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Abstract—Micromanipulation systems have recently received
increasing interest. Teleoperated or automated micromanipula-
tion are a challenging issue because of the need of high-frequency
position or force feedback to guarantee stability. In addition,
the integration of sensors in the micromanipulation platforms is
complex. Vision is thus a commonly used solution for sensing;
unfortunately the update rate of frame-based acquisition process
of current available cameras can not ensure -at reasonable costs-
stable automated or teleoperated control at the microscale level
where low inertia induces highly unreachable dynamic phenom-
ena. This paper presents a novel vision-based microrobotic system
combining both an asynchronous Address Event Representation
(AER) silicon retina and a conventional frame-based camera. Un-
like frame-based cameras, recent artificial retinas transmit their
outputs as a continuous stream of asynchronous temporal events,
in a manner similar to the output cells of the biological retina
enabling high update rates. The paper introduces an Event-based
Iterative Closest Point algorithm able to track a microgripper’s
position at a frequency of 4 kHz. The temporal precision of the
asynchronous silicon retina is used to provide a haptic feedback
to assist users during manipulation tasks, whereas the frame-
based camera is used to retrieve the position of the object that
must be manipulated. Experiments on teleoperating spheres of
30−50 µm of diameter using a piezoelectric gripper in a pick-
and-place task are presented.

I. INTRODUCTION

Versatile 3D manipulation systems that can operate in ambi-
ent conditions on micron-sized objects would greatly increase
the potential applications of microtechnology [1]. However the
development of such systems must face a major issue: the
lack of position and force feedback [2]. Sensors have been
developed [3], [4], but their integration into the dedicated tools
induces an important increase in the complexity and the cost
of their fabrication. In particular, even if some microgrippers
offer sensing capabilities at the expense of complex designs
[5], [6] most of them still lack force measurements [7], [8].

Vision is a promising solution to avoid the complexity of
sensors’ integration. Visual information can be converted to
force measurement to monitor efforts applied on objects during
manipulation [9], [10]. This is achieved by using deformable
tools after a calibration step [11]. In particular, the stiffness of
the tools must be determined to relate the measured deforma-
tions to the applied forces. However, the precise value of the
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force might not be necessary to control micromanipulation
systems, in either teleoperated or automated mode. In these
cases, position feedback obtained from vision sensors might
as well be sufficient. In all cases, high dynamic phenomena
due to the low inertia at this scale must be recorded. Most of
the existing vision-based systems provide feedback at a couple
of tens of hertz, and their complexity depends on the size of
the observed scenes [12]. Thus they can not ensure a proper
monitoring of high dynamic motion.

Conventional frame-based cameras’ lack of dynamic in-
formation and their redundancies set an important limit to
potential micromanipulations in automated or teleoperated
modes. Event-based computer vision based on Address Event
Representation (AER) provides a sound solution to high-
speed vision problems [13]. This newly developed discipline
is motivated by mimicking biological visual systems [14]. The
Dynamic Vision Sensor (DVS) silicon retina used in this work
reacts to changes of contrast that are converted in a stream
of asynchronous time-stamped events [15]. The reduction of
redundant information makes this technique promising for
high-speed tracking.

The use of event-based retinas requires the development
of time-oriented event-based algorithms to benefit fully from
the properties of this new framework [16]. The neural shape
coding is a difficult issue as there is almost an infinite number
of shapes’ representation in the real world. A computationally
efficient method is the HMax; it models the biological visual
system to extract features of different forms for object recog-
nition [17]. However, the shapes of micromanipulators are not
very complex. As will be shown, simpler algorithms making
full use of the high temporal resolution of the DVS (µs preci-
sion) allow to fulfill the high-frequency requirements needed
in micromanipulation. The Iterative Closest Point (ICP) is
an efficient algorithm dedicated to minimize the difference
between a data point set and a model point set [18]. Many
variants have been proposed to enhance both performance and
adaptability [19]. However, the 2D image processing can only
be achieved at several 10 Hz, depending on the number of
points to be matched [20]. Although this is sufficient for many
robotic applications, these frequencies are far from enough
for automated or teleoperated micromanipulation that requires
more than 1 kHz refreshing rates to ensure stability of the
control loop because of high dynamics of physical phenomena
[21].

This paper presents a modified Event-based Iterative Closest
Point algorithm (EICP) directly applied on the silicon retina’s
output. It allows to track the manipulation tool at a frequency
of 4 kHz. The positions of static objects are provided by a



conventional frame-based camera. To validate this approach,
a teleoperated pick-and-place task of 30 to 50 µm spheres
using a piezoelectric gripper is proposed. Haptic feedback
directly estimated from the output of both the event-based
retina and the conventional frame-based camera is provided
to assist users during the manipulation. The first 3D pick-and-
place manipulation with haptic feedback using a microgripper
is successfully achieved. To ensure stability of such systems,
frequencies higher than 1 kHz are commonly required [21].
Stable vision-based teleoperation is achieved in this work by
the use of event-based retinas and the EICP algorithm.

This paper is organized as follows. The experimental setup
is presented in Section II. Section III details vision algorithms
used to compute the haptic feedback as described in Section
IV. The proposed approach is validated by experimental results
presented in Section V. Finally, Section VI concludes the
paper.

II. SETUP

Several tools have been developed to manipulate micron-
sized objects in ambient conditions. The most common ones
include cantilevers and grippers. Cantilevers can be used
for 2D manipulations, such as pushing or pulling [2]. Pick
and place operations also have been demonstrated using two
protruding tip cantilevers, but the complexity of the setup
limits its applications [22]. A microgripper designed at the
FEMTO-ST Institute1 (Fig. 1) is used in this work to per-
form 3D manipulations that will enable a large range of
applications, including microassembly. It is based on a pair
of two-degrees-of-freedom piezoelectric beams called duo-
bimorph as the actuation principle of the two fingers [23].
On each actuator, four electrodes referred to a central ground
and two voltages are necessary to impose the displacements
because of the deflections of the piezoelectric beam. This
configuration offers numbers of capabilities: not only an open-
and-close motion but also an up-and-down motion that allows,
for instance, a fine up-and-down approach or a fine alignment
of the finger-tips. Objects are grasped by the mean of two
silicon end effectors, fabricated by DRIE (Deep Reactive-
Ion Etching) process. They are designed to minimize the
sticking effects between the end effector and the objects to
facilitate the release of the objects. The end-effectors are
fixed on the piezoelectric actuators with reversible thermal
glue. The gripper is controlled with instructions sent from
a PC to a high-voltage interface (four channels of +/- 150
V) via an RS232 link. The gripper is mounted on a 3-axis
motorized micromanipulator2 to allow an accurate positioning
with respect to the substrate (Fig. 1). The manipulator used
relies on stepper motors with a step size of 0.040 µm. It is
a cable-driven system with cross roller bearings, and it has a
sub micrometer resolution and a travel range of 25 mm. The
manipulator was originally controlled through a serial port;
however, to increase the communication frequency, a joystick
is emulated by programming the manipulator’s parallel port
using a PCI6259 National Instrument acquisition card.

1http://www.femto-st.fr/
2Sutter Instrument, http://www.sutter.com/MP 285

Fig. 1. Setup of the micromanipulation platform

As show in Fig. 1, the observed scene is monitored by
two optical sensors, that record the same view. The light
beam is divided into two optical paths, and redirected to an
asynchronous event-based silicon retina and a conventional
frame-based camera (GigE vision, Basler). The scene recorded
by both sensors is magnified by a 10× objective (Olympus).

The haptic feedback is provided to users by an Omega hap-
tic device3, with 3 degrees of freedom for both displacement
and force feedback. Forces higher than 5 N are saturated to
avoid any damage to the interface. Both the micromanipulator
and the gripper are controlled through the use of this device.

A single PC (Intel Xeon core, 2.93 GHz) operating under
Windows 7 runs the threads corresponding to the gripper,
the micromanipulator, the vision detection, and the haptic
feedback.

III. VISUAL TRACKING

A. Event-based artificial vision

Biological retinas, unlike frame-based cameras, transmit
less-redundant information about a visual scene in an asyn-
chronous manner. The various functionalities of the retina
have been incorporated into neuromorphic vision sensors since
the late 1980s in the pioneering work of Mahowald [24].
Since then, the most interesting achievements in neuromorphic
retinas have been the development of activity-driven sensing.
The event-based vision sensor output compressed digital data
in the form of events, removing redundancy, reducing latency,
and increasing dynamic range compared with conventional
imagers. A complete review of the history and the existing
sensors can be found in [14].

The Dynamic Vision Sensor (DVS) used in this work is
an Address-Event Representation (AER) silicon retina with
128× 128 pixels [15]. The DVS output consists of asyn-
chronous address-events that signal scene reflectance changes
at the times they occur. Each pixel is independent and detects
changes in log intensity larger than a threshold since the
last event it emitted (typically 15% contrast). As shown
in Fig. 2(a), when the change in log intensity exceeds a
set threshold, a +1 or −1 event is generated by the pixel
depending on whether the log intensity increased or decreased.

3Force Dimension, http://www.forcedimension.com



Because the DVS is not clocked like conventional cameras,
the timing of events can be conveyed with a very accurate
temporal resolution of approximately 1 µs. Thus the ”effective
frame rate” is typically several kilohertz. The retina pixels also
implement the local gain adaptation mechanism, which allows
them to work over scene illuminations that range from 2 lux
to more than 100×103 lux. When events are transmitted off-
chip, they are time-stamped using off-chip digital components
and then transmitted to a computer using a standard USB
connection. The advantages of the sensor over conventional
clocked cameras are that only moving objects produce data,
thus reducing the load of post-processing.

The stream of events from the retina can be defined mathe-
matically as follows: let ev(p, t) be an event occurring at time
t at the spatial location p = (x,y)T . The values ev(p, t) are
set to be −1 or +1 when a negative or a positive change of
contrast is detected respectively. The absence of events when
no change of contrast is detected implies that redundant visual
information usually recorded in frames is not carried in the
stream of events. Fig. 2(b) shows an example of the spatio-
temporal visualization of a set of DVS events in response to
the microgripper closing on a microsphere. An event e(p, t)
describes an activity in the spatio-temporal space. Similar to
biological neurons, its influence lasts for a certain amount of
time after it has been active. This temporal property of events
can be introduced in the form of a decay function applied to
model this phenomenon. We can then define S(t) the spatio-
temporal set of events active at a precise time t as:

S(t) =
{

ev(pi, ti)|e
t−ti

τ > δt

}
. (1)

with τ being the time constant parameter of the decay function
and δt a predefined threshold.

B. Event based Iterative Closest Point algorithm
The principle of ICP algorithms is to use iteratively a model

point set delineating the desired object contour to match an
acquired data point set (the matching step). At each step, a
rigid transformation between the known model and the data is
estimated expressing their geometric relationship (the tracking
step). The ICP algorithm is particularly adapted to the task
of tracking the gripper’s position, as most of its constituent
shapes remain unchanged over time; more importantly, the
scale of the observation remains unchanged during all the
tracking. Let G(t) be the set of the positions of 2D model’s
points defining the shape of the gripper at time t. Mev(t) is the
set of pixellic locations of active pixels of the silicon retina at
time t defined as

Mev(t) =
{

p ∈ R2|ev(p, t) ∈ S(t)
}

(2)

Following the ICP algorithm, a matching function is needed
to pair the model points with the active pixels of the silicon
retina. An active event is matched with an element of G(t) by
computing the minimal distance between the current position
and all elements of G(t).

We can then define the matching function as:

match : Mev(t)→ G(t)

p→ pk, k | min
k∈{1,...,NG}

d(p,pk),
(3)

t

t
(a)

Fig. 2. (a) Principle of events’ generation of DVS pixels, adapted from
Lichtsteiner et al. [15]. Events with +1 or -1 polarity are emitted when the
change in log intensity exceeds a predefined amount of change. (b) Events
generated in the (X ,Y, t) space when the gripper is closing on a sphere. Images
(1)-(3) are shown at chosen temporal locations; they correspond to events’
accumulation maps, namely, the projection of all events over a time interval
on a single plane (X ,Y ) regardless of their timings.

where d(p,pk) is the function providing the Euclidean distance
between two points, and NG is the size of G(t).

It becomes then possible to estimate the rigid body trans-
formation (R,T) between Mev(t) and G(t) by minimizing a
mean square cost function:

min
t∈R2,R∈SO(2)

Σp∈Mev(t)‖ Rp−T−match(p) ‖2 (4)

Readers interested in the minimization details can refer to [18].
Fig. 3 provides the principle of the event-based algorithm.

Algorithm 1 Event-based Iterative Closest Point Algorithm
Require: Event ev(p, t)

1: for every incoming ev(p, t) do
2: Update the content of S(t) and Mev(t).
3: Compute match(p)
4: Estimate (R,T) according to equation (4).
5: Update the position of model points of G(t) using (R,T).
6: end for

The gripper closes at a speed of 13 pixels per second
(1 pixel=1.5 µm), producing a mean rate of 14×103 events.
The edge width of the gripper in the DVS focal plane is
around 3 pixels. When the gripper finger passes, 10.6 events
on average are generated on one pixel. Therefore, according
to the timestamp, one pixel remains active during 2.46 ms.
The decay function permits a pixel’s activity to be considered
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Fig. 3. The principle of event-based iterative closest point tracking (EICP). The first row is a sequence of conventional images showing the closing of the
gripper. The middle row provides events’ accumulation maps. The last row provides the convergence of the EICP model to the gripper edges. The four images
in the first column (a) show the initial state when the gripper is fully opened. The model set (solid lines) is trying to match the corresponding closest events,
which are represented on an accumulation map (AC map) for visualizing, and the rigid body transformation (R,T ) is estimated to update the model position.
In (b), the model is converging to the real gripper’s position, until it converges to the gripper’s location (c). Finally, in (d), while the gripper is closing, the
model’s position is updated simultaneously.

during a certain period after the last event, which is tuned
about 10−15 ms. The EICP is even driven, and its update rate
has a mean value of 4 kHz. The algorithm is implemented in
Java under JAER open-source project [25].

Frame-based camera serves as a complement to DVS silicon
retina solely for the static object detection. The focal planes
of both the DVS (128× 128 pixels) and the frame camera
(659× 494 pixels) are related by a homography transform
as both observe the same 2D plane [26]. The homography
is estimated off-line by extracting from both sensors’ focal
plane the coordinates of six corner points of the gripper
fingers in both sensors and linking them to the actual metric
of the gripper’s points in the scene (see Fig. 4). During
the application, the circle corresponding to the sphere to be
manipulated is detected using a frame-based Hough transform
through conventional camera output. Once detected, its lo-
cation is converted into the event-based retina’s focal plane
coordinate systems. This operation provides both the gripper
and the sphere locations in the same coordinate system. It
then becomes possible to estimate the distance δx between the
gripper’s fingers and, if an object is detected between the two
fingers, the relative finger-object distance on the left and the
right sides δxl , δxr and the distance between the center of the
sphere and the gripper δy (Fig. 4). These various distances will
be used to compute the haptic feedback.

(1)
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(2)

(3)

(4)
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H

circle detected gripper tracked

Y

X

Fig. 4. The calibration between the classical image (left) and the DVS
accumulation map (right). Six points (crosses (1)-(6)) have been chosen to
calculate the homography transform H. The detected circle (left) is transferred
by UDP socket so that the DVS part has both gripper and circle position
available (right). δxl and δxr describe the distance between the gripper’s fingers
and the sphere on the left side and the right side, δx is the distance between
the two fingers and δy is the distance between the center of the fingers and
the center of the sphere.

IV. HAPTIC COUPLING

A. Manipulation modes

The coupling between the haptic device and the microgrip-
per is represented in Fig. 5. The operator applies a force Fop
on the haptic device and receives a force feedback Fh based
on the distance between the gripper and the sphere δx, δxl ,
δxr and δy determined from vision. Using the haptic interface,
the user can control the displacement of the micromanipulator
as well as the opening and the closing of the gripper. Scaling
factors αd and αoc are introduced to convert the position of the
haptic handle to the variables used to control the positioning



and the actuation of the gripper.

Haptic
interface

Manipulator

+

Gripper

f

X

Y

(vision)

Fig. 5. Haptic coupling scheme. The user controls the position of the gripper
and the actuation of the gripper’s fingers using the haptic interface. He/she
receives haptic feedback through the device. The haptic force is based on
the distance between the gripper and the sphere, determined from vision
algorithms. Scaling factors αd and αoc convert the position of the haptic
handle to variables used to control the positioning and the actuation of the
gripper.

To ensure ease of manipulation, different modes have been
defined with adapted haptic feedback:
• planar displacement: the operator controls the displace-

ment of the gripper in a plane parallel to the substrate,
the (x, y) plane. No force feedback is provided: Fh

T =[
0 0 0

]
,

• vertical displacement: the operator controls the displace-
ment of the gripper along the vertical direction. A con-
stant repulsive force feedback is provided along the z
direction so that the user has to make an effort to approach
the gripper to the substrate, to avoid unexpected contact:
Fh

T =
[

0 0 Fhz
]
,

• gripper control: the operator controls both the opening
and closing of the gripper and its position along the y-
axis to align the gripper with the middle line of the sphere.
A 2D force feedback (detailed in the next paragraph) is
provided to assist the user: Fh

T =
[

Fhoc 0 Fhy
]
.

The operator selects the appropriate manipulation mode on a
graphical user interface developed in C++. To avoid any brutal
changes in force feedback during transitions between different
modes, the haptic force is filtered by a second-order low-pass
filter during the first couple of seconds after the selection of
the desired mode. The filter is then deactivated to enable all
the force variations to be sent to the user without smoothing.
Note that even if the haptic feedback is delayed because of
the time response of the filter, this is not an important issue
as it occurs before the user actually starts to manipulate the
gripper in the chosen mode.

B. Gripper control

To increase the success rate of the pick-and-place operation
two criteria should be met: the sphere should be grasped on its
middle line, and the grasping force should be enough to lift the
sphere but controlled to avoid any damages to the object. The
haptic feedback must assist the user for these two operations.

To help the user align the gripper with respect to the middle
line of the sphere, a haptic force corresponding to a spring of

stiffness k between the position of the gripper and the sphere
is provided:

Fhy =−kδy (5)

where δy is the distance between the center of the gripper and
the center of sphere along the y-axis (see Fig. 4).

A haptic feedback Fhoc is provided so that the user can
monitor the grasping force. Contrary to what is commonly
proposed in the literature, we are not interested here in
computing the exact efforts applied on the object but only
in deriving information to assist the user while performing
a given task. The calibration process, which enables to relate
the tool deformations to the applied force, is thus unnecessary.
While closing the gripper, the user has to counteract a haptic
force Fhoc:

Fhoc =

Fmaxe
−δ

f
x

2

α if not in the contact zone
Fcontact if in the contact zone

(6)

where δ
f

x is the free space between the two gripper’s fingers.
If the sphere is situated between the fingers δ

f
x = δxl + δxr,

which corresponds to the sum of the distances between each
of the fingers and the sphere; otherwise, δ

f
x = δx. Fmax is

the maximum force that can be transmitted to the user when
the gripper is closed on the sphere but has not entered the
contact zone yet. α is a constant chosen to tune the decrease
of the haptic force as the distance between the two fingers
increases. Fcontact is the force sent while the gripper is grasping
the sphere. The step between Fmax and Fcontact must be high
enough to indicate clearly the contact between the sphere and
the gripper. The contact zone is reached if δxl and δxr are
less than a given distance δ1 = 3 µm (which corresponds to
6% of the sphere diameter). The gripper will then reach the
non contact zone if δxl and δxr are greater than δ2 = 7.5 µm.
This hysteresis avoids undesirable frequent transitions between
contact and non-contact modes because of noises and tracking
errors. The hysteresis values δ1 and δ2 are chosen according
to our experiment to achieve a comfortable user sensation. The
force step that is sent to the user when contact is detected is
filtered to avoid brutal force changes. Even if the user does not
receive the maximum force feedback at the instant of contact,
he/she can distinctly feel the increase in the force, and infers
that contact happened.

V. EXPERIMENTAL RESULTS

A. Influence of the sampling rate

To visualize the influence of the sampling rate on the
stability of the haptic feedback, an experiment consisting
in grasping the sphere is performed for different resampled
frequencies from the vision algorithm output. The estimated
distances are transferred to the haptic thread with resampled
dynamics manually set to 10 ms and 100 ms for comparison
with the native output of EICP result. For each frequency,
the object is grasped and released three times (without being
lifted). Results are given in Fig. 6. It can be seen that as
the frequency decreases, oscillations appear. In addition, it is
harder for the user to control the system since he/she has to



dissipate the excess of energy of the unstable system. For low
frequencies the system’s performances decrease, which makes
it unsuitable for complex 3D manipulation.
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Fig. 6. Haptic forces during the grasping operation for different frequencies
of the vision feedback. The haptic force Fhoc that helps monitor the grasping
force is provided. Note that for each experiment, the user grasped the sphere
3 times, and released it. As the frequency decreases, oscillations appear.

B. Pick and place of microspheres

To validate the use of event-based vision to compute haptic
feedback, experiments are performed. The microspheres are
glass beads of 30 to 50 micrometers of diameter from Poly-
sciences, Inc4. To avoid sticking issues while releasing the
spheres, a Gel-Pack substrate has been selected. While taking
off the sphere, the gripper enables to counteract adhesive
forces. While releasing it, the Gel-Pack substrate provides
enough adhesion to prevent the sphere from sticking to the
gripper.

The experiment consists in positioning the gripper with
respect to the sphere (in plane displacements), grasping it,
taking it off, moving it, placing it down, and finally releasing
it. The precision of gripper tracking during this process is
depicted in Fig. 7, where the proportion of the mean ICP
tracking error to the microsphere diameter is calculated. It
can be seen that when the gripper closes, the tracking error
converges to a constant value that corresponds to 7% of the
sphere diameter. The ”taking off” operation may cause a z-axis
defocalization, so the error slightly increases. The ”placing
down” operation produces similar results. For the sake of
clarity, it has been omitted in the figure.

To assist the user while aligning the gripper with respect to
the sphere, haptic feedback is provided for both the grasping
and the releasing tasks. The results are given in Fig. 8 for the
grasping. They are similar for the release stage that is then
omitted. Users control the position of the gripper along the y-
axis. A haptic force Fhy that corresponds to a virtual stiffness

4http://www.polysciences.com/
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of 100 µm produces the maximum force admissible by the haptic interface,
5 N). The displacement scaling factor along the y axis is set to α

y
d = 2.5×103.

between the center of the gripper’s fingers and the center of
the sphere is transmitted to the operators. At the beginning of
the experiment, the gripper is misaligned, and the user feels an
attractive force that pulls him/her to the correct position. After
13 s, the gripper is correctly aligned, and the haptic feedback
drops to zero.

The evolution of Fhoc, the haptic force that helps users to
monitor the grasping force, is given in Fig. 9 for both grasping
and releasing stages. For time t1 < 11.8 s, the user closes the
gripper on the sphere. As the free space between the gripper’s
fingers and the sphere decreases, the operator has to counteract
an increasing haptic force Fhoc. At t1 = 11.8 s, the gripper
enters in the contact zone, and the user feels a brutal increase
on the haptic force. At t2 = 15.6 s, the operator begins the
pick-and-place operation. To avoid any disturbance during this
operation, Fhoc is set to zero. The user starts to release the
sphere at time t3 = 45.7 s. As the gripper contacts the sphere
he/she can feel a constant haptic force (equal to 5 N) that
helps him open the gripper. At t4 = 47.6 s, the gripper is
opened, and the fingers are out of the contact zone. The haptic
force drops suddenly. It can be noted that it does not reach
0 as the force is still assisting the user to open the gripper
(and avoid unexpected closing). During all the grasping and
releasing operation, the user receives haptic feedbacks that
help him perform the task.

During the lifting and the placing operations, a constant
repulsive haptic force field, set to 2 N, is provided to avoid
any involuntary contact with the substrate (Fig. 10). When the
sphere has been lifted above the substrate at a desired height,
the user can move it freely in the (x, y) plane parallel to the
substrate (αx

d = 4.0×103, α
y
d = 2.5×103)5. For this operation,

the haptic feedback is turned off.

5Different factors are used along the three axes of the micromanipulator
to achieve easy positioning. They are set according to the user’s comfort of
manipulation.
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Fig. 9. Haptic force Fhoc used to control the grasping force. It is computed
using Eq. 5 with the following coefficients: Fcontact = 5 N (set to the maximum
admissible force of the haptic interface), Fmax = 2 N, α = 1.44 ·10−8 (a
distance of 100 µm produces a haptic force of 1 N). The opening/closing
scaling factor is set to αoc = 1.8×10−3 m.V−1.

The vision sensors and detection algorithms provide a high-
frequency feedback that enables the derivation of a stable
haptic system. Users successfully performed a 3D teleoperated
manipulation on micron-sized objects. This work will surely
benefit teleoperated or automated microassembly and opens
new perspectives for complex micromanipulation.
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and placing down operations. To perform the vertical displacements a scaling
factor α

z
d = 12.5×103 is used.

VI. CONCLUSION

To overcome the lack of sensing capabilities at microscale,
a vision-based system is proposed. To enable a wide range
of applications, in particular for automated or teleoperated
micromanipulations, the frequency of the vision feedback must
be higher than 1 kHz as low inertia at this scale induces high
dynamic phenomena. This is ensured by the output of the
DVS sensor, which conveys temporal contrast in the scene



in the form of time-stamped events. An Event based Iterative
Closest Point algorithm (EICP) is proposed to track the tool at
more than 4 kHz. This feedback is combined with the output
of a classical frame-based camera, used to derive information
about static parts of the scene, and in particular the position
of the object that must be manipulated. This approach is
tested on a pick-and-place experiment of glass spheres with a
diameter between 30 and 50 µm using a piezoelectric gripper.
The task is realized by teleoperation with haptic feedback.
This application is especially challenging as a frequency of
more than 1 kHz is required for the system’s stability. The
influence of the frequency rate on the system’s stability has
been experimentally highlighted, and the benefits of the DVS
sensor over conventional frame-based cameras with lower
frequencies are shown. A successful pick-and-place task of
micron-sized objects with 3D haptic feedback based on vision
tracking is performed with this system.

This work can be easily extended to other applications,
involving different objects or tools. In particular, vision-
based force measurement could be performed with the DVS
sensor after a calibration step of the tool. Fully automated
manipulation also would benefit from the high frequency of
the feedback to guarantee the system’s stability. Future works
include the use of a model of the gripper to avoid the tracking
drift because of the loss of focus while doing out-of-plane
movements.
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[20] J. L. Martı́nez, J. González, J. Morales, A. Mandow, and A. J. Garcı́a-
Cerezo, “Mobile robot motion estimation by 2d scan matching with
genetic and iterative closest point algorithms,” Journal of Field Robotics,
vol. 23, pp. 21–34, 2006.

[21] J. Colgate and G. Schenkel, “Passivity of a class of sampled-data
systems: Application to haptic interfaces,” Journal of Robotic Systems,
vol. 14, no. 1, p. 3747, 1997.

[22] A. Bolopion, H. Xie, D. S. Haliyo, and S. Régnier, “Haptic teleoperation
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