for a user, in selecting the operations of the model

he/she wants to activate. The system computes the resulting state according to the

generalized substitution of the operation in the B machine. The user has then to

make sure that the behavior of the models corresponds to what he/she intended.

This first feature of the BZ-TT framework is complementary to the verification of

properties. It thus makes it possible to validate the behaviors of the model, that

will then be used for test generation purposes. Second, the test generator feature

is dedicated to the automated computation of test sequences from the previously

validated model. It extracts test targets as system states that make it possible to

activate each operation. Then, the engine automatically computes a test sequence

that reaches each of these targets. Coupled with the call of the tested operation, a

minimal test case is build, enriched with inputs of the validation engineer.

During its design at the laboratory, the BZ-TT environment was regularily used

in the software engineering courses, since it provides an efficient and playful means

for validating a B model. It received good feedback from the students, who provided

free beta-testing manpower. The BZ-Testing-Tools technology has been transferred

in 2003 into the new born company called LEIRIOS Technologies, to be industrial-

ized under the name LEIRIOS Test Generator [JL07]. The new version of the tool

is still in use in the computer science teaching department. Whereas the use of the

BZ-TT environment was limited to manipulating the animator, we have decided to



F. Dadeau, J. Julliand, R. Tissot

provide a full overview of the possibilities of LTG to our students. Therefore, we

have designed a class project to be realized during the practical sessions [DT08].

This project consists in a concrete application of a model-based testing approach,

from the design of the B model to the run of the tests on set of faulty implementa-

tions, through the test generation. This paper also reports on this experience.

The content of the paper is organized as follows. Section 2 introduces the BZ-

Testing-Tools framework and its principles. The use of LTG as a tool-support for

teaching software engineering is described in Sect. 3. Finally, Section 4 concludes.

2 BZ-Testing-Tools: Features and Principles

The BZ-Testing-Tools environment [ABC+02] is dedicated to the validation of sys-

tems specified by B machines. The Z extension had been studied in [Utt00]. The

whole process is depicted in Fig. 1. It starts by designing a formal model that is

animated in order to ensure its conformance w.r.t. the initial requirements. Then,

the model is used as an input for the tests generation process, which automatically

generates tests according to model coverage criteria selected by the user. Dedicated

scripts are then used to concretize the tests in order to run them on the system un-

der test (SUT). This section presents the two main features of the BZ-Testing-Tools

framework: the symbolic animator, and the test generation engine. For each one,

the principles are described.

2.1 Symbolic Animation of B Models

The first feature proposed by BZ-Testing-Tools is the possibility to perform symbolic

animation. Animating a model is a semi-automated tool-supported process which

consists in simulating the execution of the model, in interaction with the user which

chooses the operations to activate and parameters to pass to these operations. The

animation engine computes the resulting state which is displayed in the GUI of the

tool. The user checks that the system behaves as expected in the informal require-

Fig. 1. Process associated to the BZ-Testing-Tools Framework



F. Dadeau, J. Julliand, R. Tissot

ments from which the model has been designed. This validation task completes the

verification that can be done by proving the correctness of the system w.r.t. the

invariants. This is the principle of another B animator, ProB [LB03].

The animation of the models is based on the decomposition of the operations

into behaviors. Behaviors can be seen as paths in the control flow graph extracted

from the generalized substitution of a B operation.

Example 2.1 (Extraction of the behaviors). Let us consider an operation to

illustrate the extraction of operation behaviors. The checkPin operation hereafter

is typical from smart card applications which are the main industrial use of the

BZ-TT approach. This operation describes the (simplified) verification of a PIN

code given as a parameter (p) against the current value of the PIN (pin). Notice

that this verification is performed only if the parameter is correct and if the PIN

differs from its initial value, considered to be −1. The effect of the operation is to

update the isHoldAuth variable that indicates the authentication status of the user.

It also instantiates the result status word sw that indicates whether the verification

succeeded or failed.

sw ← checkPin(p) =̂

IF p ∈ 0..9999 ∧ pin 6= -1 THEN

IF p = pin THEN isHoldAuth := true ‖ sw := ok

ELSE isHoldAuth := false ‖ sw := wrong pin

END

ELSE sw := wrong conditions

END

This operation contains three behaviors, that are represented using before-after

predicates in which the after values of the state variables are primed:

(i) p ∈ 0..9999 ∧ pin 6= -1 ∧ p = pin ∧ isHoldAuth’ = true ∧ sw = ok

(ii) p ∈ 0..9999 ∧ pin 6= -1 ∧ p 6= pin ∧ sw = wrong_pin

(iii) (p 6∈ 0..9999 ∨ pin = -1) ∧ sw = wrong_conditions

The symbolic animation feature makes it possible for the user to leave some

parameters of the operations unspecified. As a consequence these parameters are

replaced by symbolic values. The same applies principle applies to the state variable

whose values are related to the parameters. Thus, instead of considering concrete

states, in which the state variables have a defined and concrete value, symbolic

animation considers groups of concrete states, named symbolic states. The symbolic

values of variables and parameters are managed by underlying customized constraint

solvers [BLP04] that make it possible to valuate (i.e. instantiate) these variables,

in order to valuate the corresponding execution sequence afterwards.

Example 2.2 (Symbolic animation). Consider the following execution se-

quence: init; setPin(X1); checkPin(1234)

in which the setPin operation is used to set the value of the PIN code according

to the following B operation:

sw ← setPin(p) =̂ IF p ∈ 0..9999 THEN pin,sw := p,ok ELSE sw := ko END



F. Dadeau, J. Julliand, R. Tissot

The call to operation setPin contains a symbolic parameter, which makes it possi-

ble to activate the two behaviors of this operation. The first behavior is activated if

p ∈ 0..9999. Thus, a symbolic value is used to represent the value of the parameter

X1 with the associated constraint X1 ∈ 0..9999. Since the pin state variable is

related to the parameter, its after value also becomes symbolic X2, with the asso-

ciated constraint X2 = X1. The second behavior, which has no effect apart from

instantiating the status word, is activated if p 6∈ 0..9999.

The animator GUI provides the user a way to visualize the possible behaviors to

activate. He then has to choose the one from which the animation will continue 2 .

Suppose that the user selects the first behavior of the setPin operation.

The call to the second operation, checkPin, detailed in Example 2.1, with a

concrete parameter value will have an influence of the current (symbolic) value of

pin. Because of the value of p, it is only possible to active behaviors (i) and (ii) from

checkPin. If behavior (i) is activated (pin=p) then the symbolic value representing

the pin variable X2 is instantiated to 1234, and, because of constraint X2 = X1, we

have X1 = 1234. If behavior (ii) is activated (pin 6= 1234), constraint X2 6= 1234

is added and propagated so as to obtain: X1 = X2 ∧X1 ∈ 0..1233 ∪ 1235..9999.

2.2 A Model-Based Test Generator

The BZ-TT Test Generator [LPU02] is used to automatically compute tests from

a B machine. It considers a model coverage criterion that consists in activating all

the behaviors of each B operation. We present here the principles used to generate

the tests, and the possible coverage criteria the user can input in order to drive the

test generation. Finally, we briefly explain how the generated tests are concretized

into executable tests.

2.2.1 Test Targets and Test Cases

Each behavior is composed of an activation condition, i.e. a predicate that has to

hold for the behavior to be activated. This predicate corresponds to the before part

of the behavior (that does not present any primed variables, or result values) and it

is called the test target. The computation of the test target is inspired from [DF93]

which considers a DNF decomposition of a before-after predicate describing the

operations.

Example 2.3 (Test target computation). Consider the checkPin operation

introduced in example 2.1. The test target corresponding to the different behaviors

are the following.

1. p ∈ 0..9999 ∧ pin 6= -1 ∧ p = pin behavior (i)

2. p ∈ 0..9999 ∧ pin 6= -1 ∧ p 6= pin behavior (ii)

3. p 6∈ 0..9999 ∨ pin = -1 behavior (iii)

The composition of BZ-TT test cases are shown in Fig. 2. Each test starts with

a preamble that is a sequence of operation calls that reaches a state satisfying the

test target. This preamble is automatically computed by the tool. The test body

2 The animator GUI also provides backtracking features, that make it possible to rewind the animation.



F. Dadeau, J. Julliand, R. Tissot

postamble

preamble identification

body

Fig. 2. Composition of an LTG Test Case

is the activation of the behavior itself by invoking the operation with appropriate

parameters values. The identification is used to perform calls to specific operations,

used to observe the system state, and thus, to deduce the verdict of the test. These

operations are selected by the user which associates a different set of observers for

each tested operation. The optional postamble feature makes it possible to reset the

system in order to chain the test cases on the system under test. The postamble is

optional and, unlike the preamble, it can be automatically computed by the tool.

The preamble and the postamble are computed by performing the exploration

of the symbolic state space by the tool. To achieve that, a customized best-first al-

gorithm [CLP04] is put into practice in order to find the shortest path that leads to

the target state. This algorithm uses the symbolic animation engine and performs

calls to the different operations of the model by systematically leaving the param-

eters unspecified. The reasearch is bounded on the size of the preamble, the worst

case complexity of the algorithm is O(nd) in which n is the number of behaviors

to consider and d is the depth of the research. Once a symbolic state satisfying

the test target’s predicate is reached, the computation stops and the correspond-

ing operation sequence is then instantiated in order to concretize the values of the

parameters. This process is done by a labelling procedure of the constraint solver

that instantiates the symbolic variables to a value that satisfies all the constraints.

2.2.2 Coverage Criteria

As shown in Fig. 1, coverage criteria are selected by the user in order to drive the

test generation. BZ-TT considers two kinds of coverage criteria: a decision coverage

criterion and a data coverage criterion.

The decision coverage criterion makes it possible to improve the test cases by

decomposing the disjunctions contained in the test target predicates. This decom-

position is based on four rewriting rules of the disjunctions that split the test targets,

and, as a consequence, the final number of tests.

Example 2.4 (Decision coverage criteria). Consider test target #3 from ex-

ample 2.3, which contains a disjunction p 6∈ 0..9999 ∨ pin = -1. The following

rewritings can be applied in order to improve the preciseness of the targets.

RW1: p 6∈ 0..9999 ∨ pin = -1. When one of the literals is satified, no matter

which one it is, the criterion is satisfied. This rewriting satisfies the Decision

Coverage (DC) criterion.

RW2: p 6∈ 0..9999 [] pin = -1. The two literals are considered independently,

splitting the original test target in two (separeted by []). This rewriting satisfies

the Decision and Condition Coverage (D/CC) criterion.

RW3: p 6∈ 0..9999 ∧ pin 6= -1 [] p ∈ 0..9999 ∧ pin = -1. The two literals have

to be exclusively satisfied, splitting the original test target in two. This rewriting

satisfies the Full Predicate Coverage (FPC) [OXL99] criterion.



F. Dadeau, J. Julliand, R. Tissot

RW4: p 6∈ 0..9999 ∧ pin 6= -1 [] p ∈ 0..9999 ∧ pin = -1 [] p 6∈ 0..9999 ∧ pin = -1.

This rewriting considers all the possibilities for satisfying a disjunction, splitting

the original test target in three. It satisfies the Multiple Condition Coverage

(MCC) criterion.

The data coverage criterion makes it possible to specify how the different data,

state variables or parameters, have to be covered. The possible choices are “one

value”, meaning that a single value that satisfies the constraints will be selected,

“all values”, meaning that all the possible values that satisfy the constraints will be

selected, “boundary value” meaning that a numerical data can instantiated to the

extrema of its domain. This coverage criterion is employed to define the coverage of

the state variables in the test targets, but also to instantiate the parameters after

a preamble computation.

Example 2.5 (Data coverage criteria). Consider the last operation sequence

issued from example 2.2 ending with the call to the checkPin operation using an

incorrect pin code (different from 1234). Applying the boundary value coverage

on the sequence would produce the two following instantiations: setPin(0) and

setPin(9999), producing two different test cases.

2.2.3 Reification of the Abstract Test Cases

At the end, this test generation process produces abstract test cases 3 . The final

step is to concretize the tests in the reification phase. Therefore, the step relies on

an adaptation layer which is composed of a test translator that computes the tests

into the test bench syntax (e.g. JUnit for a Java implementation). It also contains

mapping tables that relate the abstract model values to their corresponding concrete

values on the SUT. At this level, the user is required to input a correspondance table

that maps the abstract names of the model items, more precisely constants and

operation names, to concrete ones (e.g. Java constants and Java methods names

for a JUnit reification).

The oracle of the test, that decides whether it passes or fails, is deduced by

comparing the outputs of the test bench w.r.t. the expected results computed on the

model. Here again, the adaptation layer provides the translation/correspondance

between these two abstraction levels.

2.3 From BZ-TT to LEIRIOS Test Generator

The LEIRIOS 4 company has been created by Pr. Bruno Legeard, based on the

experience and reputation acquired within the BZ-Testing-Tools project. Indeed,

this framework has been used in various industrial partnerships, including cutting-

edge industries such as Schlumberger/Parkeon (ticket and parking solutions), Ax-

alto (now known as Gemalto) (smart cards) and Peugeot (automotive constructor).

These studies have shown the efficiency of the automation of the test design, which

provided a better coverage of the code than manual tests.

3 These tests are said to be abstract because they were computed on the model. They are opposed to
concrete tests that can be directly run on an implementation.
4 http://www.leirios.com



F. Dadeau, J. Julliand, R. Tissot

Fig. 3. Screenshot of the LEIRIOS Test Generator GUI

The industrialization and commercialization of the environment, renamed to

LEIRIOS Test Generator, gave the opportunity to improve or specialize the ap-

proach to adapt it to the needs of industrials 5 . The main evolutions are the fol-

lowing:

• The symbolic animation feature disappeared. It is now replaced by a “classical”

animation mechanism in which all the parameters have to instantiated by the

user. The reason is that this feature may be interesting for researchers, but not

for the industrials.

• Traceability issues of the test cases are taking a central piece. The model opera-

tions can now be annotated to introduce requirements [BJL+05] relating a piece

of the model with an informal need expressed in the specifications. The produced

test cases can be related to the original requirements.

• Reports on the coverage of the test targets and/or the requirements coverage are

now displayed to the user.

• In order to deal with unreached targets, a special mechanism, named preamble

helpers has been introduced to manually design execution sequences with the help

of the animator. These sequences can be used as preambles for reaching a test

target.

LTG is now a complete model based testing solution, of which a screenshot is

displayed in Fig. 3. It is used by industrials, but it can also be used as a tool-support

for teaching formal methods, as we will now describe.

5 Notice that industrials are like students: they prefer a tool that works, is displayed in a colorful graphical
user interface and provides a lot of interesting services, rather than a research prototype that may be more
extensible but less attractive visually, and potentially error-prone.



F. Dadeau, J. Julliand, R. Tissot

3 Teaching Software Engineering with LTG

The software engineering course is focused on teaching formal methods, through

the learning of the B method to masters’ students. The theoretical course covers

the scope of the B method, from the abstract machines to the implementation

through refinement, proofs and machine composition. The tutorials are dedicated

to the application of parts of the methodolgy on several specific exercises. We have

decided to focus the content of the pratical sessions on very applied exercises that

illustrate to the students a real-life use of formal methods, that also corresponds to

our working topic as researchers.

During theoritical sessions and tutorials, our main objective is to teach the B

method to the students. Nevertheless, for the practical sessions, our purpose is

to encourage students to practice modelling, thus we choose a less reluctant way

(for students), which is modelling for testing. This approach has two advantages.

First, the modelling work is quickly concretized by using model animation and test

generation. Second, it introduces the test to students in a practical way. This

approach permit to motivate students to practice modelling and testing which are

two notions that they will learn into details in the next year.

As stated in the introduction, the use of a test generation tool is recurring since

2002. At first, a single session, tool-supported by the BZ-Testing-Tools framework,

was considered. Now, the maturity of the toolset, especially since the commercial

version LTG exists, makes of it a reliable tool on which a complete class project can

be led. Thus, we have defined a project that consists, for our students, in employing

the full approach of model-based testing on a realistic context, that shows them one

of the most widespread application of formal methods.

Before presenting the content of the project and to show the influence of LTG on

this project, we first introduce the notion of test-based modelling, that is a different

approach from designing a model for properties verification purposes.

3.1 How to Design a Model for the Test?

The test-based design of a model is different from modelling a system for verifying

properties or generating code. We first present the differences between the two

approaches, then we introduce the test-based modelling technique that is taught to

our students. This notion is related to the concept of design for testability which

consists in adding test-specific features in a system.

3.1.1 Singularity of Test-Based Modelling

As for all design activities, software modelling depends on its final goals. For in-

stance, models can be used either to generate verified concrete code through a

refinement and proof process (e.g. using the B method) or to test the conformance

of an implementation w.r.t. its specification (e.g. using model-based testing). In

this latter, we identify four modelling issues which need to be taken into account

during the model design: (i) the scope of the test that determines the abstraction

level of the model, (ii) the abstraction gap between the model and the implementa-

tion, (iii) the observability of the system under test (SUT), and (iv) the restrictions

of the test generation technology.



F. Dadeau, J. Julliand, R. Tissot

The choice of the model abstraction level depends on what the user wants to test.

For instance, consider the validation of a smart card. If the validation objective is

to ensure the conformance of the PIN protection system w.r.t. the specification,

then we do not need to model data encryption or the other authentication protocols

(e.g. asymetric key generation,. . . ).

If the choice of a high abstraction level simplifies the modelling of an application,

it creates an abstraction gap between the model and the implementation. Thus,

we have to bridge this gap in order to run any test generated from the model on

the system under test. Basically, we use an adaptation layer which translates the

abstract tests cases (generated from the model) into concrete tests cases (ready to be

executed). But sometimes, the developement of an adaptation layer is not easy. For

instance, the abstraction of the data encryption feature in the model of the smart

card is problematic, because in order to run our test cases on the implementation,

each message have to be encrypted before being sent. To solve this problem, we

need that the adaptation layer recreates the mechanisms that have been abstracted

during the model design. So, choosing an abstraction level for the model of a system

is more difficult than choosing what we want to test. It also depends on how it will

be possible to concretize the abstract tests.

Observation of the system under test is a crucial problem in the black-box testing

domain. In the context, the verdicts only depend on observable elements, through

the returned values of the operation calls. For instance, in smart card applications,

all the operations can always be invoked (their precondition is true) and return

either a success status word or an error code which indicates the cause of the error.

An abstraction choice that would consider only two values, e.g. error and success,

is not very relevant, because it reduces the accuracy of the tests verdicts. Indeed,

it is not possible to distinguish the different an error from another. Thus, it is very

important to identify the informations which can be used to improve the test verdict

and to take them into account during the modelling of the system.

The proximity of the data model between the two abstraction levels is crucial

for the observation issues. Since the verdict is obtained by comparing the results

from the model and the system under test, it is mandatory to be able to compare

them. This implies using “compatible” data structures that are the same in the

two formalisms (e.g. integers) or that can be translated from one formalism to the

other (e.g. functions vs. arrays).

Moreover, the test generation technology is limited by the complexity of the

search algorithms. In order to deal with it, it is sometimes required to take into

account this issue during the modelling step. Three modelling parts have some

influence on this issue: (i) the parameters instantiation, (ii) the abstraction level,

and (iii) the initialization of the system.

When modelling for testing, it is mandatory to instantiate all the parameters

of the model. Indeed, in order to be able to design relevant tests to be run on the

system, the model has to present the same “characteristics” that the system under

test. For example, consider a model representing an elevator parameterized by the

number of floors. In order to generate the tests for a real elevator (e.g. built in a

skyscraper), it is necessary to precisely know how many floors are considered, since



F. Dadeau, J. Julliand, R. Tissot

the content of the test sequences may depend on it (e.g. in a test that requests

to reach the next floor until the roof). As a consequence, the parameter has to be

instantiated.

The abstraction level of the model plays an important role in the reduction of the

combinatiorial explosion. This is due to the fact that a very low level of abstraction

introduces a lot of unnecessary behaviors in the model w.r.t. the testing scope. For

instance, in the smart cards domain, the modelling of the communication protocol

between the card and the terminal introduce an unecessary complexity in the model,

so it is a good choice to abstract it (as long as this part of the requirement can be

restablished by the adaptation layer).

The choice of a good initial state for the model is also important to improve the

test cases building. If it is possible to defined one (or more) initial state(s) of the

system which reduces the length of the operation sequences to reach the targets.

Then, it may reduce both the generation time and the number of unreached test

targets. For example, consider a model of a file system; most of the generated

tests will require that specific files and directories exist. If the initial state is an

empty file system, then the preamble will have to call the operations that create the

appropriate configurations for the different tests. Whereas an non-empty file system

with existing files and directory will require less effort to the engine, improving its

computation time and its chances to reach the most complicated test targets.

Finally, when the test generation is off-line, in order to establish the most ac-

curate conformance relationship between the model and the SUT, the model must

be deterministic. In the BZ-TT/LTG approach, a non-deterministic model is not

problematic for the test generation, but it may become difficult to establish the

verdict when the resulting behavior and values are not the ones that were expected.

One solution is to resort to an on-line testing solution, by embedding the model

through assertions inside the code of the program that are evaluated at runtime,

e.g. by translating the B pre- and postconditions into JML [BCC+05] assertions in

a Java program.

3.1.2 Specification Method

Consider software systems in which only the controllable services modify the handled

informations and return the observable informations. We propose a method with five

steps inspired of [UL06]: (i) choose the goal of the test, (ii) identify the controllable

services and the observable informations, (iii) choose the operations of the model

separating the controllable and the observable ones; design their signatures and

choose how to represent the parameters; design the PROPERTIES clause, (iv)

choose the state variables and design their types; describe the INVARIANT by

expressing invariant properties that have to be verified by the model, (v) design the

behaviors of the operations by pre- and postconditions; express them as conditions

and generalized substitutions.

To choose the test goal many different situations can be considered, depending

on the scope of the test and the hypothesis on the environment. For example, we

distinguish the case of generating functional tests for the nominal cases from the case

of robutness test generation. In the former case, the model contains only nominal

cases of interactions with the system. In the latter case, additional elements have to



F. Dadeau, J. Julliand, R. Tissot

be taken into account in the model so that the relevant test data and test context

can be targeted by the approach. For example, this may result in establishing a

defensive model of the system, which adds the behaviors that were not described in

the informal specification.

The controllable services will be modelled by operations whose one must define

the signature from its definition in the SUT and from the abstraction level of the

model. To an implemented service can be associated one or many services of the

model. In general, as the model is more abstract than the SUT, a service of the

model may be associated to a composition of several services of the SUT. This is

the adaptation layer that re-establishes this mapping. The test driver determines

the conformance relation between the expected results defined by the model and

the results computed by the SUT.

The operation of the model being chosen, we then design their parameters’ list

and their results. We have to choose their types and how to represent them. Some

will be constants to limit the combinatorial explosion if it is compatible with the

goal of the test. The design of the state variables is guided by the abstraction level.

When the state variables are chosen, we have to design their types and specify their

properties in an invariant.

The preconditions of the operations are established according to the test pur-

pose and the kind of operation (controllable or observable). When the robustness is

targeted, the specification of the controllable operations is likely to be defensive and

the preconditions are only typing conditions of the parameters. On the contrary,

if the goal of the test is limited by assumptions on the environment of the system,

then the preconditions are strengthened in order to specify the targeted cases. The

preconditions of the observable operations express the conditions in which the envi-

ronment triggers them. The postconditions are defined by the design of generalized

substitutions that modify the state variables. The exceptional cases are ordered

by the IF imbrications designing them in a deterministic manner. The multiple

error cases have to be considered separately, or the conformance relationship has to

be softened, otherwise, false negative tests can be reported, if the order of errors

treatment differs between the implementation and the model.

Moreover, the design of the conditions and the coverage criteria may have an

influence on the generated tests. These latter two can be combined in different ways

to take the goal of the test into account. For example, condition x ∈ {1..3} will

require to correctly drive the test generation using the appropriate data coverage

criterion in order to produce three test cases (one for each value of x), that would

have been covered by writing x = 1 ∨ x = 2 ∨ x = 3 instead and selecting the

appropriate condition coverage criterion.

3.2 Using LTG on a Realistic Application

In this part, we present the project we designed and proposed to the students,

in order to reach two objectives. First, it aims at evaluating the students with

a realistic case study and to lead them to consider the usefulness of the formal

methods for software testing. We try to reach this goal by applying a full model-

based testing approach in order to validate a realistic application. Second, our idea



F. Dadeau, J. Julliand, R. Tissot

is to introduce this project as a challenge for the students in order to motivate them

and to force them to do their work seriously. To accomplish this objective, we ask

them to detect faulty programs among a set of different implementations of the

same specification. In this project, we rely on the previous modelling techniques

to help them designing their model. LTG is used as a tool-support that makes it

possible for them to generate the tests.

3.2.1 The Challenge and its Rules

Like any challenge, this project is governed by some rules. Here, we present these

rules and the related workflow, given in Fig. 4, that the students have to follow in

order to bring their project to fruition.

Each pair of students have to design a B model of the system w.r.t. the specifi-

cation document provided. They also have to define some invariant properties over

their model –some properties are explicitly described in the specifications, and some

others are suggested. In order to ensure the correctness of their model, the students

have to perform some proof using Click’n’Prove [AC03] to verify the preservation

of the invariants properties. They also have to validate the behavior of their model

by using the LTG animator. These two complementary approaches (proof and an-

imation) provide an interesting tool-support to design a model, little by little, by

successive round trips between the model, the prover and the animator.

Once their model is verified and validated, the students have to generate func-

tional tests using the LTG tool. Here, they have to apply what they have seen

previously about the choice of the coverage criteria parameters and the observation

phase. These parameters are very important in order to generate tests which cover

most of the interesting behaviors of the system and which enable to establish ac-

curate verdicts. The abstract tests generated by the students (saved in XML files)

need to be concretized in order to be executed over the real implementation (a Java

program) of the system. We provide to them an adaptation layer which translate a

XML test file into a JUnit test campaign. This translation is not fully automated:

the students have to define a mapping between the operations (resp. parameters)

names and types defined in the model and the operations (resp. parameters) defined

in the implementation.

The challenge aspect of this project is introduced with the execution of the

test cases. Each pair of students receives a different set of 20 implementations

which contains 19 mutants and a correct program. Each mutant represent a wrong

Fig. 4. Workflow of the project, from specification to test execution



F. Dadeau, J. Julliand, R. Tissot

implementation of one of the initial informal requirement. Thus, the students’

objective is to kill (i.e. to detect) all the mutants and make all the tests pass on

the correct program. This motivates them to design a model of the system which

is both correct and complete.

3.2.2 Demoney: a Realistic System to be tested

The case study we propose to the student is based on the specification of Demoney

(Demonstrative Electronic Purse) [MM] developed by Trusted Logics for research

applications. No implementation of this specification is used in real life, but it

is closed to credit card applets and thus, pertinent. Demoney is a good example

of a critical system, a banking transaction, which require a lot of validation and

verification, but it is also simple enough to be studied as a student project. Our

specification describes a card with four life cycle states: personalization, use, blocked

and disabled. The card is secured with two PIN objects –user and bank– which are

associated to retry counters and values. Moreover, the card contains informations

such as the current balance, the maximal balance and the maximal debit.

During the personalization phase, the PUT DATA operation makes it possible to

set the informations and the objects of the card. Then, the STORE DATA operation

terminates this phase if all the informations are setup and coherent with the security

policy. Once the card has quit the personalization phase and started a use phase,

it will never come back to the former state. During the use phase, the card holder

can invoke some commands to gain authentication on PIN, using VERIFY PIN,

and to initialize a financial transaction, with INITIALIZE TRANSACTION, that

has to be completed by a call to the COMMIT TRANSACTION command. If

the user fails so much times to be authenticated that the retry counter of the user

PIN reached zero then the card becomes blocked. When the card is blocked, the

authenticated bank can unblock the user PIN and change its value. But if the

card is blocked and the retry counter of the bank PIN reaches zero then the card

become disabled and will never be used again. In addition, the implementation

presents observation operations that can be used to retrieve the current balance,

the maximal balance, the maximal debit and the authentication state of the PINs.

An informal specification is given to the students that details the different behaviors

of the system. They have to choose the most relevant design for their model so that

interesting test cases are generated.

3.2.3 Model-based Testing of the Demoney Case Study

The students are asked to design a defensive model, that for each operation, con-

siders its correct behavior and the potential errors. In order to be able to deal

with multiple errors, the order in which the potential errors have to be checked is

indicated in the specification document.

The interest of this specification is to provide some behaviors which require a

non-trivial command chaining to be reached. It forces the students to target these

behaviors and help the test generation engine. This specification raises the notion of

life cycle which is important in security testing. Moreover, the specification contains

important properties of the system. Some of these properties can be expressed as

invariant properties, whereas some others, like operations chaining properties or



F. Dadeau, J. Julliand, R. Tissot

more generally temporal properties, must be respected by operations but can not

be formalized as invariant properties. Thus, the students have to select what they

are able to model as invariant properties or not. For instance, an invariant property

over the system is: “If the card is not in the personalization phase then the balance

can not be negative or higher than the maximal balance”. At the opposite, the

property: “All initialization of a transaction must be immediately followed by a

transaction confirmation, otherwise the transaction is cancelled”, can not be easily

formalized as an invariant property. In this case, the use of the LTG animator can

help the students to check that this property is correctly designed in their model.

Finally, in order to deal with the potential complexity of the model, that will

slow down the computation time of the test cases, we require the students to produce

two test campaigns. The first one is dedicated to the personalization phase, and

the second considers a given personalization, that the students have to determine

(and justify), so that these tests directly starts from the use phase of the card.

3.2.4 Feedbacks

The main objective of the approach, interesting students to formal methods by

using a practical point of view, seems to be sucessfully fulfilled, according to the

feedback they gave us on the course evaluation. Moreover the study of a smart card

application was really interesting for them.

The challenge introduced by using some mutants maintained the students’ inter-

est until the end of the project, this is partially due to the fact that some mutants

were very difficult to detect, thus, they spend the very last minutes to generate

and run tests to kill the remaining mutants. If the use of faulty implementations

to motivate the students and to evaluate their ability to produces quality tests, it

also offer a good benchmark to them to evaluate their model and to help them to

improve it, by using the correct model as a reference.

The tool chain that we have proposed worked perfectly and none of the students

complained about bugs or strange features of the LTG tool. The animator was very

useful in the early phases of model design. The test generator was used without

any problems, even if some of the students had to perform many tries before un-

derstanding the proper use of some of the coverage criteria. Basically, the choice of

the LTG tool was well-received by the students who appreciated the visual of the

tool and the features it proposed.

4 Conclusion

We have presented in this paper the principles and the story of the BZ-Testing-

Tools framework, initially developed in our research laboratory, and transferred

into the industry. This tool consists of a model animator and a test generator that

we use as a support for teaching formal methods to masters students. The maturity

acquired by the tool makes a reliable tool-support for our students to learn the B

notation, and to apply it into a realistic context. This year, we have designed a

project [DT08] that makes it possible for the students to apply a complete model-

based test generation approach, from the design of the model, to the execution and

the analysis of the tests.



F. Dadeau, J. Julliand, R. Tissot

The design of the project offered a good support to practice formal methods

in an application validation context. Furthermore, it provided an industrial-like

model based testing approach to test the conformance of a system. The similarities

between this class project and an industrial validation activity reside in both the

method and the tools that were used. Moreover, the Demoney case study is very

close to a “real” smart card application. Thus, all these facts motivated the students

and their feedback on the project was excellent.

References

[ABC+02] F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux, N. Vacelet, and
M. Utting. BZ-TT: A tool-set for test generation from Z and B using constraint logic
programming. In Proceedings of the CONCUR’02 Workshop on Formal Approaches to Testing
of Software (FATES’02), pages 105–120, Brnö, Czech Republic, August 2002. INRIA Technical
Report.

[Abr96] J.R. Abrial. The B-Book. Cambridge University Press, 1996.

[AC03] J.-R. Abrial and D. Cansell. Click’n prove: Interactive proofs within set theory. In D.A. Basin
and B. Wolff, editors, Theorem Proving in Higher Order Logics, 16th International Conference
(TPHOLs 2003), volume 2758, pages 1–24, Rome, Italy, 2003. Springer.

[BCC+05] L. Burdy, Y. Cheon, D.R. Cok, M.D. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M. Leino, and
E. Poll. An overview of JML tools and applications. International Journal on Software Tools
for Technology Transfer (STTT), 7(3):212–232, June 2005.

[Bei95] B. Beizer. Black-Box Testing: Techniques for Functional Testing of Software and Systems. John
Wiley & Sons, New York, USA, 1995.

[BJL+05] F. Bouquet, E. Jaffuel, B. Legeard, F. Peureux, and M. Utting. Requirement traceability in
automated test generation - Application to smart card software validation. In Procs. of the
ICSE Int. Workshop on Advances in Model-Based Software Testing (A-MOST’05), St. Louis,
USA, May 2005. ACM Press.

[BLP04] F. Bouquet, B. Legeard, and F. Peureux. CLPS-B: A constraint solver to animate a B
specification. International Journal on Software Tools for Technology Transfer, STTT, 6(2):143–
157, August 2004.

[CLP04] S. Colin, B. Legeard, and F. Peureux. Preamble Computation in Automated Test Case
Generation using Constraint Logic Programming. The Journal of Software Testing, Verification
and Reliability, 14(3):213–235, 2004.

[DF93] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from model-
based specifications. In Proceedings of the International Conference on Formal Methods Europe
(FME’93), volume 670 of LNCS, pages 268–284. Springer Verlag, April 1993.

[DT08] F. Dadeau and R. Tissot. Teaching Model-Based Testing with the Leirios Test Generator. In
Proceedings of the International Workshop on Formal Methods in Computer Science Eduction
(FORMED’08), Budapest, Hungary, March 2008.

[JL07] E. Jaffuel and B. Legeard. LEIRIOS Test Generator: Automated Test Generation from B Models.
In J. Julliand and O. Kouchnarenko, editors, 7th International Conference of B Users (B’2007),
Besançon, France, January 17-19, 2007, Proceedings, volume 4355 of LNCS, pages 277–280.
Springer, 2007.

[LB03] M. Leuschel and M. Butler. ProB: A model checker for B. In Keijiro Araki, Stefania Gnesi,
and Dino Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874. Springer-
Verlag, 2003.

[LPU02] B. Legeard, F. Peureux, and M. Utting. Automated Boundary Testing from Z and B. In
Proceedings of the International Conference on Formal Methods Europe (FME’02), volume 2391
of LNCS, pages 21–40, Copenhagen, Denmark, July 2002. Springer Verlag.

[MM] R. Marlet and C. Mesnil. Demoney: A demonstrative electronic purse - card specification.

[OXL99] A.J. Offutt, Y. Xiong, and S. Liu. Criteria for generating specification-based tests. In Proceedings
of the 5th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’99), pages 119–131, Las Vegas, USA, October 1999. IEEE Computer Society Press.

[UL06] M. Utting and B. Legeard. Practical Model-Based Testing - A tools approach. Elsevier Science,
2006. 550 pages.

[Utt00] Mark Utting. Data Structures for Z Testing Tools. In 4th workshop on Tools for System Design
and Verification (FM-TOOLs 2000), Reisenburg Castle, Germany, July 2000.


	Introduction
	BZ-Testing-Tools: Features and Principles
	Symbolic Animation of B Models
	A Model-Based Test Generator
	From BZ-TT to LEIRIOS Test Generator

	Teaching Software Engineering with LTG
	How to Design a Model for the Test?
	Using LTG on a Realistic Application

	Conclusion
	References

