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We use caustic beam shaping on 100 fs pulses to experimentally generate non-paraxial accelerating beams along a 60 degree 
circular arc, moving laterally by 14 µm over a 28 µm propagation length. This is the highest degree of transverse acceleration 
reported to our knowledge. Using diffraction integral theory and numerical beam propagation simulations, we show that 
circular acceleration trajectories represent a unique class of non-paraxial diffraction-free beam profile which also preserves 
the femtosecond temporal structure in the vicinity of the caustic. © 2010 Optical Society of America 
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Transversally accelerating beams such as Airy beams 
exhibit curved trajectories at their point of maximum 
intensity. Since this intensity maximum is strongly 
localized over an extended distance along the trajectory, 
they constitute a novel class of “non-diffracting” beam and 
have attracted wide interest for applications in linear and 
nonlinear optics [1-5]. Studies of accelerating beams, 
however, have to date been confined only to the paraxial 
regime, for small deviation angles typically < 10 degrees. 

In this letter, we apply a caustic-based approach to 
accelerating beam synthesis [6,7] to generate accelerating 
beams in the non-paraxial regime. We consider in 
particular a circular trajectory, accelerating 100 fs pulses 
at 800 nm along a 60 degree arc, moving a 1 µm primary 
intensity lobe laterally by 14 µm over a 28 µm propagation 
distance. To our knowledge, this is the highest degree of 
transverse acceleration reported to date. We also analyze 
the spatio-temporal beam properties using diffraction 
integral theory, and show how the primary lobe size is 
linked to the local radius of curvature of the trajectory. 
Moreover, we show that in the non-paraxial regime, it is 
only the circular propagation trajectory that can be 
considered as genuinely diffraction-free. We also 
numerically show that the temporal pulse duration is 
preserved in the vicinity of the primary lobe. 

Our experiments applied caustic beam shaping to a 
Gaussian beam from a Ti:Sapphire laser at 800 nm and 
generating 100 fs pulses [8]. The beam (with near-uniform 
spatial phase) was incident upon an optically-addressed 
SLM (Hamamatsu PAL-SLM) to which an appropriate 
caustic-phase function was written. In contrast to Fourier-
based techniques, the caustic phase function is applied 
directly to the incident beam.  The starting point with this 
approach is the desired acceleration trajectory ( )c z  along 
the propagation direction z. With ( )c z  defined, the 
corresponding SLM phase mask ( )yΦ  to apply in the 
transverse beam plane y is determined from: 

2 1/2/ (1 )d / dy kc c′ ′Φ = + where k is the wave vector and 
the derivative c dc / dz′ = . The beam characteristics in z 
and y are related using the Legendre transform of the 
caustic [7]. The beam was imaged and demagnified by a 
factor of 278 using a lens and a microscope objective 
(numerical aperture 0.8) in a 4f configuration to allow us 
to obtain caustic trajectories of micron dimensions 
(suitable for applications in micromachining and 
nonlinear optics). The plane at which the SLM is imaged 
defines the point from where the micron-scale 
accelerating beam is generated, and all results below 
show characterization of the demagnified beam after this 
plane. Recording the experimental images used additional 
× 55 imaging of the beam on a CCD camera. 

Figure 1 shows results obtained for a target non-
paraxial trajectory corresponding to a circle of radius 
35 µm. Figure 1(a) (top) compares the target caustic 
(dashed white line) with results from numerical 
propagation of a Gaussian beam to which an ideal caustic 
phase profile is applied. These numerical results confirm 
that we can indeed achieve non-paraxial acceleration with 
our setup. The results in Fig. 1(a) (bottom) provide 
experimental confirmation.  We see very good agreement 
between experiment and the numerical results, both in 
terms of the transverse localization of the beam intensity 
along the target caustic trajectory, as well as the variation 
of the local intensity with propagation along the caustic 
(we discuss this more below). Residual scattering and 
fringes seen inside the caustic in experiment arise from 
unfiltered zero-order diffraction, but this does not 
significantly modify the field localization along the caustic 
itself. Note that in our experiments, the plane of 
polarization was perpendicular to the acceleration 
trajectory [the yz plane in Fig 1(b)] and so vectorial effects 
are expected to have negligible influence on propagation.   



 
Fig. 1 (a) Numerical (top) and experimental (bottom) intensity 
distributions of a circular accelerating beam. The corresponding 
target caustic is shown as the white dashed line. (b) Propagation 
geometry of the caustic beam. (c) Comparison of the numerical 
(line) and experimental (circles) intensity profile normal to the 
caustic at points P and Q as indicated. In (c) we also show the 
analytic result from Eq. 1 (dashed line). 

The experimental acceleration profile is maintained 
over an arc > 60° measured over the range z ~ 5−40 µm 
where the main lobe size does not vary by more than 10%. 
The lateral displacement from the SLM to the trajectory 
minimum is 14 µm over a propagation distance of 28 µm. 
Although we show results here for a circle, other cases of 
non-paraxial caustics (e.g non paraxial polynomials) have 
also been generated and display similar characteristics. 

To interpret these results further, Fig. 1(b) shows 
details of the caustic geometry beyond the SLM image 
plane, defining a normal direction to the caustic (u) along 
which we can extract and plot the local intensity profile at 
any point M. Figure 1(c) shows different intensity profiles 
along the caustic at two points P and Q, comparing 
numerical results (line) and experimental measurements 
(circles), with good agreement. 

The different values of maximum intensity at P and Q 
and the intensity variation along the caustic arise from 
the use of finite numerical aperture Gaussian beam 
illumination. Figure 1(b) shows how this can be readily 
understood in terms of simple geometrical arguments. 
Specifically, the tangent rays from the SLM image plane 
corresponding to points P (low intensity) and Q (high 
intensity) arise respectively from points in the wings and 
near the center of the incident Gaussian beam. It is thus 
readily seen that it is the intensity difference between the 
two points on the initial beam that feeds in directly to the 
intensity profile along the accelerating profile. 

The above qualitative description can be quantified 
using analysis based on the non-paraxial Sommerfeld 
diffraction integral. Using this approach, we derive the 
intensity profile at any point in the vicinity of the caustic 
as follows:  
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Here, 𝑀 = 𝑀(𝑧, 𝑐(𝑧)) is the point at which the 
intensity 𝐼𝑀(𝑢) is calculated, and the normal coordinate u 
is as defined in Fig. 1(b). Ai is the Airy function, 𝐼0(𝑦𝑀) is 
the intensity of the incident beam corresponding to the 
ray from the SLM image plane tangent to M, and2 3/2( ) (1 ) /R z c c′ ′′= +  is a local radius of curvature 
geometrically defined for every point on the trajectory. 
Primes indicate differentiation with respect to z.  

The non-paraxial intensity given by Eq. (1) is 
compared to the experimental results (no free parameters) 
at points P and Q in Fig. 1(c). The agreement at Q is very 
good in the vicinity of the primary lobe, but we see 
deviations for the subsidiary lobes, and also for point P. In 
fact, this is expected since Eq. (1) is derived assuming a 
slowly varying incident beam profile and the caustic at P 
and the side lobes are generated from points on the beam 
away from the slowly varying intensity maximum. Better 
agreement at all points on the caustic would be obtained 
with a larger input beam and SLM. We also note that the 
result in terms of an Airy function is obtained using a 
third-order phase expansion which is valid for caustic 
trajectories with non-vanishing second derivativesc′′ . For 
such cases, our analysis extends into the non-paraxial 
regime the universal association of the Airy function with 
arbitrary acceleration profiles [7]. Our analysis can be 
generalized to other classes of trajectory using higher 
order phase expansions (using e.g. Pearcy integrals), but 
the results are qualitatively similar to the Airy function in 
yielding beam properties in terms of a primary central 
lobe with lower amplitude oscillations [9]. 

We also use Eq. (1) to consider more generally the 
nature of “non-diffracting” beams in the non-paraxial 
regime. To this end, we derive the transverse size 
(FWHM) of the primary intensity lobe in the direction 
normal to the caustic as: 𝑤(𝑧) = Δ𝑢[𝑅(𝑧) 2𝑘2⁄ ]1/3 with 
Δ𝑢 = 1.630 the half maximum of the intensity |Ai|2
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. 
From this result, we see that the condition for a “non-
diffracting” trajectory [i.e. a z-invariant 𝑤(𝑧)] is only 
achieved when the local radius of curvature 𝑅(𝑧) is 
constant. This corresponds to requiring that the chosen 
trajectory 𝑐(𝑧) is in fact a circle, and a consequence of this 
is that all trajectories that are not circular, including the 
well-known parabolic beam trajectory used to initially 
generate accelerating beams, are in fact not ideally 
diffraction-free outside the paraxial regime. Significantly, 
we note that analysis based on Maxwell equations has 
recently presented a first-principles demonstration of this 
result [ ]. 

This non-diffracting nature of the circular caustic is 
confirmed in Fig. 2(a) which plots the evolution with 
propagation distance of the primary lobe size 𝑤(𝑧), 
comparing experiment (circles) with the analytic 
prediction for 𝑤(𝑧) (dashed line), as well as results 



extracted from numerical beam propagation (solid line). 
The caustic maintains constant width 1.1 ± 0.1 µm over a 
significant distance of ~20 µm. For comparison, a 
Gaussian beam of the same size (as beam waist) would 
have a Rayleigh range of only 3.4 µm. Also note that the 
lobe of a parabolic beam with minimum size 1.1 µm would 
actually increase to 1.4 µm over the range shown, where a 
circular trajectory maintains constant beam size.      

The shaded region in the figure is used to show the 
onset of the regime where numerical beam propagation 
indicates that the effects of finite numerical aperture of 
the incident beam induces deviation from diffraction-free 
behavior. Additional results are shown in Fig. 2(b) where 
the result in Eq. (1) for the variation of the intensity 
maximum along the caustic IM 

 

(u = 0) is compared with 
experimental and numerical results. We see good 
agreement in the diffraction-free regime, further 
providing confirmation of our analysis and interpretation.  

Fig. 2 (a) Evolution of the primary lobe size with propagation. 
The dashed line corresponds to the analytical model of Eq. (1), 
the solid line to the numerical propagation and the circles to 
experimental results. (b) Evolution of the intensity along the 
caustic with the propagation distance. (c) Snapshots of a 15 fs 
pulse at various points along its propagation. The corresponding 
propagation times are 40, 80, 140 and 230 fs. [Media 1] 

The high acceleration in the non-paraxial regime 
raises a natural question of the effect on the spatio-
temporal structure of the beam in the femtosecond regime 
[11]. We have numerically investigated this using the 
non-paraxial plane wave spectrum model of propagation, 
neglecting SLM material dispersion (valid for pulses 
longer than ~10 fs). At four different points on the caustic, 
Fig. 2(c) shows snapshots of the structure of a 15 fs pulse 
at 800 nm as it propagates. A link to a movie of this 
propagation is in the figure caption. Figure 3 shows the 
spatio-temporal intensity plotted in a reference frame of 
co-moving time and spatial distance from the caustic 
parallel to the y axis. This view clearly shows how the 
propagation along the caustic is associated with locally-
varying pulse front tilt and spatio-temporal structure, but 
significantly, in the non-diffracting regime at z = 15 µm, 
25 µm and 35 µm, the temporal structure of the primary 
lobe in the vicinity of the caustic intensity maximum is 
invariant. This is seen in the figure where we plot the 

profile on the target caustic (at u = 0) as the black curve. 
On the other hand, outside the non-diffracting regime for 
z = 55 µm, we see significant pulse temporal broadening. 
The pulse widths at these points are given in the figure.  

 

 
Fig. 3. Intensity distribution of a 15 fs pulse at propagation 
distances as shown as a function of co-moving time and distance 
from the caustic. 

The major result of this paper has been to 
experimentally generate non-paraxial non-diffracting 
beams along a circular trajectory. Our results have been 
interpreted with numerical and analytical studies, with 
the latter providing insight into the nature of diffraction-
free propagation in the non-paraxial regime. Within the 
diffraction free regime, the temporal structure at the 
caustic maximum is preserved, and we expect our results 
to impact on uses of highly accelerating beams in 
nonlinear optics.  
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