
Languages for bibliography styles

Jean-Michel Hufflen
LIFC (EA CNRS 4269)
University of Franche-Comté
16, route de Gray
25030 Besançon Cedex, France
hufflen (at) lifc dot univ-fcomte dot fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract

BibTEX is the most commonly used bibliography processor in conjunction with
LATEX. To put bibliography styles into action, it uses a stack-based language
written with postfixed notation. Recently, other approaches have been proposed:
some use a script programming language for designing bibliography styles, e.g.,
Perl in Bibulus; some are based on converters to XML texts and use XSLT for
bibliography styles; a recent proposal— the biblatex package—consists of using
LATEX commands to control the layout of generated references, and more. We
propose a comparative study of these approaches and show which programming
styles are encouraged, from a point of view related to methodology. Finally, we
explain how this study has influenced the design of MlBibTEX, our multilingual
reimplementation of BibTEX.
Keywords Bibliographies, bibliography styles, BibTEX, software quality, bst,
BibTEX++, cl-bibtex, MlBibTEX, packages natbib, jurabib, and latexbib, Tib, XML,
XSLT, nbst, Perl, DSSSL.

1 Introduction

Three decades ago,1 some programming languages
were designed to be universal, that is, to serve all
purposes. All of these languages—e.g., PL/1 [25],
Ada [2]—have failed to be accepted as filling this
role. Nowadays, only the C programming language
[30] is still used for a very wide range of applications.
Present-day programming languages are very diverse
and put different paradigms into action: procedural
programming, object-oriented programming, func-
tional programming, process-oriented programming,
logic programming, . . . In addition, most of these
present languages are specialised, that is, designed
for particular purposes, even if they are not formally
limited to only one class of applications: two good ex-
amples are Java [28] and C# [39], originally designed
for client-server applications. But, if you are building
a standalone application using the object-oriented
paradigm and are especially interested in the effi-
ciency of the resulting program, it is well-known that
a better choice is C++ [47], even if code generated
by Java and C# compilers have greatly improved
since their first versions.

The purpose of this article is neither a compar-
ison of all programming languages—which would

1 That is, at the time of TEX’s first version. . . Let us recall
that we are celebrating TEX’s 30th birthday.

be impossible—nor an absolute comparison of sev-
eral programming languages—which would not be
of interest—but a comparative study of languages
used to develop bibliography styles. BibTEX [42] is
the bibliography processor most commonly used in
conjunction with the LATEX word processor [40], so
most of the bibliography styles used for LATEX texts
are written using bst, the stack-based language of
BibTEX [40, § 13.6]. But other proposals exist, based
on other programming paradigms, and this article
aims to study the advantages and drawbacks of these
approaches. We will not discuss the typographical
conventions ruling the typesetting of bibliographies—
readers interested in this topic can consult manuals
like [5, § 10], [6, §§ 15.54–15.76], [16, pp. 53–54]—
but are interested only in the development of bibli-
ography styles— from scratch or derived from other
existing styles—and the expressive power of lan-
guages used to do that.

In Section 2, we recall the main quality factors of
software, and show which factors are interesting from
a point of view related to bibliography styles. Then
BibTEX is studied in Section 3, including some mod-
ern use of this program. Other approaches are based
on XML,2 as shown in Section 4. This experience

2 EXtensible Markup Language. Readers interested in an
introductory book to this formalism can refer to [44].

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1001

Jean-Michel Hufflen

of dealing with several ways to develop bibliogra-
phy styles has influenced the design of MlBibTEX—
for ‘MultiLingual BibTEX’, our multilingual reim-
plementation of BibTEX [18]: we explain that in
Section 5. Reading this article requires only a ba-
sic knowledge of BibTEX and a little experience
about bibliography styles; we think that our exam-
ples should be understandable,3 even if readers do
not know thoroughly the languages used throughout
this article.

2 Criteria

Of course, this section does not aim to replace a
textbook about software quality, we just make precise
the terminology we use. Then we explain how these
notions are applied to bibliography styles.

2.1 General point of view

The main reference for the terminology used in soft-
ware quality is the beginning of [38], as recalled in
most works within this topic. [38, Ch. 1] clearly
distinguishes external quality factors, that may be
detected by users of a product, and internal factors,
that are only perceptible to computer professionals.
Here are the main external quality factors:
correctness the ability of software products to ex-

actly perform their tasks, as defined by the re-
quirements and specification;

robustness the ability of software systems to work
even in abnormal conditions;

extendability the ease with which products may
be adapted to changes of specifications;

reusability the ability of products may be com-
bined with others;

others being efficiency, portability, verifiability, in-
tegrity, ease of use, etc. Internal quality factors in-
clude modularity, legibility, maintainability, etc. The
factors related to modularity are studied more pre-
cisely in [38, Ch. 2], they include:
modular decomposability the ability for a prob-

lem to be decomposed into subproblems;
modular composability the ability for modules

to be combined freely with each other;
modular understandability each module can be

separately understood by a human reader;
modular continuity a small change in a problem

specification results in a change of just a module
or few modules.4

3 Complete texts may be downloaded from MlBibTEX’s
home page: http://lifc.univ-fcomte.fr/~hufflen/texts/
mlbibtex/hc-styles/.

4 This terminology is related to mathematical analysis: a
function is continuous if a small change in the argument will
yield a small change in the result.

2.2 Tasks of a bibliography processor

Given citation keys—stored in an .aux file when a
source text is processed by LATEX [40, Fig. 12.1]—a
bibliography processor searches bibliography data-
base files for resources associated with these keys,
performs a sort operation on bibliographical items,5
and arranges them according to a bibliography style,
the result being a source file for a ‘References’ section,
suitable for a word processor. So does BibTEX.

Roughly speaking, a bibliography has to do two
kinds of tasks:

• some are related to ‘pure’ programming, e.g.,
sorting bibliographical items, while

• others are related to put markup, in order for
the word processor to be able to typeset the
bibliography of a printed work.

The extendability of such a tool concerns these
two kinds of tasks. On the one hand, we should be
able to add a new relation order for sorting biblio-
graphical items, since these lexicographical orders
are language-dependent [24]. On the other hand,
we should be able to build a new bibliography style,
according to a publisher’s specification. This style
may be developed from scratch if we do not find a
suitable existing style. Or we can get it by introduc-
ing some changes to another style, i.e., reusing some
parts of the previous style. In addition, finding the
parts that have to be changed is related to the notion
of modular understandability. Of course, building
a new bibliography style is not an end-user’s task,
but it should be possible by people other than the
bibliography processor’s developers.

Another notion is related to extending a bibli-
ography processor: improving it so that it is usable
with more word processors. If we consider the for-
mats built on TEX [34], LATEX is still widely used, but
more and more people are interested in alternatives,
such as ConTEXt [13]. Likewise, some new typeset
engines, such as X ETEX [32] or LuaTEX [14], should
be taken into account. In addition, it should be pos-
sible to put the contents of a bibliography database
file on a Web page, that is, to express the informa-
tion about these items using the HTML language.6
A last example is given by RTF:7 at first glance,
deriving bibliographies using the internal markup
language of Microsoft Word may seem strange, but

5 . . . unless the bibliography style is unsorted, that is, the
order of items is the order of first citations. In practice, most
bibliography styles are ‘sorted’.

6 HyperText Markup Language. [41] is a good introduc-
tion to this language.

7 Rich Text Format. A good introductory book to this
markup language is [4].

1002 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Languages for bibliography styles

@STRING{srd = {Stephen Reeder Donaldson}}

@BOOK{donaldson1993,
AUTHOR = srd,
TITLE = {The Gap into Power: A Dark and

Hungry God Arises},
PUBLISHER = {HarperCollins},
SERIES = {The Gap},
NUMBER = 3,
YEAR = 1993}

@BOOK{donaldson1993a,
EDITOR = srd,
TITLE = {Strange Dreams},
PUBLISHER = {Bantam-Spectra},
YEAR = 1993}

@BOOK{murphy-mullaney2007,
AUTHOR = {Warren Murphy and James

Mullaney},
TITLE = {Choke Hold},
PUBLISHER = {Tor},
ADDRESS = {New-York},
SERIES = {The New Destroyer},
NUMBER = 2,
NOTE = {The original series has been

created by Richard Sapir and
Warren Murphy},

YEAR = 2007,
MONTH = nov}

Figure 1: Bibliographical entries in the .bib format.

such a strategy may cause Word end-users to discover
progressively the tools related to TEX.

3 BibTEX

3.1 Basic use

How to use BibTEX in conjunction with LATEX is
explained in [40, § 12.1.3], and the .bib format, used
within bibliography database files, is detailed in [40,
§ 13.2]; an example is given in Figure 1. As men-
tioned above, bibliography styles are written in a
stack-based language using postfixed notation. As
an example, Figure 2 gives two functions used within
the plain style of BibTEX.

BibTEX is indisputably correct8 and robust: as
far as we have used it, the bibliographies it derives
have satisfactory layout, at least for bibliographies
of English-language documents. In addition, it has
never crashed during our usage of it, even when
dealing with syntactically incorrect .bib files.

8 When the word ‘correct’ is used in software engineering,
it is related to the existence of a formal specification— i.e., a
mathematical description—of the behaviour, and the program
should have been proved correct w.r.t. this specification. Here
we adopt a more basic and intuitive sense: the program’s
results are what is expected by end-users.

FUNCTION {format.title}
{ title empty$

{ "" }
{ title "t" change.case$ }

if$
}

FUNCTION {new.sentence.checkb}
{ empty$

swap$ empty$
and

’skip$
’new.sentence

if$
}

Figure 2: Two functions from BibTEX’s plain style.

Extending BibTEX, however, may be very te-
dious, especially for functionalities related to pro-
gramming. For example, the only way to control the
SORT command consists of using the entry variable
sort.key$ [40, Table 13.7]. Some workarounds may
allow the definition of sort procedures according to
lexicographic orders for natural languages other than
English, but with great difficulty. Developing bibli-
ography styles for word processors other than LATEX
has been done, but only for formatters built on TEX,
e.g., ConTEXt [17]. In other cases, this task may be
difficult since some features related to TEX are hard-
wired in some built-in functions of BibTEX, e.g., the
use of ‘~’ for an unbreakable space character is in
the specification of the format.name$ function [23].
As an example, there is a converter from .bib format
to HTML: BibTEX2HTML [9]. It uses BibTEX, but
most of this translator is not written using BibTEX’s
language, but in Objective CAML,9 a strongly typed
functional programming language including object-
oriented features [37]. Using such a tool—as well
as the bibliography styles developed for ConTEXt’s
texts [17]— is possible only if end-users do not put
LATEX commands inside the values associated with
BibTEX’s fields.

We think that the continuity of the bibliogra-
phy styles written using the bst language is average.
Introducing some changes concerning the layout of
fragments is easy, e.g., short-circuiting case changes
for a title, as shown in [40, § 13.6.3], as well as chang-
ing the style of a string by using a command like
‘\emph{...}’. That is due to the fact that inserting
additional strings before or after the contents of a
field is easy if this information is at the stack’s top
and has not been popped yet by means of the write$

9 Categorical Abstract Machine Language.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1003

Jean-Michel Hufflen

\bibitem[{Murphy\jbbtasep Mullaney\jbdy {2007}}%
{}%
{{0}{}{book}{2007}{}{}{}{}%
{New-York\bpubaddr {} Tor\bibbdsep {} 2007}}%

{{Choke Hold}%
{}{}{2}{}{}{}{}{}}%

]{murphy-mullaney2007}
\jbbibargs {\bibnf {Murphy} {Warren} {W.} {} {}\Bibbtasep \bibnf {Mullaney}
{James} {J.} {} {}} {Warren MurphyJames Mullaney} {aus} {\bibtfont {Choke
Hold}\bibatsep\ \apyformat {New-York\bpubaddr {} Tor\bibbdsep {} \novname\
2007} \numberandseries {2}{The New Destroyer Series} \jbnote {1} {The
original series has been created by Richard Sapir and Warren Murphy} }
{\bibhowcited} \jbendnote {The original series has been created by Richard
Sapir and Warren Murphy} \jbdoitem {{Murphy}{Warren}{W.}{}{};
{Mullaney}{James}{J.}{}{}} {} {} \bibAnnoteFile {murphy-mullaney2007}

Figure 3: BibTEX’s output as used by the jurabib package.

function. For the same reason, adding a closing punc-
tuation sign is easy; a shorthand example to do that
is the add.period$ function. Often handling a new
field is easy, too [40, § 13.6.3]. On the other hand,
changing the order of appearance of fields may be
tedious.

In addition, it is well-known that there is no
modularity within the bst language: each style is a
monolithic file. If you develop a new style from an
existing one, you just copy the .bst file onto a new
file, and apply your changes. Of course, doing such
a task requires good ‘modular understanding’ of the
functions belonging to the ‘old’ style. Sometimes,
that is easy—cf. the format.title function given
in Figure 2—while other times, understanding the
role of a function is possible only if you know the
stack’s state—cf. the new.sentence.checkb func-
tion in the same figure.10

3.2 Task delegation

Originally, all the predefined bibliography styles pro-
vided by BibTEX’s generated ‘pure’ LATEX texts, in
the sense that only basic LATEX commands were used:
the \bibitem command, the thebibliography en-
vironment [40, § 12.1.2], and some additional com-
mands for word capitalisation or emphasis. No addi-
tional package was required when derived bibliogra-
phies were processed by LATEX.

This situation has changed when the author-
date system was implemented by the natbib package
and the bibliography styles associated with it [40,
§ 12.3.2]. Progressively, other bibliography styles
have been released, working as follows: BibTEX’s
output is marked up with LATEX commands defined

10 This function is used when the decision of beginning a
new sentence within a reference depends on the presence of
two fields within an entry.

in an additional package. Citation and formatting
functions can be customised by redefining these com-
mands. In other words, we can say that BibTEX
delegates the layout of bibliographies to these com-
mands.

3.2.1 Interface packages

Figure 3 gives an example of using the jurabib bib-
liography style. The LATEX commands provided by
the jurabib package can be redefined like any LATEX
command, although the best method is to use the
\jurabibsetup command, as shown in [40, § 12.5.1].
A similar approach is used within the amsxport bibli-
ography style [8] and the bibliography styles usable
with ConTEXt [17].

This modus operandi is taken to extremes by
the biblatex package [36]. In such cases, BibTEX
is used only to search bibliography database files
and sort references. The advantage: end-users can
customise the layout of bibliographies without any
knowledge of the bst language. But BibTEX still
remains used to sort references, and this task is not
easily customisable, as mentioned above.

3.2.2 Tib

In fact, this notion of task delegation already existed
in Tib [1], a bibliography processor initially designed
for use with Plain TEX, although it can also be used
with LATEX. An example of a bibliography style file
used by Tib is given in Figure 4: it consists of some
Tib commands—e.g., ‘f’ for ‘citations as footnotes’—
followed by some definitions of TEX commands for
typesetting citation references and bibliographies’
items. That is, Tib delegates a bibliography’s layout
to these commands. Let us recall that the bibliogra-
phy database files searched by this processor do not

1004 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Languages for bibliography styles

#
standard footnote format (latex)
#
if titles are desired in loc. cit. references, see note in stdftl.ttx
#
include word-definition file (journals and publishers)
I TMACLIB amsabb.ttz
f footnotes
L use ibid and loc cit
C0 empty citation string
O for multiple citations use ordering of reference file

%The lines below are copied verbatim into the output document as TeX commands.
%First the file Macros.ttx is \input with Macros and default settings.
%The control string \TMACLIB is just a path.
%The \footnote macro is from LaTeX
%
\input \TMACLIB stdftl.ttx %macros for formatting reference list
\Refstda\Citesuper %set general formats for reference list and citations
\def\Lcitemark{\footnotemark}\def\Rcitemark{}
\def\Citecomma{,\footnotemark}
\def\LAcitemark{\addtocounter{footnote}{1}\arabic{footnote}}
\def\RAcitemark{}
\def\LIcitemark#1\RIcitemark{\def\Ztest{ }\def\Zstr{#1}}

Figure 4: The footl.tib file.

%A |srd|
%T The Gap into Power: A Dark and Hungry God
Arises
%P HarperCollins
%S The Gap
%N 3
%D 1993

%E |srd|
%T Strange Dreams
%I Bantam-Spectra
%D 1993

%A Warren Murphy
%A James Mullaney
...
%O November 2007. The original series...

The ‘srd’ abbreviation should be defined by means of
the following Tib command:

D srd Stephen Reeder Donaldson

Figure 5: Entries using the Refer format.

use the .bib format, but rather the Refer format,11
an example being given in Figure 5.

3.3 Extending bst

The following works allow bibliography style writ-
11 The pybibliographer program can be used as a converter

from the .bib format to the Refer format: see [40, § 13.4.5] for
more details.

ers to compile bst styles, and annotate or extend
the result. As far as we know, they are not widely
used. If we consider a style already written in bst
and to be adapted, this approach allows more am-
bitious changes. However, they do not propose a
new methodology for designing such styles, so tak-
ing maximum advantage of the target languages is
difficult for style designers.

3.3.1 BibTEX++

BibTEX++ [31] allows a bst style file to be com-
piled into Java classes [28]. As an example, the
new.sentence.checkb function (cf. Fig. 2) is com-
piled into the Java function new_sentence_checkb
given in Figure 6. BibTEX++ can also run native bib-
liography styles developed in Java, from scratch or de-
rived from the compilation of ‘old’ styles. Other func-
tionalities, such as the production of references for
programs other than LATEX, can be implemented by
means of plug-ins. There are six steps in BibTEX++’s
process: for example, parsing a .bst file is the fourth
one. After each step, there is a hook, as a callback
that allows this process to be customised.

3.3.2 cl-bibtex

cl-bibtex [35] is based on ANSI12 Common Lisp [11].
It includes an interpreter for the bst language, and

12 American National Standards Institute.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1005

Jean-Michel Hufflen

public void new_sentence_checkb(String s0,
String s1) {

int i0, i1 ; i1 = BuiltIn.empty(s1) ;
i0 = i1 ; i1 = BuiltIn.empty(s0) ;
i0 = and(new Cell(i0),i1) ;
if (i0 <= 0) new_sentence() ;

}

Figure 6: A bst function compiled into Java.

(define-bst-primitive "if$"
((pred (boolean)) (then (symbol body))
(else (symbol body)))

()
:interpreted
(bst-execute-stack-literal
(if pred then else)))

Figure 7: Implementation of if$ in cl-bibtex.

can also compile a BibTEX style file into a Common
Lisp program, as a starting point for customising such
a style, by refining the corresponding Common Lisp
program. As a short example, we show in Figure 7
how the if$ function of BibTEX is implemented.

4 Using XML-like formats

Over the past several years, XML has become a cen-
tral formalism for data interchange, so some projects
are based on an XML-like language representing bib-
liographical items.

4.1 Converters

Several converters from the .bib format into an XML-
like format have been developed: the bib2xml pro-
gram [43], and the converter used as part of the
BibTEXXML project [12]. MlBibTEX uses such a
converter, too, and the result of the conversion of
the second bibliographical entry of Figure 1 is given
in Figure 8; the conventions used throughout such
XML texts are a revision of the specification given
in [10, § B.4.4].

The main difficulty of these tools is related to
the LATEX commands put inside the values associ-
ated with BibTEX fields. The bib2xml converter
expands the commands for accents and diacritical
signs into the corresponding single letters belonging
to the Unicode encoding [48], but just drops out
the ‘\’ characters that open the other commands.
MlBibTEX’s converter processes more commands—
e.g., \emph, \textbf—but of course, the way of deal-
ing with user-defined commands should be defined
by end-users [21].

<book id="donaldson1993a">
<editor>

<name>
<personname>

<first>Stephen Reeder</first>
<last>Donaldson</last>

</personname>
</name>

</editor>
<title>Strange Dreams</title>
<publisher>Bantam Spectra</publisher>
<year>1993</year>

</book>

Figure 8: XML-like format used in MlBibTEX.

4.2 XSLT

XSLT13 is the language used for the transformation
of XML texts. Building a ‘References’ section is a
particular case of transformation. This point is true
for LATEX source files as well as verbatim texts or
HTML pages. Figure 9 shows how multiple authors
or editors connected by an empty and tag can be pro-
cessed, the result being a source text for LATEX. More
ambitious examples of using XSLT for typesetting
texts are given in [46].

We have personally written many XSLT pro-
grams serving very diverse purposes. This language
allows good modularity and reusability of fragments
of existing programs. It allows users to write robust
programs, too. As for developing bibliography styles,
it offers good continuity, except for multilingual ex-
tensions. It was difficult to add information for a
natural language without directly modifying an ex-
isting style. More precisely, that was difficult with
the first version (1.0) [49], but has been improved
in XSLT 2.0 where using modes has been refined
[50, § 6.5]. Likewise, the expressive power of the
xsl:sort element has been improved in this new
version [50, § 13].

Extending XSLT functionalities often consists
of calling external functions written using a more
‘classical’ programming language such as C or Java.
That is possible, but not in a portable way, because it
depends on the programming languages accepted by
each XSLT processor. In practice, this point mainly
concerns new lexicographical order relations within
bibliography styles.

4.3 nbst

nbst14 is the language used within MlBibTEX for
specifying bibliography styles. As explained in [18],

13 eXtensible Stylesheet Language Transformations.
14 New Bibliography STyles.

1006 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Languages for bibliography styles

<xsl:template match="author">
<xsl:apply-templates/><xsl:text>. </xsl:text>

</xsl:template>

<xsl:template match="editor">
<xsl:apply-templates/>
<xsl:text>, </xsl:text>
<xsl:choose>

<xsl:when test="count(*) > 1">
<xsl:text>\bbled</xsl:text>

</xsl:when>
<xsl:otherwise>\bbleds</xsl:otherwise>

</xsl:choose>
<xsl:text>. </xsl:text>

</xsl:template>

<xsl:template match="name | personname">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="first">
<xsl:value-of select="concat(.,’ ’)"/>

</xsl:template>

<xsl:template match="last">
<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="and">
<xsl:choose>

<xsl:when
test="following-sibling::and or

following-sibling::and-others">
<xsl:text>, </xsl:text>

</xsl:when>
<xsl:otherwise>

<xsl:text> \bbland\ </xsl:text>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Figure 9: Dealing with authors or editors in XSLT.

this language is close to XSLT, and introduces a kind
of inheritance for natural languages’ specification.
First, we look for a template whose language at-
tribute matches the current language, and second
a more general template, without the language at-
tribute.

MlBibTEX is written in Scheme [29], and XML
texts are represented using the SXML15 format [33].
Roughly speaking, this format uses prefixed nota-
tion, surrounded by parentheses—as in any Lisp
dialect— for tags surrounding contents. As an exam-
ple, the result of parsing the bibliographical entries
of Figure 1 is sketched in Figure 10. Dealing directly
with Scheme functions is needed when new language-
dependent lexicographical order relations are to be

15 Scheme implementation of XML.

(*TOP*
(*PI* xml "version=\"1.0\"

encoding=\"ISO-8859-1\"")
(mlbiblio
...
(book
(@ (id "murphy-mullaney2007"))
(author
(name (personname (first "Warren")

(last "Murphy")))
(and)
(name (personname (first "James")

(last "Mullaney"))))
(title "Choke Hold") (publisher "Tor")
(year "2007") (month (nov)) (number "2")
(series "The New Destroyer")
(address "New-York")
(note "The original series..."))))

Figure 10: Using the SXML format.

added [24]. nbst texts can call functions directly
written in Scheme, as well.

4.4 Perl

Perl16 [51] can be used for bibliography styles, as is
done by Bibulus [52], this program being based on the
bib2xml converter [43]. The resulting bibliography
styles are compact, modular, and easily extensible.
The modularity of Bibulus styles can be illustrated
by the \bibulus command that can be used in place
of the \bibliographystyle command:

\bibulus{citationstyle=numerical,
surname=comes-first,
givennames=initials,
blockpuctuation=.}

Multilingual features are processed by means of sub-
stitutions, which can easily be incorrect: for example,
a month name precedes the year in English, but fol-
lows the year in Hungarian. So a rough substitution
of an English month name is insufficient.17 Last
but not least, Bibulus is not very easy to use, it is
presently accessible only to developers.

4.5 DSSSL

DSSSL18 [27] was initially designed as the stylesheet
language for SGML19 texts. Since XML is a subset
of SGML, stylesheets written using DSSSL can be
applied to XML texts. DSSSL is rarely used now,

16 Practical Extraction Report Language.
17 The same criticism holds for the babelbib package [15].
18 Document Style Semantics Specification Language.
19 Standard Generalised Markup Language. Now it is only

of historical interest. Readers interested in this metalanguage
can refer to [3].

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1007

Jean-Michel Hufflen

<!DOCTYPE style-sheet PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN">

<style-sheet>
<style-specification id="hcs">

<style-specification-body>
(root (let ((margin-size 1in)) ; DSSSL uses quantities, analogous to TEX’s dimensions.

(make simple-page-sequence
;; An identifier ending with the ‘:’ characters is a key, bound to the following value.
page-width: 210mm page-height: 297mm left-margin: margin-size
right-margin: margin-size top-margin: margin-size bottom-margin: margin-size
header-margin: margin-size footer-margin: 12mm center-footer: (page-number-sosofo)
(process-children))))

(element book
(make-reference (lambda (current-children) ; Function to be applied as soon as the general

(make sequence ; framework for a reference has just been built: cf. the
(author-xor-editor current-children) ; definition of our make-reference
(process-matching-children "title") ; function below.
(process-seriesinfo current-children)
(apply sosofo-append

(map process-matching-children
’("publisher" "address" "month" "year" "note")))))))

(element author (process-author-or-editor)) ; The same for editor elements.
(element name (process-children-trim)) ; The same for number elements.
(element personname (processing-matching-children "first" "von" "last" "junior"))
(element first (ending-with space-literal))
(element last (process-children-trim))
(element and (if (node-list-empty? (select-elements (follow (current-node)) "and"))

(literal " and ")
comma-space-literal))

(element (book title) (make sequence font-posture: ’italic (process-and-closing-period)))
(element year (process-and-closing-period)) ; The same for series and note elements.
(element month (make sequence (process-children) space-literal))
(element jan (literal "January")) ... ; Other month elements skipped.
(element publisher (ending-with comma-space-literal)) ; The same for address elements.
...
;; Definitions for particular literals and strings:
(define comma-space-literal (literal ", "))
(define period-string ".")
(define space-literal (literal " "))
;; General framework for references’ layout:
(define make-reference

(let ((biblioentry-indent 20pt))
(lambda (process-f)

(make paragraph
first-line-start-indent: (- biblioentry-indent) font-size: 12pt quadding: ’justify
space-before: 10pt start-indent: biblioentry-indent
(literal "[" (attribute-string "id") "] ") (process-f (children (current-node)))))))

;; Some utility functions:
(define (process-author-or-editor)

(process-matching-children "name" "and"))
(define (ending-with literal-0)

(make sequence (process-children-trim) literal-0))
...

</style-specification-body>
</style-specification>

</style-sheet>

Figure 11: Example of a DSSSL stylesheet.

1008 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Languages for bibliography styles

(define (process-and-closing-period)
(let ((the-string (string-trim-right (data (current-node))))) ; Get the contents and leave trailing

; space characters.
(literal (if (check-for-closing-sign? the-string) ; Checking if the-string ends with ‘.’, ‘?’, or ‘!’.

the-string
(string-append the-string period-string)))))

(define (author-xor-editor node-list)
(let ((author-node-list (select-elements node-list "author"))

(editor-node-list (select-elements node-list "editor")))
(make sequence

(cond ((node-list-empty? author-node-list)
(if (node-list-empty? editor-node-list)

(error "Neither author, nor editor!")
(make sequence (process-node-list editor-node-list) (literal ", editor."))))

((node-list-empty? editor-node-list)
(make sequence

(process-node-list author-node-list)
(if (check-for-closing-sign? (string-trim-right (data author-node-list)))

(empty-sosofo)
(literal period-string))))

(else (error "Both author and editor!")))
(literal " "))))

Figure 12: Some auxiliary functions implemented in DSSSL.

(define (b-if$ sxml-mlbiblio-tree current-entry-plus)
;; sxml-biblio-tree is the complete tree of all the entries to be processed, current-entry-plus the annotated
;; tree of the current entry.
(let* ((i2 ((b-bst-stack-pv ’pop))) ; “Else” part.

(i1 ((b-bst-stack-pv ’pop))) ; “Then” part.
(i0 ((b-bst-stack-pv ’pop)))) ; Condition.

(if (integer? i0)
(b-process-sequence (if (positive? i0) i1 i2) sxml-mlbiblio-tree current-entry-plus)
(begin

((msg-manager ’bst-type-conflict) ’if$ i0)
#t))))

Figure 13: Implementing if$ within MlBibTEX’s compatibility mode.

but the example we show illustrates how a functional
programming language can implement a bibliography
style. More examples can be found in [10, § 7.5].

Figure 11 gives some excerpts of a stylesheet that
displays the items of a bibliography by labelling them
with their own keys. The core expression language
of DSSSL is a side-effect free subset of Scheme. As
shown in Figure 11, processing elements uses pattern-
matching:

(element name E)
(element (name0 name) E0)

the E expression specifies how to process the name
element, unless this element is a child of the name0

element, in which case the E0 expression applies.
The choice of the accurate expression is launched
by functions such as process-matching-children,
process-children, and process-node-list.

Expressions like E or E0 consist of assembling
literals by means of the make form, using types pre-
defined in DSSSL: paragraph, sequence, . . . The
generic type of such results is called sosofo20 w.r.t.
DSSSL’s terminology.

Figure 12 illustrates this style of programming
by showing some specific details: how to implement
BibTEX’s add.period$ function, and the switch be-
tween author and editor elements for a book. This
stylesheet can be run by the jade21 program; as
shown in [10, § 7.5.2], the TEX-like typeset engine
able to process such results is JadeTEX.

Fragments of DSSL stylesheets can be organised
into libraries, so this language is modular. Most of
the implementations of it are robust, efficient, but

20 Specification Of a Sequence Of Flow Objects.
21 James Clark’s Awesome DSSSL Engine.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1009

Jean-Michel Hufflen

they are neither extensible, nor easy to use, because
we have to make precise a predefined backend. For
example, if jade is used to process the complete
stylesheet given in Figures 11 & 12, the possible
backends are tex (resp. rtf), in which case the result
is to be processed by JadeTEX (resp. Microsoft Word
or OpenOffice). Deriving texts directly processable
by LATEX or ConTEXt is impossible.

5 The application to MlBibTEX

When we designed MlBibTEX’s present version, we
had had much experience in programming DSSSL and
XSLT stylesheets. We thought that a language close
to DSSSL would provide more expressive power for
developing, but would be accessible only for program-
mers. A language close to XSLT is better from this
point of view, provided that an extension mechanism
is given for operations related to pure programming,
e.g., the definition of new relation orders [24]. In
addition, performing some operations may be more
difficult than in bst, e.g., the add.period$ function-
ality.

The only solution is to provide an initial library
legible from a point of view related to methodology
[19]. A compatibility mode is needed in order to ease
the transition between old and new bibliography
styles [20]—Figure 13 shows how the if$ function is
implemented within this mode, in comparison with
the implementation of cl-bibtex, given in Figure 7.
This progressively led us to the architecture described
in [22].

We can be objective about MlBibTEX only with
difficulty. However, several points seem to us to
confirm our choices. First, XSLT has succeeded as a
language able to deal with XML texts, much more so
than DSSSL with SGML texts. Second, the need for
a classical programming language: using the whole
expressive power of Scheme—and not a subset as in
DSSSL—allowed us to program efficiently, by using
advanced features of Scheme. Third, our experience
with ConTEXt [21] seems to confirm the extendability
of our tool.

6 Conclusion

Table 1 summarises our experience with the lan-
guages we have described above. Of course, this
synthesis is not as objective as benchmarks would
have been. It is just a study of the effort we have
made for developing bibliography styles, and a pro-
fessional view of the results we have found.

To end, let us make a last remark about what
is done in MlBibTEX: the separation of function-
alities related to programming, written in Scheme,
and specifications of layout, given in an XSLT-like

B
ib
T E

X

X
SL

T

D
SS

SL

B
ib
ul
us

Correctness 4

Robustness 4 4 4

Extendability 8 4 8 4/8

Reusability 4/8

Modularity poor 4 4 4

Continuity average 4a 4 4

Efficiency 4 4

Ease of use 4 average 8 8

a . . . except for multilingual features, in XSLT 1.0.

Table 1: Languages for bibliography styles: synthesis.

language. Analogous combinations exist, the most
widely used are a logic programming language, like
Prolog,22 called within a C (or similar) program.
This modus operandi allows programmers to use a
very specialised language only when it is suitable.
There is an analogous example within TEX’s world:
LuaTEX. Functionalities related to typesetting are
performed by commands built into TEX, whereas
other functions are implemented by means of the
Lua language [26]. So TEX is used as the wonder-
ful typesetting engine that it is, and functionalities
difficult to implement with TEX’s language23 are del-
egated to a more traditional programming language.

BibTEX is still a powerful bibliography proces-
sor, but the main way to extend it easily concerns
the layout of the bibliographies. That was sufficient
some years ago, but not now with the use of Unicode,
new processors like X ETEX, and new languages like
HTML.

7 Acknowledgements

I have been able to write this article because I have
had much occasion to become familiar with the lan-
guages and applications mentioned above. For ex-
ample, some years ago, a colleague asked me to help
him with a DSSSL program because I knew Scheme:
that was my first contact with this language and
SGML, before XML came out. Another time, a friend
who used Plain TEX asked me a question about Tib,
although I had merely heard of the name of this
program, and I discovered it in this way. So I was
thinking about all these people when I was writ-
ing this article, and I am grateful to them. Many
thanks to Karl Berry: as usual, he is a conscientious
proofreader and ‘figure-positioner’.

22 A good introductory book to this language is [7].
23 Some examples can be found in [45].

1010 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Languages for bibliography styles

References

[1] James C. Alexander: T ib: a TEX
Bibliographic Preprocessor. Version 2.2, see
CTAN:biblio/tib/tibdoc.tex. 1989.

[2] ANSI: The Programming Language Ada

Reference Manual. Technical Report
ANSI/MIL-STD-1815A-1983, American
National Standard Institute, Inc. LNCS No.
155, Springer-Verlag. 1983.

[3] Neil Bradley: The Concise SGML
Companion. Addison-Wesley. 1997.

[4] Sean M. Burke: RTF Pocket Guide. O’Reilly.
July 2003.

[5] Judith Butcher: Copy-Editing. The
Cambridge Handbook for Editors, Authors,
Publishers. 3rd edition. Cambridge University
Press. 1992.

[6] The Chicago Manual of Style. The University
of Chicago Press. The 14th edition of a manual
of style revised and expanded. 1993.

[7] William F. Clocksin and Christopher S.
Mellish: Programming in Prolog. 5th edition.
Springer-Verlag. 2003.

[8] Michael Downes: “The amsrefs LATEX Package
and the amsxport BibTEX Style”. TUGboat,
Vol. 21, no. 3, pp. 201–209. September 2000.

[9] Jean-Christophe Filliâtre and Claude
Marché: The BIBTEX2HTML Home Page.
June 2006. http://www.lri.fr/~filliatr/
bibtex2html/.

[10] Michel Goossens and Sebastian Rahtz,
with Eitan M. Gurari, Ross Moore, and
Robert S. Sutor: The LATEX Web Companion.
Addison-Wesley Longmann, Inc., Reading,
Massachusetts. May 1999.

[11] Paul Graham: ANSI Common Lisp. Series in
Artificial Intelligence. Prentice Hall, Englewood
Cliffs, New Jersey. 1996.

[12] Vidar Bronken Gundersen and
Zeger W. Hendrikse: BIBTEX as
XML Markup. January 2007. http:
//bibtexml.sourceforge.net.

[13] Hans Hagen: ConTEXt, the Manual.
November 2001. http://www.pragma-ade.
com/general/manuals/cont-enp.pdf.

[14] Hans Hagen: “LuaTEX: Howling to the
Moon”. Biuletyn Polskiej Grupy Użytkowników
Systemu TEX, Vol. 23, pp. 63–68. April 2006.

[15] Harald Harders: „Mehrsprachige
Literaturverzeichnisse: Anwendung und
Erweiterung des Pakets babelbib“. Die

TEXnische Komödie, Bd. 4/2003, S. 39–63.
November 2003.

[16] Hart’s Rules for Composers and Readers at
the University Press. Oxford University Press.
39th edition. 1999.

[17] Taco Hoekwater: “The Bibliographic Module
for ConTEXt”. In: EuroTEX 2001, pp. 61–73.
Kerkrade (the Netherlands). September 2001.

[18] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262.
July 2003.

[19] Jean-Michel Hufflen: “Bibliography Styles
Easier with MlBibTEX”. In: Proc. EuroTEX
2005, pp. 179–192. Pont-à Mousson, France.
March 2005.

[20] Jean-Michel Hufflen: “BibTEX, MlBibTEX
and Bibliography Styles”. Biuletyn GUST,
Vol. 23, pp. 76–80. In BachoTEX 2006
conference. April 2006.

[21] Jean-Michel Hufflen: “MlBibTEX Meets
ConTEXt”. TUGboat, Vol. 27, no. 1, pp. 76–82.
EuroTEX 2006 proceedings, Debrecen, Hungary.
July 2006.

[22] Jean-Michel Hufflen: “MlBibTEX
Architecture”. ArsTEXnica, Vol. 2, pp. 54–59.
In GUIT 2006 meeting. October 2006.

[23] Jean-Michel Hufflen: “Names in BibTEX
and MlBibTEX”. TUGboat, Vol. 27, no. 2,
pp. 243–253. TUG 2006 proceedings,
Marrakesh, Morocco. November 2006.

[24] Jean-Michel Hufflen: “Managing Order
Relations in MlBibTEX”. TUGboat, Vol. 29,
no. 1, pp. 101–108. EuroBachoTEX 2007
proceedings. 2007.

[25] IBM System 360: PL/1 Reference Manual.
March 1968.

[26] Roberto Ierusalimschy: Programming in
Lua. 2nd edition. Lua.org. March 2006.

[27] International Standard ISO/IEC 10179:1996(E):
DSSSL. 1996.

[28] Java Technology. March 2008.
http://java.sun.com.

[29] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson,
Norman I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris Hanson,
Christopher T. Haynes, Eugene Edmund
Kohlbecker, Jr, Donald Oxley, Kent M.
Pitman, Guillermo J. Rozas, Guy Lewis
Steele, Jr, Gerald Jay Sussman and
Mitchell Wand: “Revised5 Report on the

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1011

Jean-Michel Hufflen

Algorithmic Language Scheme”. HOSC, Vol. 11,
no. 1, pp. 7–105. August 1998.

[30] Brian W. Kernighan and Dennis M.
Ritchie: The C Programming Language. 2nd
edition. Prentice Hall. 1988.

[31] Ronan Keryell: “BibTEX++: Towards
Higher-Order BibTEXing”. In: EuroTEX 2003,
p. 143. ENSTB. June 2003.

[32] Jonathan Kew: “X ETEX in TEX Live and
beyond”. TUGboat, Vol. 29, no. 1, pp. 146–150.
EuroBachoTEX 2007 proceedings. 2007.

[33] Oleg E. Kiselyov: XML and Scheme.
September 2005. http://okmij.org/ftp/
Scheme/xml.html.

[34] Donald Ervin Knuth: Computers
& Typesetting. Vol. A: The TEXbook.
Addison-Wesley Publishing Company, Reading,
Massachusetts. 1984.

[35] Matthias Köppe: A BIBTEX System
in Common Lisp. January 2003. http:
//www.nongnu.org/cl-bibtex.

[36] Philipp Lehman: The biblatex Package.
Programmable Bibliographies and Citations.
Version 0.7 (beta). December 2007.
http://www.ctan.org/tex-archive/macros/
latex/exptl/biblatex/doc/biblatex.pdf.

[37] Xavier Leroy, Damien Doligez, Jacques
Garrigue, Didier Rémy and Jéróme
Vouillon: The Objective Caml System.
Release 0.9. Documentation and User’s Manual.
2004. http://caml.inria.fr/pub/docs/
manual-ocaml/index.html.

[38] Bertrand Meyer: Object-Oriented Software
Construction. Series in Computer Science.
Prentice Hall International. 1988.

[39] Microsoft Corporation: Microsoft C#
Specifications. Microsoft Press. 2001.

[40] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and
Joachim Schrod: The LATEX Companion. 2nd
edition. Addison-Wesley Publishing Company,
Reading, Massachusetts. August 2004.

[41] Chuck Musciano and Bill Kennedy: HTML
& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[42] Oren Patashnik: BIBTEXing. February 1988.
Part of the BibTEX distribution.

[43] Chris Putnam: Bibliography Conversion
Utilities. February 2005. http://www.scripps.
edu/~cdputnam/software/bibutils/
bibutils.html.

[44] Erik T. Ray: Learning XML. O’Reilly
& Associates, Inc. January 2001.

[45] Denis B. Roegel : « Anatomie d’une
macro ». Cahiers GUTenberg, Vol. 31, p. 19–27.
Décembre 1998.

[46] Bob Stayton: DocBook—XSL. The Complete
Guide. 3rd edition. Sagehill Enterprises.
February 2005.

[47] Bjarne Stroustrup: The C++ Programming
Language. 2nd edition. Addison-Wesley
Publishing Company, Inc., Reading,
Massachusetts. 1991.

[48] The Unicode Consortium: The Unicode
Standard Version 5.0. Addison-Wesley.
November 2006.

[49] W3C: XSL Transformations (XSLT).
Version 1.0. W3C Recommendation. Edited
by James Clark. November 1999. http:
//www.w3.org/TR/1999/REC-xslt-19991116.

[50] W3C: XSL Transformations (XSLT).
Version 2.0. W3C Recommendation. Edited by
Michael H. Kay. January 2007. http://www.
w3.org/TR/2007/WD-xslt20-20070123.

[51] Larry Wall, Tom Christiansen and Jon
Orwant: Programming Perl. 3rd edition.
O’Reilly & Associates, Inc. July 2000.

[52] Thomas Widman: “Bibulus—a Perl XML
Replacement for BibTEX”. In: EuroTEX 2003,
pp. 137–141. ENSTB. June 2003.

1012 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

