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ABSTRACT

In the last few decades, researchers have given a lot of atten-
tion to new engineered materials with the purpose of developing
new technologies and devices such as mechanical filters, low fre-
quency sound and vibration isolators, and acoustic waveguides.
For instance, elastic phononic crystals may come to mind. They
are materials with elastic or fluid inclusions inside a matrix made
of an elastic solid. The anomalous behavior in phononic crys-
tals arises from interference of waves propagating within an in-
homogeneous material. The inclusions inside the matrix cause
strong modifications of scattering properties. However, the ap-
plication of phononic crystals is still limited to sonic frequen-
cies. In fact, band gaps can be generated only when the acoustic
wavelength is comparable to the distance between the inclusion.
In order to overcome this limitation, a new class of metamaterial
has been proposed: meta composite. This new class of mate-
rial can modify the dynamics of the underlying structure using
a bidimensional array of electromechanical transducers, which
are composed by piezo patches connected to a synthetic nega-
tive capacitance. In this study, an application of the Floquet-
Bloch theorem for vibroacoustic power flow optimization will
be presented. In the context of periodically distributed, damped
2D mechanical systems, this numerical approach allows one to
compute the multimodal waves dispersion curves into the entire
first Brillouin zone. This approach also permits optimization of
the piezoelectric shunting electrical impedance, which controls
energy diffusion into the proposed semiactive distributed set of
cells. Experiments performed on the examined structure illus-

trates the effectiveness of the proposed control method. The
experiment requires a rectangular metallic plate equipped with
seventyfive piezopatches, controlled independently by electronic
circuits. More specifically, the out-of-plane displacements and
the averaged kinetic energy of the controlled plate are compared
in two different cases (control system on/off). The resulting data
clearly show how this proposed technique is able to dampen and
selectively reflect the incident waves.

INTRODUCTION
In the last few decades, researchers have given a lot of atten-

tion to new engineered materials with the purpose of developing
new technologies and devices such as mechanical filters, low fre-
quency sound and vibration isolators, and acoustic waveguides.
In the field of light propagation, several efforts were made in
order to design and construct photonic crystals showing pho-
tonic band gaps that prevent light from propagating in certain
directions with specified frequencies. Many other efforts were
made in order to create photonic crystal able to propagate light
in anomalous and useful ways (i.e. negative refraction and arti-
ficial magnetism). In the acoustic domain, similar studies were
carried out with the aim of preventing the propagation of elastic
waves within the medium. In both cases, the band gap is obtained
by periodically modulating some electromagnetic or mechanical
properties [10].
This technique presents two main limitations: The spatial mod-
ulation must be of the same order as the wavelength in the gap,
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the position of the band gap cannot be easily changed since it
strongly depends on the materials involved (Bragg’s band gap).
A possible solution for these problems is found using composites
with locally resonant units. The periodicity of the crystal creates
a stop band that can be shifted by modifying the properties of the
resonators. Liu et al. [7] had demonstrated that a resonant sonic
crystal with building blocks of rubber-coated lead balls exhibits
a low-frequency sonic band gap, and the resonance can provide
a maximum impedance mismatch to shield the airborne sound.
The same effect can be obtained using Helmoltz resonators as
showed by Fang et al. [1, 3] or Hu [6].
A further improvement can be obtained using shunted piezo-
electric materials employed simultaneously with electronic com-
ponents and controllers in order to achieve new functionalities.
Adaptive metacomposite can be designed to create local reso-
nances by coupling piezoelectric patches to a resonant external
circuit, as illustrated in [9]. This concept involves a periodic
array of simple RL-shunted piezos mounted on the structure to
passively control the propagation of elastic waves and the subse-
quent vibration field. Periodically induced impedance-mismatch
zones generate broader stop bands, i.e., frequency bands where
waves are attenuated. The tunable characteristics of shunted
piezo-patches allow the equivalent mechanical impedance of the
structure to be tuned so that stop bands are generated over de-
sired frequency ranges. The presence of a resistance in the shunt
circuit generates a damped resonance of the electrical network.
The resistance also allows the energy dissipation mechanism of
shunted piezos to be exploited, which dampens the amplitude
of vibration also outside the stop bands. In this paper, the con-
sidered metacomposite consists of several piezoelectric patches
periodically arranged over the surface of the two-dimensional
waveguide and shunted to an external electric circuit with a neg-
ative capacitance. Unlike the distributed resonant circuits, which
are based on the energy exchange between the controlled struc-
ture and the resonant circuit, the negative capacitance circuit al-
lows to broaden the control frequency for controlling either en-
ergy velocity or wave absorption properties. The main contribu-
tion of this article is the capacity of modifying and controlling the
dynamic of the two-dimensional waveguide, in terms of reflected
or absorbed energy flows. This effect is achieved by physically
separating both ends of the waveguide with a periodic lattice of
piezoelectric actuators.

System’s design
An aluminum plate with the geometric properties listed in

Table 1 is suspended to a rigid frame through metallic wires in
order to reproduce the free boundaries conditions. The plate is
equipped with 75 piezoelectric patches from PZ26 series (Fer-
roperm Industries) arranged in a regular 15×5 array (Figure 1).
The dimension of the piezoelectric ceramics are listed in Table 1
and are justified by the following assumptions: The plate’s dis-

Plate Length 2100 mm

Height 1050 mm

Thickness 3 mm

Mass density 2700 kg/m3

Young’s modulus 70 ·109 N/m2

Poisson’s ratio 0.33 −

Piezo Length 50 mm

Height 50 mm

Thickness 0.5 mm

Mass density 7650 kg/m3

Poisson’s ratio 0.31 −

Dielectic loss < 0.05 %

Coupling factor 0.31 −

TABLE 1. Geometry and physical properties of the system.

persion relation of the flexural mode at 5000 Hz has a wavelength
of 30 cm. This value imposes a length constraint of the piezoce-
ramic in the propagation direction. According to Livet [8] the
piezoelectric coupling is increased when the ratio between the
length of the ceramics and the wavelength is bigger than 1/4.
Under this condition, the piezoelectric actuator can experience
an acceptable strain level. The thickness of the actuator was fi-
nally defined considering the restraints of the electric circuit and
the nature of the control technique. Different authors have shown
that the best controlling effect is obtained when the circuit is
tuned in correspondence with the biggest ceramic’s capacitance
value [5,8]. This property strongly depends on the material prop-
erties and the geometry. Once the material properties and the
two dimensions of the piezoelectric actuator are chosen, the only
parameter which may be amended is the thickness. Small thick-
nesses correspond to larger values of the intrinsic capacitance,
however, this parameter cannot be reduced indefinitely due to the
weakening of the piezoelectric ceramic itself. For these reasons,
a thickness of 0.5 mm was adopted. The actual circuit’s lay-
out considered contains some passive components, such as the
resistances Rs, R2, R3, R4, the capacitance C2 and an active com-
ponent, namely an operational amplifier that actually allows the
circuit to reproduce the intended behavior. This specific layout
was chosen as opposed to others [4] because of its simplicity and
its effectiveness in the frequency range of interest. The varia-
tion of these parameters determines the variation in the synthetic
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FIGURE 1. Metacomposite structure: 2D waveguide and active interface (dashed rectangle).

impedance according to the following formula:

Z = Rs−
R3R2

R4 (1+ iωR2C2)
; (1)

From the practical point of view, the circuit is further modified by
adding some diodes in order to protect the operational amplifier.
The resistances R3 and R4 were merged in a single potentiometer
with the aim of simplifying the circuit layout.
This control technique requires a tuning of the synthetic capaci-
tance around the capacitance value of the piezoelectric ceramic;
this value is intrinsic to the electromechanical coupling and de-
pends upon the material properties, the geometry of the patches
and the plate stiffness. The intrinsic capacitance of the piezo-
electric ceramic can be easily estimated measuring the capaci-
tance observed by an RLC-meter when the specimen is free of
external forces. In the present case the measured value is 52
nF. The actual circuit was tuned by varying the position of the
potentiometer in small increments from high values of the syn-
thetic capacitance to a value very close to the targeted intrinsic
capacitance value. When the external circuit approaches the set-
point the system tends to be unstable, and an increase of voltage
is observed [8]. The operational amplifier is therefore saturated.
In order to mitigate this effect, the circuit’s layout proposed by
Forward [5] was modified adding a complementary circuit able
to detect this specific instability.

Experimental set-up
The analyzed structure, shown in Figure 1, consists of

an aluminum plate equipped with 75 piezoelectric actuators

connected to external circuits and arranged so as to form a
periodic array of 5×15 units.
The wave propagation properties of the structure are charac-
terized by means of two-dimensional wavefield measurements,
recorded with a scanning laser vibrometer (Polytec PSV-400).
Measurements are conducted over a grid of 37× 81 scan points
with a spatial resolution of 20 mm in the horizontal and vertical
directions. At each grid point, the laser measures the time
history of the out-of-plane velocity. Elastic waves are excited by
a shaker located in the lower corner of the plate, 680 mm away
from the active interface as shown in figure 2. The transducer
is driven by an input signal consisting of a random broad-band
excitation and amplified by an LDS power amplifier.

Scattering properties computation
The active interface described in the previous section can be

considered as a infite periodic lattice of piezo-actuators. In order
to correctly describe such type of system, a general mathematical
method has been developed [2]. It based on the Floquet-Bloch
theorem and allows one to estimate the dispersion properties
of a two-dimensional waveguide incorporating, among others,
electronic components, damping effects, or any other frequency-
dependent characteristics.

2D Bloch theorem applied to piezo-elastodynamic
Let us consider a piezoelastodynamic problem made of infi-

nite periodic distribution of unitary cell. The harmonic homoge-
neous dynamical equilibrium of system is driven by the follow-
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FIGURE 2. Layout of the measurement system.

ing partial derivative equations:

ρẅ−∇ ·σ = 0
−∇ ·D = 0 (2)

where w is the displacement vector, σ represents the Cauchy
stress tensor, ε = ∇sw the Green strain tensor, and D the electric
displacement. The linear constitutive material behavior relation-
ships can be written as:

σ =CEε− eT E
D = eε + εSE (3)

where E = −∇V is the electric field vector (V being the volt-
age), CE the elasticity tensor at constant electrical field, eT the
piezoelectric coupling tensor, and εS the dielectric permittivity at
constant strain. We add to this set of equilibrium equations an
output expression

q0 =−
∫

St

D ·ndS (4)

allowing the introduction of the charge measurement on the
piezoelectrics top electrode and hence the dual counterpart of the
imposed electrical Dirichlet boundary condition for applying the
shunt impedance operator.

The equations above are consistent for each kind of material to
the extent that null piezoelectric and permittivity tensors can be
used when passive materials are considered. All these tensors
also depend on the spatial location vector x and are Ωx periodic.
By applying a Fourier transform, the piezoelastodynamic equi-
librium can also be written as

ρω2w−∇ ·
(
CE∇sw+ eT ∇V

)
= 0

−∇ · (e∇sw− εS∇V ) = 0. (5)

As the problem is 2D infinitely periodic, mechanical boundary
conditions are included in the formulation, while electrostatic
boundary conditions have to be considered on each cell

V = 0 on Sb
V =V 0 on St
Dn = 0 on Sl

(6)

where Sb is the grounded bottom electrode of the piezoelectric
layer, St is the top electrode connected to the external shunt,
and Sl the lateral electrode. The top electrode applied feedback
voltage V0 depends on the shunt characteristic and on the col-
lected charges q0 given in equation (4) and can be expressed in
the Fourier space by

V 0 =−Zq0 (7)
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Considering a primitive cell of the periodic problem Ωx, the
Bloch eigenmodes and the dispersion functions can be computed
by searching the eigensolutions of the homogeneous problems
(5) with mechanical periodic boundary conditions and electric
ones given by equation (6). This solution has the form:

u = un,keik·x (8)

where un,k is composed of Ωx periodic functions. By introducing
expression (8) in the piezoelastodynamic equations, is then pos-
sible to determine the functions wn,k, Vn,k, and ωn, solutions of
the generalized eigenvalues problem

0 = ρω2wn−∇ ·
(
CE∇swn + eT ∇Vn

)
+

ik
(
(CE∇swn) ·Φ+∇ ·

(
CEΞn,k

))
+

ik
((

eT ∇Vn
)
·Φ+∇ ·

(
eT ∇Vn

)
·Φ
)
+

−k2
((

CEΞn,k
)
·Φ+

(
eT ∇Vn ·Φ

)
·Φ
)
+

0 = −∇ · (e∇sw− εS∇V )+
−k
(
∇ ·
(
eΞn,k

)
+(e∇sw) ·Φ

)
+

+k (∇ · (εS∇V ) ·Φ+(εS∇V ) ·Φ)+
+k2

((
eΞn,k

)
·Φ− (εS∇V ·Φ) ·Φ

)
+

(9)

with the associated boundary conditions

wout
n,k = win

n,k on SR,ST

Vn,k = 0 on Sb
Vn,k =−Zqn,k on St
D ·n = 0 on Sl

(10)

In these equations k = Φk where Φ = [cosθ ,sinθ ,0]T represents
the direction angles into the reciprocal 2D lattice domain and
Ξn,k = 1/2

(
wn,k ·ΦT +Φ ·wT

n,k

)
is the symmetric dyadic tensor

or the dyadic product of the displacement w and direction vector
Φ. SR are the interfaces of the cells. In the electrical boundary
conditions, q0 is given by

q0
n,k =

∫
St

(−e∇sw+ ik∇eΞ+ εS (∇V + ikV ·Φ)) ·ndS (11)

Numerical computation of the Blochs waves
The numerical implementation is obtained by using a stan-

dard FE method to discretize the piezoelastodynamic equations
formula. The assembled matrix equation is given by

(
K (Z)+λL(θ ,Z)−λ

2H (θ ,Z)−ω
2M
)

u(θ ,k) = 0 (12)

where λ = ik; M and K are the standard symmetric semidefi-
nite mass and stiffness matrices (the mass matrix is semidefinite

because elastostatic equation is condensed into the equation), L
is a skew-symmetric matrix; and H is a symmetric semidefinite
positive matrix. u is the generalized eigenvector defined on all
degrees of freedom of the used FE model.
When k and f are fixed and Z does not depend on ω , the system
(12) is a linear eigenvalue problem allowing us to compute the
dispersion functions ω2 and the associated Bloch eigenvector un.
This approach has been widely used for developing homogeniza-
tion techniques and spectral asymptotic analysis.
Nevertheless, these approaches have been only developed for un-
damped or lightly damped mechanical systems. In these cases,
most of the previously published works present techniques based
on the mesh of a real k-space following the boundary of the first
Brillouin zone for obtaining the corresponding dispersion curves
and the associated Floquet vectors. For undamped system, only
propagative or evanescent waves exist corresponding to a family
of eigensolutions purely real or imaginary. Discrimination be-
tween each class of waves is easy. If a highly damped system (K,
L, and H are complex frequency dependent) and a frequency-
dependent electrical shunt impedance are considered, the ob-
tained eigenvalue problem is not quadratic and specific numer-
ical methodology has to be implemented. Furthermore, evanes-
cent parts of propagating waves appear as the imaginary part of
ω2. It then becomes much more difficult to distinguish the prop-
agative and evanescent waves as all solution appear complex.
Another much more suitable possibility for computing damped
system is to consider the following generalized eigenvalue prob-
lem

(
K (Z)+λL(θ ,Z)−λ

2H (θ ,Z)−ω
2M
)

u(θ ,ω) = 0 (13)

In this problem, the angular frequency ω is a real parameter cor-
responding to the harmonic frequency. Wave numbers and Flo-
quet vectors are then computed. As L is skew-symmetric, the
obtained eigenvalues are quadruple collapsing into real or imag-
inary pairs when all matrices are real (i.e. for an undamped
system). In this case, a real pair of eigenvalues corresponds to
evanescent modes oriented in two opposite directions on the k-
space and imaginary values to two traveling waves propagating
in opposite direction. As previously mentioned, the real part of
k = Φk vector is restricted to stand inside the first Brillouin zone.
In the quadratic eigenvalue problem (13), nothing restricts com-
putation to only find eigenvalues satisfying this condition. For
direction vector Φ orthogonal to the lattice facelets, the periodi-
cal conditions expressed for 1D wave guide are still valid. Thus,
for undamped systems, all obtained eigenvalues are periodically
distributed in the k-space along its principal directions.

Group velocity and electric power estimation
In order to correctly decribe and qualify the properties of

this distributed control system some new quantities must be in-
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troduced.
The first one, which is considered for describing the capability of
the metacomposite for transmitting structural energy, is the wave
group velocities. They indicate how energy is transported into
the considered system and allow to distinguish the propagative
and evanescent waves. If a Bloch eigensolution is considered,
the associated group velocity vector is given by:

Cg
n = ∇kω =

〈〈S〉〉
〈〈etot〉〉

=
〈I〉
〈Etot〉

(14)

where 〈〉 is the spatial and time average, respectively, on one cell
and one period of time; S is the density of energy flow; I is the
mean intensity; and etot and Etot are the total piezomechanical
energy and its time average on a period. In this problem, we
only consider mechanical energy transportation as the electro-
static coupling is decentralized on each cell and cannot induce
spatial energy transportation.
The intensity vector I is expressed as

〈I〉=−ω

2
real

(∫
CE (ε + ikΞ)w∗dΩ

)
. (15)

As the spatiotemporal average of the system Lagrangian is null,
the total energy average is approximated by only computing the
kinetic energy average

〈Etot〉=
∫

Ω

ρww∗dV. (16)

The group velocity vectors Cg
n are computed for all wave num-

bers at each frequency. In order to focus our analysis on only
flexural modes (S and SH ones), we introduce an indicator al-
lowing to select them by computing the ratio of kinetic energy
average on out-of-plane displacement as

Indz =
Tz

T
(17)

Tz being the time-averaged kinetic energy in the out-of-plane di-
rection, and T the total kinetic energy. The characterization of
the absorbing properties of the control system rely on the quan-
tity of energy dissipated within the external circuit at each cycle.
The damped electric power is expressed as

Pel =
1
2

real
(

V 0 (iωq0)∗) (18)

RESULTS AND DISCUSSION
In this section some theoretical and experimental results are

given in order to show the effectiveness of the proposed dis-
tributed control technique. First, from the theoretical point of
view a comparison between the dispersion curves of the waveg-
uide will show how the dynamic of the waveguide is influenced
by the external electric circuits. In order to prove the consistency
of the results for the real bounded system a full-field measure-
ment will further illustrate the main features of the control sys-
tem, characterizing the reflective and absorbing properties of the
considered metacomposite.

Analysis of the dispersion properties
The propagative properties of this smart system will be ana-

lyzed comparing the dispersion diagrams, the electric power and
the group velocity of the metacomposite. Three different con-
figuration will be analyzed: open circuit, negative capacitance
with reflecting (case R) and absorbing (case A) capabilities. The
reflecting properties are increased setting the external circuit as
follows: the capacitance have a value of −62 nF and a small re-
sistance of 40 Ω. The damping effect is obtained by setting the
external capacitance at −62 nF with a bigger resistance of 400
Ω.
Figure 3 shows the dispersion curves using the propagative parts
of the wave numbers kx along (Ox) axis. This figure shows the
ability of the procedure to catch all Blochs solutions including
evanescent ones that generally do not appear in literature be-
cause of their imaginary character. In the context of structural
dynamics, including damping effects is mandatory for real-life
applications and all wave numbers become complex. By using
a suitable wave filter based on the group velocity, it is possible
to retain the only propagative solutions responsible for energy
transportation. It then becomes easy to observe branches similar
to standard S0, A0, A1, and SH waves. The corresponding group
velocities along (Ox) are presented in the same figure. It can be
immediately observed that the use of the shunt impedance leads
to a larger decrease of the group velocity of the A0 modes. The
bending waves also propagate energy with a very slow velocity
and can be considered as evanescent. Flexural energy is, also,
only transported by the A1 mode after the cutting frequency. The
propagative part of the controlled wave is strongly modified, as
illustrated in Figure 3 (red line versus black line): from two com-
plex conjugated solutions, the A0 wave changes after control to
four solutions (two complex conjugates and their opposites). It
can also be observed that a nondispersive symmetric wave is also
affected by the control, even if it was not targeted.
Another strategy for optimizing the adaptive metacomposite con-
sists in focusing on the damped power flow inside the electric
shunts. In this case, the objective is to improve the absorption
capability of the smart structure. The propagative parts of the
wave number kx along (Ox) axis appear as shown in Figure 3
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along with the corresponding group velocities along (Ox) and
the electrically damped power. The first observation is that the
optimization of the shunt impedance for improving the absorp-
tion characteristics of the system induces modifications of the
group velocities of the controlled waves, while the propagative
part of the wave numbers remain unchanged. This can be ex-
plained by a large improvement of the ratio between the real and
imaginary parts of the wave numbers, which physically corre-
sponds to the forcing of propagating effects to increase damping
effects: energy can propagate inside the periodically distributed
set of active cells for allowing electrical energy conversion, the
dissipated power is largely increased when the shunt is connected
to the patch (blue line).

Kinetic energy distribution
The modification of the internal dynamic of the waveguide

can be proved through the estimation of the kinetic energy dis-
tribution calculated integrating the measured velocity field over
the total plate’s area. In particular, observing Figure 2 we can
identify three different region that ideally separate the two ends
of the plate and the active interface.
Figure 4 presents the kinetic energy field over the whole plate’s
surface. The top shows a comparison of the kinetic energy distri-
bution among three different circuits’ configuration at the tuning
frequency of 2500 Hz. On the left, (control OFF) the kinetic en-
ergy is evenly spread over the entire plate. In the middle, the
system’s response is slightly modified using a small resistance
Rs (case R). On the contrary, as a result of increasing the value of
the resistance Rs (case A), the kinetic energy distribution of the
plate is clearly modified; the waves are confined in the portion
of the plate below the active interface. Considering higher fre-
quency values, for instance 3000 Hz, the behavior of the system
is radically modified. In case R, the vibratory energy of the plate
is confined in the region Ω1. In case A, the reflective behavior is
no longer present, and the driving control mechanism is a pure
dissipative effect that makes the kinetic energy field weaker.

CONCLUSIONS
This paper describes the analysis of wave propagation in a

periodic two-dimensional waveguide with shunted piezoelectric
patches. The coupling between the plate and this smart interface
allows the modification of its internal dynamic. The wave prop-
agation characteristics of the piezoelectric waveguide are first
predicted through the application of the Floquet-Bloch theorem.
The dispersion analysis highlights the generation of a control
band where the attenuation or the reflection of the waveguide is
increased. In particular selecting appropriately the external cir-
cuit’s parameter is possible to reduce the group velocity of the
incoming waves, that is, the active interface prevent the wave to
propagate. By increasing the resistance Rs the waveguide expe-
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FIGURE 3. Comparison of the dispersion relation (top), dissipated
electric power (middle) and group velocity (bottom) of the smart waveg-
uide. Three cases have been considered: OC (black markers), RCneg case
R (red markers) and RCneg case A (blue markers).

riences an increase of the damping over a broad frequency band.
Experimental evidence of the internal controlling behavior of the
waveguide is then provided through measurements of the out-of-
plane velocity of the plate. The experimental results effectively
confirm the numerical predictions.
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