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ABSTRACT 
Steam Generator (SG) tubes are subjected to fluid-elastic 

coupling forces and impacts against support plates & anti-

vibration bars. Understanding their vibrations is crucial not 

only at the design stage, but also to optimize the SG 

maintenance policy and to lengthen the SG service life. The 

aim of our research is to provide a better understanding of the 

conjugate stabilizing effects of impacts and coupling with fluid-

elastic forces. Since fluid-elastic forces are difficult to simulate 

and expensive to reproduce experimentally, the fluid coupling 

forces of our numerical model are represented using velocity 

dependent damping and stiffness matrices, both for the fluid 

and the tube. Their effect is experimentally reproduced having 

recourse to active vibration control in the frame of specifically 

designed “hybrid” experimental tests. In this paper, we present 

a method for modeling tube vibrations in order to estimate the 

conjugate effects of the coupling between the fluid elastic 

forces and impacts. This strategy lowers the costs and avoids 

the difficulties associated to the case of fluid in the 

experiments. Our numerical model will be implemented in the 

active control loop in the next step of the study.  

NOMENCALTURE 

b  : Influence vector 

𝒞  : Structural damping Matrix 

𝐶𝑑 : Dimentionless damping coupling coefficient 

Cf : Added fluid damping Matrix 

Ck : Dimensionless stiffness coupling coefficient 

D : Tube diameter 

𝐸𝑐  : Kinetic energy 

𝐸𝑚  : Mechanical energy 

𝐸𝑝  : Potential energy 

𝐸𝑝𝑐  : Impact potential energy 

Fc : Impact force 

Ffe : Fluid elastic force 

F𝑇 : Turbulence force 

𝑓  : Frequency vibration 

𝑓   : Rice frequency 

𝑔  : Gap distance 

𝒦 : Structural stiffness matrix 

Kc : Impact stiffness 

Kf : Added fluid stiffness 

𝑘f : Modal added fluid stiffness 
ℳ : Structural mass matrix 

Mc : Mass Impact 

M𝑓 : Added fluid mass 

𝑚f : Modal added fluid mass 
𝑞 : Generalized modal coordinates 

Tc : Impact duration 

𝑡 : Time 

𝑉  : Fluid velocity 

𝑉   : Dimensionless reduced fluid velocity 

𝑥   : Coordinate gap impact 

𝜌𝑓  : Mass density of the fluid 

𝜍  : RMS value 

𝜔   : Modal circular frequency (mode n) 

𝜁   : Modal damping (mode n) 

𝜑   : Eigenvector (mode n) 

𝜙  : Eigenvector matrix  

(∗)   : Mode n 

(∗)( )  : Iteration n 

(∗)   : Stagnant water (𝑉 = 0) 
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INTRODUCTION 
 Steam generators are heat exchangers used to convert 

water into steam from heat produced in a nuclear reactor core. 

They are used in pressurized water reactors between the 

primary and secondary coolant loops. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Steam generator 
 

 When the steam generator is operating, water in the 

secondary loop partially changes to steam. When rising up, this 

fluid interacts with the U-tubes (see Fig.1), which are therefore 

subjected to flow excitation.  

This excitation can be split into two kind of forces: turbulence 

forces which are independent of the movement of the tube and 

the so-called fluid-elastic coupling forces, depending on 

acceleration, velocity, displacement and fluid reduced 

velocity[1][2]&[3] . The total flow excitation can be finally 

expressed as: 

 
𝐹𝑇 + 𝐹𝑓  (�̈�, �̇�, 𝑦, 𝑉𝑟) = 𝐹𝑇 −𝑀𝑓. �̈� − 𝐶𝑓(𝑉𝑟). �̇� − 𝐾𝑓(𝑉𝑟). 𝑦 

𝑉 = 𝑉/(𝑓 ∗ 𝐷) 

(1) 

 

 Where �̈�, �̇� and 𝑦 are acceleration, velocity and 

displacement vectors. Under some specific conditions of fluid 

reduced velocity, 𝐶𝑓 is negative enough to make the structure 

instable. This phenomenon is called fluid-elastic instability and 

can damage the structure. The tubes are however supported by 

plates (see Fig.1) which guide them and limit their vibration 

amplitude. In fact, the impacts between the tubes and the plate 

tend to stabilize the tubes. Thus, we can finally represent the 

whole problem as below: 
 

ℳ ∙ �̈� + 𝒞 ∙ �̇� + 𝒦 ∙ 𝑦 = 𝐹 + 𝐹𝑓  (�̈�, �̇�, 𝑦, 𝑉 ) + 𝐹  (2) 
 

 Premultiplying the Eq.(2) by modal base Φ we get a set of 

independent equations of motion in the modal coordinates  

 
ℳ ∙ �̈� + 𝒞 ∙ �̇� + 𝒦 ∙ 𝑞 = 𝑓 + 𝑓𝑓  (�̈�, �̇�, 𝑞, 𝑉 ) + 𝑓  (3) 

Where �̈�, �̇�, 𝑞 are generalized acceleration, velocity and displacement 

vectors. Because these mechanisms are complex and difficult to 

realize in an experimental set up, the main aim of our study is 

to develop a hybrid control loop to simulate this coupling effect 

in the frame of an experimental characterization test bench. 

 

STRUCTURE & MODAL UPDATING 
 

 

 

 

 

 

 

 

 

 
Figure 2. Gap supported tube 

 

 The studied structure Fig.2 is composed of a tube attached 

to a slender plate clamped in rigid block. At the middle height 

of the tube, two gap stops located at 0.5mm create punctual 

impacts depending on the vibration amplitude of the tube. 

 

A finite element shell model was developed to generate the 

mass, damping and stiffness matrices. This model was updated 

in order to match the numerical behavior with experimental 

one. Two criterions were used to compare the numerical and 

experimental model: Modal Assurance Criterion (MAC) and 

frequency error criterion. Fig.3 & Tab.1 summarizes the results 

obtained for the 6 first modes. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Modal updating (MAC) 

 
 
 
 
 
 
 

Tab 1. Frequency error 
 

It can be observed that there is a good agreement between 

the two models. The lowest values of  MAC is 85% and the 

mean frequency error is lower than 4%. 

Modes Numerical modal 

frequency 

Experimental modal 

frequency 

Error  

1 23.1 23   0% 

2 103 100 3% 

3 305 318 4% 

4 426 407 4.6% 

5 774 798 3% 

6 1300 1404 8% 

  Mean 3.7% 
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EXPERIMENTAL IDENTIFICATION 

Impact stiffness: 
 

The only source of nonlinearity in our problem comes from 

the impact forces located at xc (middle height of tube), which 

are computed in an explicit manner as the Eq.(4) shows. 

 

 

Where Kc is the impact stiffness. The value of the 

parameter Kc is identified through experimental measurements. 

Several impact tests were performed in which the impact forces 

where measured by using force sensor. Knowing the mass 

sensor „Mc‟ and measuring the duration of the impact „Tc‟, we 

can deduce an estimation of the impact stiffness using the 

following approximation: 
 

𝑇𝑐 =
𝜋

𝜔 
= 𝜋√𝑀 /𝐾  

(5) 

 

 
Figure 4. Impact stiffness identification 

 
Figure 4 presents a histogram of the obtained results for 25 

tests.  Kc was estimated at 106N/m on average (for Tc = 0.3ms 
on average), which matches with the results found by P.Piteau 

[4] & T.Thenint[5]. 

 
Fluid-elastic forces parameters: 

 

In order to model fluid-elastic forces, a significant research 

effort has been conducted over the last four decades. These 

researches leaded to several theoretical models. We can quote 

M.Paidoussis [6], S.Price [7] or S.Granger [8] models etc. In 

our study we have chosen the CEA one [9] which is semi-

analytical model. In this approach, the parameters Mf, Cf and Kf 
are identified experimentally. 

Referring to works carried out by CEA [4], the first mode 

is predominant in the tube response and the effects of higher 

modes are almost negligible, thus the fluid elastic force is 

projected only on the first mode and the other modes are not 

influenced.  

 
𝑓𝑓. (𝑞,̈ �̇�, 𝑞) = −(𝑚𝑓�̈� + 𝑐𝑓(𝑉 )�̇� + 𝑘𝑓(𝑉 )𝑞) (6) 

 

Therefore, the fluid-elastic effect can be finally modeled as 

fluid added mass, fluid added damping and fluid added 

stiffness. These last two coefficients are assumed depending on 

reduced fluid velocity Vr [4]. 
 

[
𝑚 +𝑚𝑓 0 0

0 𝑚 0
0 0 ⋱

] �̈� + [
𝑐 + 𝑐𝑓(𝑉 ) 0 0

0 𝑐 0
0 0 ⋱

] �̇�

+ [
𝑘 + 𝑘𝑓(𝑉 ) 0 0

0 𝑘 0
0 0 ⋱

] 𝑞 = 𝑓 + 𝑓  

(7) 

 

At this stage, in order to completely identify fluid-elastic 

forces we should determine the three parameters mf, cf(Vr) 
and kf(Vr). The modal characteristics of the structure are 

assumed to be known in the air and the fluid-added mass mf 
doesn‟t depend on fluid velocity. This parameter is then 

identified through the measurement of the frequency of the first 

mode in stagnant water and by comparing it to the equivalent 

measurement in air mf. Concerning fluid added stiffness kf and 

damping cf, we infer these coefficients by measuring for each 

fluid velocity first mode frequency and damping coefficient 

(see Eq.(6) & Eq.(7)). 
 

𝜔 = √
𝑘 + 𝑘𝑓

𝑚 +𝑚𝑓
 

(8) 

𝜁 =
𝑐 + 𝑐𝑓

2𝜔(𝑚 +𝑚𝑓)
 

(9) 

 

In the Fig.5 & Fig.6 we recall the results of measurements 

given by  [4] for each value of fluid velocity. 

 

 
Figure 5. Identified first modal frequency depending 

on fluid velocity (m/s) 
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𝐹 (𝑡) = 𝐾 . (𝑦(𝑥 , 𝑡) − 𝑔)       𝑖𝑓 |𝑦(𝑥 , 𝑡)| > 𝑔
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(4) 
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Figure 6. Identified first modal damping coefficient 

depending on fluid velocity (m/s) 
 

As we can notice, the damping become negative from 2.1 

m/s and the fluid elastic instability phenomenon appears. 

Nevertheless in non-linear case (with impacts), the structure 

remains stable because the gap stop limit the vibration 

amplitude of tube. In order to model this phenomenon, we have 

to introduce another dimensionless concepts, reduced velocity, 

coupling damping coefficient Cd and coupling stiffness 

coefficient Ck. These dimensionless coefficients will help to 

explain the stabilizing effect of the impacts. 

 

In his works, S.Caillaud [10] introduced the dimensionless 

coupling coefficient as follow: 

 

𝐶𝑑 = 8𝜋(𝑚 +𝑚𝑓)
𝜁 ∙
𝜔 
𝜔
− 𝜁

𝜌𝑓 ∙ 𝐷²𝐿 𝑉 
 

 

(10) 

𝐶 = 8𝜋²(𝑚 +𝑚𝑓)

𝜔 
𝜔
− 1

𝜌𝑓 ∙ 𝐷²𝐿 𝑉 ²
 

 

(11) 

𝑉 = 𝑉/𝐷𝑓    (12) 

𝐿 = ∫ 𝜑 (𝑥)²
 

 

𝑑𝑥 
 

(13) 

 

Where Le is the modal equivalent length calculated from 

the first mode shape, ζoand ωo are the modal damping 

coefficient and circular frequency in stagnant water. 

 

When including impacts in the problem, the expression of 

the reduced fluid velocity in Eq.(1) becomes a little more 

complicated, since it depends on vibration apparent frequency 

of tube and not anymore on the first modal frequency (7).  

 

There are different way to estimate this vibration tube 

frequency, we can quote for example zero-crossing method [11] 

& [12] and Rice frequency method fR [13]. This last method 

was chosen for our problem. 

 

 fR is proportional to velocity RMS over displacement 

RMS of the tube free end within sliding size windows τ.  
 

fR(t, τ) =
σẏ(t, τ)

2πσy(t, τ)
 

 

(14) 

 

The dimensionless coupling coefficients Cd and Ck can be 

inferred from ζ and ω already measured. In addition, as shown 

in Eq.(10) & Eq.(11), they depend on reduced velocity. Figure 7 

presents the variation of dimensionless coupling coefficient 

depending on reduced velocity. It can clearly be seen that Cd 
become completely negative from about 3.8. 

 
Figure 7. Identified dimensionless fluid-elastic 

damping coupling coefficient depending on 
dimensionless reduced fluid velocity 

 

 
Figure 8. Identified dimensionless fluid-elastic 

stiffness coupling coefficient depending on 
dimensionless reduced fluid velocity 

 

NUMERICAL SOLVER 
 

 After determining experimentally all parameters, the next 

step is to create a numerical solver including all concepts we 

introduced to solve the nonlinear problem. The Newmark time 

integration solver has been implemented to get the tube 

response. Numerous studies have been conducted in linear as 

well as in nonlinear problems[14].  
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In our approach, a mechanical conservation energy 

criterion has been used in order to verify trustworthiness of the 

numerical results.  𝐸𝑚  is constituted by sum of three terms: 

kinetic energy, potential energy and shocks potential energy. At 

each computation step, theses energy are evaluated as follows 

and the sum is divided by the initial mechanical energy in order 

to get the conservation in percentage.  

 

𝐸𝑐( ) =
1

2
. (�̇�( ))

𝑇
.ℳ. (�̇�( )) 

 

(15) 

𝐸𝑝( ) =
1

2
. (𝑦( ))

𝑇
. 𝒦. (𝑦( )) 

 
(16) 

𝐸𝑝𝑐( ) =
1

2. 𝐾𝑐
. (𝐹𝑐( ))

𝑇
. (𝐹𝑐( )) 

(17) 

 

First we applied this criterion on Newmark method alone 

without any correction algorithm taking in consideration the 

impacts, but it does not insure the conservation energy 

especially for long time simulation. To avoid this behavior, a 

Newton-Raphson algorithm [15] slightly modified has been 

implemented to in order to fit our tolerance requirement 

concerning the impact time. Figure 10 presents the energy 

conservation criterion after implementing Newton-Raphson 

algorithm for a computation step of 2.10
-5

s, we reached around 

100% of energy conservation with less than 1% of error Fig.11.  

 

 
Figure 10. Newmark with Newton Raphson method 

conservation energy 

 
Figure 11. Newmark with Newton Raphson method 

conservation energy error 

IMPACTS STABILIZING EFFECT 
 

At this stage, the parameters describing the fluid elastic 

force are depending on reduced velocity. The later includes the 

effect of the impacts through apparent frequency fR.  
 

The impact stabilizing effect can be explained by the 

conjunction of two phenomena: The first one is the dissipation 

due to the higher orders modes of the structure. In fact, when 

impact occurs, many modes not excited by the turbulent flow 

are excited, and will then dissipate a part of energy increasing 

the stability of the tube. The second phenomenon is the increase 

of the stiffness of the structure by being in contact with a stiff 

obstacle. During contact, since the apparent stiffness is 

increased, apparent frequency of the structure should also 

increase, hence decreasing the reduced velocity (Eq.(12)), 

which makes the fluid elastic load dissipating. The numerical 

results in Fig.9 illustrate well this phenomenon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. (a) Tube response & estimated impact force 
(b) Apparent frequency (c) Reduced velocity 
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NUMERICAL VS EXPERIMENTAL RESULTS 

 

In this part we compare our first numerical results to the 

experimental one [9] for gap equal to 0.5mm and flow velocity 

of 2.1m/s in order to validate our numerical approach. On the 

left side, a detailed plot of the free end displacement for 

numerical simulation and experimental measurement are 

shown. On the right, there associated histograms are presented. 

Figure 12. Computed response & Experimental 
response respectively 

 The direct comparison of the detailed plots is not 

appropriate and results should be compared in a statistical 

sense, since turbulence forces are modeled by random 

excitation with a bandwidth of 40Hz. But through this plot we 

can highlight the displacement which is bounded at about 

double distance of the gap. This can be apprehended from the 

first mode shape. Concerning the histogram, the distribution is 
centered on zero, namely the initial equilibrium position. Also 
notice the good agreement of the estimated time between the 

two results. 
ACTIVE CONTROL 

 

In order to design the active part of the bench which 

simulates the fluid-elastic force effect, the characterization of 

each control loop component (shaker, accelerometer etc) must 

be performed. This stage is crucial because it allows complete 

mastering of the system. In this paper we do not give details 

about this modeling stage but we can refer to Dorf and Bishop 

works [16] for more details. 

 

 

 

 

 

Figure 13. Control loop  

After this phase of modeling, our efforts were conducted 

on plant designing [17]. The aim is to impose a root for first 

pole (first mode) in such a way that the whole system fit as 

much as possible the evolution of both first modal frequency 

and modal damping coefficient previously measured for 

different value of the control gain G. In this way, by controlling 

the gain the corresponding reduced velocity configuration can 

be reproduced. 

 

Figure 14 gives an example of a root locus of the system 

for a plant that we are still working on. As it can be noticed, the 

system becomes instable around the modal frequency of the 

tube in stagnant water for G = 0.25 and fluid elastic instability 

occurs. We are currently working on the experimental setup to 

validate these results before adding gap stops and studying the 

stabilizing effect of the impact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Root locus  

CONCLUSION 

 

A numerical model of the vibrations of a SG tube subjected 

to fluid-elastic and impact forces were obtained. This model 

was updated with experimental modal analysis results. The 

Newmark time integration method combined with Newton-

Raphson algorithm provided an estimation of the response of 

the tube subjected to fluid excitation forces and impacts. The 

next step of our study is devoted to implementation of this 

controller experimentally to reproduce the fluid effect on the 

real structure and validate the numerical approach.  
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