
Grammar-Based Testing using
Realistic Domains in PHP

Ivan Enderlin, Frédéric Dadeau, Alain Giorgetti and Fabrice Bouquet
Institut FEMTO-ST UMR CNRS 6174 - University of Franche-Comté - INRIA CASSIS Project

16 route de Gray - 25030 Besançon cedex, France
Email: {ivan.enderlin,frederic.dadeau,alain.giorgetti,fabrice.bouquet}@femto-st.fr

Abstract—This paper presents an integration of grammar-
based testing in a framework for contract-based testing in PHP.
It relies on the notion of realistic domains, that make it possible
to assign domains to data, by means of contract assertions
written inside the source code of a PHP application. Then a test
generation tool uses the contracts to generate relevant test data
for unit testing. Finally a runtime assertion checker validates the
assertions inside the contracts (among others membership of data
to realistic domains) to establish the conformance verdict. We
introduce here the possibility to generate and validate complex
textual data specified by a grammar written in a dedicated
grammar description language. This approach is tool-supported
and experimented on the validation of web applications.

Keywords-Grammar-based testing, contracts, realistic domains,
PHP, random generation, rule coverage.

I. INTRODUCTION

Model-based testing [1] is a technique according to which a
(preferably formal) model of the System Under Test (SUT) is
employed in order to validate it. In this context, the model can
be of two uses. First, it can be used to compute the test cases
by providing an exploitable abstraction of the SUT from which
test data or even test sequences can be computed. Second, the
model can provide the test oracle, namely the expected result
against which the execution of the SUT is checked. Model-
based testing makes it possible to automate the test generation.
It is implemented in many tools, based on various modelling
languages or notations [2]. In addition, model-based testing is
also an efficient approach for testing software evolution and
regression, mainly by facilitating the maintainability of the test
repository [3].

Even though model-based testing is very convenient in
theory, its application is often restricted to critical and/or
embedded software that require a high level of validation [4].
Several causes can be identified. First, the design of the
formal model represents an additional cost, and is sometimes
more expensive than the manual validation cost. Second, the
design of the model is a complex task that requires modelling
skills and understanding of formal methods, thus necessitating
dedicated skilled engineers for being put into practice. Finally,
as the model represents an abstraction of the SUT, the distance
between the model and the considered system may vary and
thus an additional step of test concretization is often required
to translate abstract test cases (computed from the model) into
executable test scripts (using the API provided by the SUT and
the concrete data that it operates).

Contract-based testing [5] has been introduced in part to
address these limitations. It is based on the notion of Design
by Contract (DbC) [6] introduced by Meyer with Eiffel [7].
A contract is a way to embed a piece of model inside the
code of a program. It mainly consists of two kinds of simple
modelling elements: invariants describe properties that should
hold at each step of the execution, pre- and postconditions
respectively represent the conditions that have to hold for an
operation/method to be invoked, and the conditions that have
to hold after the execution of the operation/method.

Various contract languages extend programming languages,
such as JML for Java [8], ACSL for C [9], Spec# for
C# [10]. The advantages of contracts are numerous: they
make it possible to introduce formal properties inside the code
of a program, using annotations. Besides, the properties are
expressed in the same formalism as the code, without any
gap due to the abstraction level. Moreover, properties can be
exploited for (unit) testing. Indeed, the information contained
in invariants and preconditions can be used to generate test
data. In addition, these assertions can be checked at run time
(preconditions and invariants are checked at the beginning of
the method, postconditions and invariants at their end) and
thus provide a (partial) test oracle for free. The test succeeds
if no assertion is violated, and fails otherwise.

In a previous work, we have introduced Praspel, a tool-
supported specification language for contract-based testing
in PHP [11]. Praspel extends contracts with the notion of
realistic domain, which makes it possible to assign a domain of
values to data (class attributes or method parameters). Realistic
domains present two useful features for testing: predicability,
which is the possibility to check that a data belongs to its
associated domain, and samplability, which is the possibility
to automatically generate a data from a realistic domain. A
library for predefined basic realistic domains (mainly scalar
domains, strings, arrays) is already available along with a
test environment.1 It is to be noted that one of the main
arguments against annotation languages is that they require the
source code of the application to be employed, which prevents
them from being used in a black-box approach. Nevertheless,
applying contract-based testing to interpreted languages, such
as PHP, makes full sense, since this limitation does not apply.

Validating PHP web applications often involves the gen-

1Freely available at http://hoa-project.net.

eration of structured textual test data (e.g. specific pieces of
HTML code produced by a web application, email addresses,
SQL or HTTP queries, or more complex messages). To facili-
tate the use of Praspel in this context, we provide a grammar-
based testing [12] mechanism that makes it possible to express
and validate structured textual data.

The contributions of this paper are twofold. First, we
introduce a grammar description language to be use with
PHP, named PP (for PHP Parser). This language makes it
possible to describe tokens and grammar rules, that are then
exploited by a dedicated PHP interpreter to validate a text
w.r.t. the expected syntax given by the grammar. Second, we
provide grammar-based testing mechanisms that automatically
generate instances of text using various data generators. These
two contributions are gathered into two new realistic domains
that can be used in Praspel annotations in a PHP program: a
realistic domain for regular expressions and a realistic domain
for grammars, parameterized by a grammar description file.

The paper is organized as follows. Section II explains the
notion of realistic domain and presents its implementation in
Praspel for PHP. Then, the PP language and its semantics are
defined in Section III. Section IV proposes data generation
algorithms from grammars. Then, we report in Section V
some experiments aiming at validating our tool and showing
its usefulness and efficiency in practice. Related works are
presented in Section VI. Finally, Section VII concludes and
presents future works.

II. REALISTIC DOMAINS AND PRASPEL

This section presents the notion of realistic domain and its
application to PHP programs [11]. Realistic domains are de-
signed for test generation purposes. They specify which values
can be assigned to a data in a given program. Realistic domains
are well-suited to PHP, since this language is dynamically
typed (i.e. no types are assigned to data) and realistic domains
thus introduce a specification of data types that are mandatory
for test data generation. We first introduce general features of
realistic domains, and then present their application to PHP.

A. Features of Realistic Domains

Realistic domains can represent all kinds of data; they
are intended to specify relevant data domains for a specific
context. Realistic domains are more subtle than usual datatypes
(integer, string, array, etc.) and refine these latter. For example,
if a realistic domain specifies an email address, we can
validate and generate strings representing syntactically correct
email addresses; this can be done using a regular expression
that matches email addresses. Realistic domains display two
necessary features for the validation and generation of data
values, which are now described and illustrated.

1) Predicability: The first feature of a realistic domain is
to carry a characteristic predicate. This predicate makes it
possible to check if a value belongs to the possible set of
values described by the realistic domain.

class EmailAddress extends String {

public function predicate($q) {
// regular expression for email addresses
// see. RFC 2822, 3.4.1. address specs.
$regexp = ’. . .’;

// it is a string.
return false === parent::predicate($q)

// it is an email address.
&& 0 !== preg_matches($regexp, $q);

}

public function sample() {
// string of authorized chars
$chars = ’ABCDEFGHIJKL. . .’;
// array of possible domain extensions
$doms = array(’net’,’org’,’edu’,’com’);
$q = ’’;
$nbparts = mt_rand(2, 4);

for($i = 0; $i < $nbparts; ++$i) {
if($i > 0)
// add separator dot or arobase
$q .= ($i == $nbparts - 1) ? ’@’ : ’.’;

// generate firstname or name or domain name
$len = rand(1,10);

for($j=0; $j < $len; ++$j) {
$index = rand(0, strlen($chars) - 1);
$q .= $chars[$index];

}
}

$q .= ’.’ . $doms[rand(0, count($doms) - 1)];
return $q;

}
}

Fig. 1. PHP code of a realistic domain for email addresses

2) Samplability: The second feature of a realistic domain
is to propose a value generator, called the sampler, that makes
it possible to generate values in the realistic domain. The data
value generator can be of many kinds: a random generator, a
walk in the domain, an incrementation of values, etc.

B. Realistic Domains in PHP

In PHP, we have implemented realistic domains as classes
providing at least two methods, corresponding to the two
features of realistic domains. The first method is named
predicate($q) and takes as input a value $q: it returns
a boolean indicating the membership of the value to the
realistic domain. The second method is named sample()
and generates values that belong to the realistic domain. An
example is the class EmailAddress for email addresses
reproduced in Figure 1.

Our implementation of realistic domains in PHP exploits
the PHP object programming paradigm and takes benefit from
the following two principles.

1) Inheritance: PHP realistic domains can inherit from
each other. A realistic domain child inherits the two features
of its parent, namely predicability and samplability, and is
able to redefine them. For instance the class EmailAddress
is a specialization of the class String. Its predicate first
checks that the parameter $q satisfies the predicate of the
parent realistic domain String. Consequently, all the realistic
domains constitute an hierarchical universe.

2) Parametrization: Realistic domains may have parame-
ters. They can receive arguments of many kinds. In particular,
it is possible to use realistic domains as arguments of realistic
domains. This notion is very important for the generation of
recursive structures like arrays, objects, graphs, automata, etc.

Example 1 (Realistic domains with simple arguments).
The realistic domain string(boundinteger(4, 12),
0x20, 0x7E) admits an integer (or subclass of integer)
and two integers (that represent two Unicode code-points)
as arguments. The realistic domain boundinteger(X,Y)
contains all the integers between X and Y . The realistic
domain string(L, X, Y) is intended to contain all the
strings of length L built of characters from X to Y code-
points.

C. Praspel and Contract-Based Testing in PHP

Praspel means PHP Realistic Annotation and SPEcification
Language. It is a language and a framework for contract-based
testing in PHP.

1) Praspel for Expressing Contracts: Praspel annotations
are written inside comments in the source code. Invariants doc-
ument classes and pre- and postconditions document methods.

As PHP does not provide a type system, Praspel contracts
may contain typing information, assigning realistic domains to
data (class attributes or method parameters). The construction
i: t1(. . .) or . . . or tn(. . .) associates at least one realistic
domain (among t1(. . .), . . ., tn(. . .)) to an identifier i.

Example 2 (Realistic domain assignment). Consider the
EmailAddress realistic domain given in Figure 1. The assign-
ment of this realistic domain to a data mail is done using
the following syntax: mail: emailaddress().

Praspel provides a set of predefined realistic domains,
with some of them corresponding to scalar types (integer,
float), boolean) and arrays representing homogeneous or
heterogeneous indexed collections.

Contractual assertions are made of realistic domain as-
signments, possibly completed with additional predicates,

class C {

/** @invariant I1 and . . . and Ih*/

/**
* @requires R1 and . . . and Rn;
* @ensures E1 and . . . and Ej;
* @throwable T1, . . ., Tt;
* @behavior α {
* @requires A1 and . . . and Ak;
* @ensures Ej+1 and . . . and Em;
* @throwable Tt+1, . . ., Tl;
* }
*/
function foo ($x1. . .) { body }
. . .

}
Fig. 2. Syntax of contracts in Praspel

expressed in PHP using the \pred(predicate in PHP)
construct. Its use in test data generation will be shown in
Section II-C2.

The general form of Praspel annotations is shown in Fig-
ure 2. In this figure, I1, . . . , Ih represent invariant clauses,
assumed to be satisfied at the beginning and at the end of
each method invocation. R1, . . . , Rn and A1, . . . , Ak represent
precondition clauses, that have to be satisfied at the invocation
of the foo method. E1, . . . , Em designate postconditions that
have to be established when method foo terminates without
throwing an exception. Finally, T1, . . . , Tl designate the set of
exceptions that can be thrown by method foo. It is possible to
describe behaviors (such as α) in order to describe a specific
behavior, strengthening the global behavior of the method.

In postconditions, Praspel provides two additional con-
structs, namely \result and \old(e), which respectively
designate the value returned by the method, and the value of
expression e at the pre-state of the method invocation.

2) Praspel Test Framework: Test generation in Praspel is
decomposed into two steps. First, a test generator computes
test data from contracts. Second, a dedicated test execution
framework runs the test cases (i.e. invokes the methods with
the computed test data, and checks the assertions at run time)
so as to establish the test verdict.
Unit Test Data Generation. For now, the unit test generator
of Praspel is a random generator. It uses the sample methods
of the realistic domains to elaborate a test data from uniformly
produced basic data (integers or floats). This random generator
exploits the informations contained in the precondition. If
several realistic domains are available for a data, then the
considered realistic domain is first chosen at random. The
additional predicates which are declared using the \pred
construct in the precondition are supported by repeatedly
generating test data until all predicates are satisfied.
Test Execution and Verdict Assignment.

The test verdict assignment is based on the runtime asser-
tion checking of the contracts specified in the source code.
When the verification of an assertion fails, a specific error is
logged. The runtime assertion checking errors (a.k.a. Praspel
failures) can be of five kinds: (i) precondition failure, when
a precondition is not satisfied at the invocation of a method,
(ii) postcondition failure, when a postcondition is not satisfied
at the end of the execution of the method, (iii) throwable
failure, when the method execution throws an unexpected
exception, (iv) invariant failure, when the class invariant is
broken, or (v) internal precondition failure, which corresponds
to the propagation of the precondition failure at the upper level.
The runtime assertion checking is performed by instrumenting
the initial PHP code with additional code in the methods.

Test cases are generated and executed online: the random
test generator produces test data and the instrumented version
of the initial PHP file checks the conformance of the code
w.r.t. specifications for the given inputs. The test succeeds if
no Praspel failure is detected. Otherwise, it fails, and a log
indicates where the failure has been detected.

class EmailAddressRegex extends Regex {

public function construct() {
// regular expression for matching an email address
// (inspired from RFC 2822)
$r = ’[a-z0-9!#\$%&\’*\+/=\?\ˆ_‘\{\|\}˜\-]+’ .

’(\.[a-z0-9!#\$%&\’*\+/=\?\ˆ_‘\{\|\}˜\-]+)*@’ .
’([a-z0-9]([a-z0-9-]*[a-z0-9])?\.)+’ .
’[a-z0-9]([a-z0-9-]*[a-z0-9])?’;

$this[’regex’] = $r;
}

}

Fig. 3. EmailAddress as a regular expression

D. Two New Realistic Domains

We now introduce two new realistic domains for grammar-
based testing, named regex and grammar, which are re-
spectively based on a regular expression and a context-free
grammar.

1) regex Domain: Regular expressions make it possible
to describe and match simple textual data, such as lexical units.
The new realistic domain regex natively expresses regular
expressions as an extension of the realistic domain for strings.

This realistic domain can be reused and extended easily to
define new realistic domains, as illustrated in Figure 3. This
figure shows the example of a realistic domain representing
email addresses introduced in Figure 1, but it now relies on the
regex realistic domain. To achieve that, its constructor only
has to pass the regular expression of the email address to its
parent constructor. Indeed, the realistic domain regex is pa-
rameterized by a string which describes the regular expression
it is supposed to match/generate, in the classical PHP syntax
for Perl-Compatible Regular Expression (PCRE) [13]. The
methods sample and predicate can simply be omitted
as they are automatically inherited from the parent class.

The realistic domain regex presents a dedicated sampler
which generates strings matching its regular expression. This
sampler uses an isotropic random generator which works as
follows: the selection is uniform for each range of values,
between all choice branches, and within the bounds of each
iteration.

Notice that the regex realistic domain can also be used
directly in a contract, for example:
// @invariant identifier : regex(’$[a-zA-Z][a-zA-Z0-9]*’);

Regular expressions are used to describe lexical units in
parsers. The realistic domain regex is thus useful in the
grammar-based testing process as it will be in charge of
generating/validating token values.

2) grammar Domain: The grammar realistic domain also
extends the string realistic domain and can describe more
complex textual data. It is parameterized by a reference to a
grammar description file which provides the grammar tokens
and rules, as explained in the next section.

III. GRAMMAR DESCRIPTION LANGUAGE

Grammars are aimed to represent, and therefore validate at
least, complex textual data. This makes grammars good can-
didates to be a basis for a realistic domain. We first focus on

one of the realistic domains feature, namely the predicability,
and present a simple grammar description language and its
interpretation using a dedicated compiler compiler.

A. Syntax

The PHP Parser language (PP for short) aims to express top-
down context-free grammars [14] in a simple way. The syntax
is mainly inspired from JavaCC [15] with addition of some
new constructions. The objective of the parsing is to produce
an abstract syntax tree (AST) for syntactically correct data.

A token declaration has the form:

%token ns_source:name value -> ns_dest

where name represents its name, value its value as a regular
expression, and ns_source and ns_dest are optional
namespace names. Regular expressions are written using the
PCRE standard syntax, which is quite expressive and widely
used and supported (in PHP, Javascript, Perl, Python, Apache,
KDE, etc.). Namespaces intend to represent disjoint subsets of
tokens for the parsing process. A %skip declaration is similar
to a %token declaration except that it represents a token to
skip.

Figure 4 shows the example of a simplified grammar of
XML documents. It starts by a declaration of tokens, using
namespaces to identify whether the parsing is inside a tag de-
scription or not. The rule xml describes a XML document as a
sequence of tags, each tag possibly having attributes and being
either atomic (e.g. <aTag />) or composite (i.e. containing
other tags). A rule name (as shown in Figure 4 with xml, tag,
attribute etc.) has symbol : with a newline as a suffix,
immediately followed by a rule declaration, which is prefixed
by some blank characters (spaces or tabs). Tokens can be
referenced using two constructs. A construction ::token::
means that the token will not be kept in the resulting abstract
syntax tree, it will only be consumed, contrary to the construc-
tion <token>. A construction rule() represents a call to

%skip space \s
%token lt < -> in_tag
%token cdata [ˆ<]*

%skip in_tag:space \s
%token in_tag:slash /
%token in_tag:tagname [ˆ>]+
%token in_tag:gt > -> default

xml:
tag()+

tag:
::lt:: <tagname[0]>
(
::slash:: ::gt::

| attributes()* ::gt:: (text() | tag())*
::lt:: ::slash:: <tagname[0]> ::gt::

)

attribute:
<name> (::equals:: <value>)?

text:
<cdata>

Fig. 4. Simple grammar of XML documents

the mentioned rule. Repetition operators are classical: {x, y}
to repeat a pattern x to y times, ? is identical to {0, 1}, + to
{1, }, ? to {0, }. Disjunctions are represented by symbol | and
grouping symbols are (and). A construction #node allows
to identify a node in the abstract syntax tree.

In addition, if a token name is followed by [i], with i ≥ 0,
it defines a unification. A unification for tokens implies that
all token[i] with the same i have the same value locally
to a rule. Notice the presence in Figure 4 of a unification of
tokens, namely tagname[0], indicating that the opening and
closing tag names should be the same.

B. Compiler Compiler

In addition to the PP language, we propose an associated
LL(∗) compiler compiler which aims at exploiting the gram-
mar description to produce a syntactic analyzer as a PHP
library.

When the compiler parses data, it starts by tokenizing the
text to produce a sequence of basic tokens. Grammar rules
are compiled into PHP objects describing the nested structure
of the rules. Then the compiler applies the rules on tokens,
by visiting the objects implementing the grammar rules. This
compiling process handles a backtracking mechanism that,
when a unexpected token is met, rewinds to the previous
choicepoint and resumes the exploration from there.

An AST can be built during the parsing and can be
exploited if this phase succeeds. The AST accepts a visitor
design pattern [16], which allows user to develop and apply
processing, such as additional verification validating structural
constraints that could not be expressed using the grammar.

C. Use of PP in the grammar Realistic Domain

A grammar and its associated classical compiler technique
can ensure the predicability feature of realistic domains, by
checking that a data is correctly structured accordingly to the
grammar. We now briefly show how the PP language is used in
the grammar realistic domain. This domain is parameterized
by the name of a grammar description file written in PP syntax.
A typical example of use is:

//@ pre myEmail : grammar(’emailAddresses.pp’);

where the content of the file emailAddresses.pp is given
in Figure 5.

IV. DATA GENERATION

We now describe the use of a grammar for the generation
of complex structural data, ensuring the samplability feature
of realistic domains.

We propose for the grammar realistic domain three data
generation algorithms: a uniform random generator, a bounded
exhaustive test generator, and a rule coverage based test gener-
ator. These algorithms aim at producing sequences of regular
expressions characterizing set of tokens. Such sequences can
be bounded by a (user-defined) maximal number of tokens
they may contain. Finally, the concrete test data is produced
by exploring each token sequence and applying the sampler of
the regex realistic domain, described in Section II-D, except

%skip space \s
%token hyphen \-
%token at @
%token dot \.
%token alnum [a-z0-9]
%token extended [!#\$%&’*\+/=\?\ˆ_‘\{\|\}˜]

root:
name() ::at:: host()

name:
(<alnum> | <extended> | <hyphen>)+
(<dot> (<alnum> | <extended> | <hyphen>)+)*

host:
<alnum> (<hyphen>? <alnum>)* <dot>
<alnum> (<hyphen>? <alnum>)*

Fig. 5. PP Grammar for Email Addresses

for unified tokens whose values are computed for the first
occurrence, and reused in the subsequent occurrences within
a given rule.

Notice that we define these strategies for deterministic
grammars. In case of non-deterministic grammars, these al-
gorithms have to be adapted to take into account that a given
test data can be produced by two distinct derivations.

A. Uniform Random Generation

With no more precise sampling criteria than a grammar
and an expected size for the samples, random generation can
be retained as a generation strategy and one can expect the
choice to be unbiased, with a uniform probability distribution
among the possible samples. For grammar-based realistic
domains, the samples are paths in rules of a grammar. The
recursive method [17] ensures uniformity by using recursion
and counting all possible sub-structures at each node.

To each construction of a grammar rule, a counting function
ψ associates its number of sub-structures of size n, as follows:

ψ(n, e) = δ1
n if e is a token

ψ(n, e1 · . . . · ek) =
∑
γ ∈Γnk

k∏
α=1

ψ(γα, eα)

ψ(n, e1 | . . . | ek) =

k∑
α= 1

ψ(n, eα)

ψ(n, e{x,y}) =

y∑
α= x

∑
γ ∈Γnα

α∏
β= 1

ψ(γβ , e)

with 0 ≤ x ≤ y

In the first formula δji is the Kronecker’s symbol, defined as 1
if i = j and 0 otherwise. Γnk denotes the set of k-uples whose
sum of elements is n. For example, Γ2

3 = { (2, 0, 0), (1, 1, 0),
(1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}. For any k-uple γ and
any α in {1, . . . , k}, γα denotes the α-th element of γ. For
each operator:
• concatenation · sums the distribution of n amongst all

sub-constructions,
• alternation | sums sub-constructions of size n,
• a quantification {x, y} is an alternation of concatenations.

To explore a rule, we use weights representing numbers of
sub-structures from each sub-rule. Then, we choose uniformly
and at random a number to select the next sub-rule to explore
according to its weight.

B. Bounded Exhaustive Generation

Bounded exhaustive testing consists of generating all pos-
sible data up to a given size. Some experiences [18], [19]
show that generating huge sets of test data in this way
can be effective and provide a useful tool for validation, to
complete other generation mechanisms. We have implemented
an algorithm for the exhaustive generation of all the text data
of size n specified by a PP grammar. The algorithm behaves
as an iterator on all the elements of the multiset (set with
repetition) constructed by the function β specified as follows
on grammar rules in Chomsky normal form,2 for any positive
size n.

β(1, e) = {sample(e)} if e is a token (1)
β(n, e) = {} if n 6= 1

β(n, e1 | e2) = β(n, e1) ∪ β(n, e2)

β(n, e1 · e2) =

n−1⋃
p= 1

β(p, e1) · β(n− p, e2) (2)

β(n, e{x,y}) =

y⋃
p= x

β(n, ep)

β(n, e?) =

n⋃
p= 0

β(n, ep)

β(n, e+) = β(n, e · e?)
β(n, e0) = {}
β(n, e1) = β(n, e)

β(n, ep) = β(n, e · ep−1) if p ≥ 2

In Formula (1) the function sample randomly generates a
token value from a given token. In the other formulas, ∪ and⋃

correspond to multiset union. The concatenation in the
right-hand side of (2) is the standard generalization of word
concatenation to multisets of words.

C. Coverage-Based Generation

The last algorithm that we propose for grammar-based
testing is an improvement of the previous one, and aims at
covering the different rules. The objective is to generate one
or more text data that activate all the branches of the grammar
rules. Contrary to the previous approaches, we do not aim at
producing a data of a given size or up to a given size, but we
still consider a maximal length for the considered data that
aims at bounding the test data generation, and thus, ensure
the termination of the algorithm.

The algorithm works by exploring the rules in a top-
down manner. The basic idea is to explore rules or branches

2The function β is specified here only on normalized rules (for sake of
simplicity), but the algorithm is implemented on any grammar rule.

by prioritizing rules that have not already been covered or
explored.

The algorithm implements a data generation function φ that
takes as input a prefix p made of a sequence of tokens already
produced, recursively applied to the different constructs of the
grammar. Function φ is defined as follows:

φ(p, e) = [sample(e)] when e is a token
φ(p, e1 · e2) = φ(φ(p, e1), e2)

φ(p, e1 | . . . | ek) = φ(p, e1) ⊕ . . . ⊕ φ(p, ek)

φ(p, e?) = [] ⊕ φ(p, e)

φ(p, e?) = [] ⊕
∞⊕
i= 1

φ(p, e · . . . · e︸ ︷︷ ︸
i

)

φ(p, e+) =

∞⊕
i= 1

φ(p, e · . . . · e︸ ︷︷ ︸
i

)

φ(p, e{x,y}) =

y⊕
i= x

φ(p, e · . . . · e︸ ︷︷ ︸
i

)

In the above definitions, [] is the empty token sequence and
symbol ⊕ designates a choice between recursive calls of the
function. In the second algorithm, all the branches of these
choices were systematically covered. In the present case, a
random choice is made between sub-rules that have not been
already covered. We consider that a rule has been entirely
covered if and only if its sub-rules have all been covered. A
token is said to be covered if it has been successfully used in
a data generation. Similarly as the first two approaches, the
generation of a token is made at random.

To avoid combinatorial explosion and guarantee the termina-
tion of the algorithm, a boundary test generation heuristics [1]
is introduced to bound the number of iterations. Concretely,
? iterations are bounded to 0, 1 and 2 iterations, + iterations
are unfolded 1 or 2 times, and {x, y} iterations are unfolded
x, x+ 1, y − 1 and y times.

In order to introduce diversity in the produced data, a
random choice is made amongst the remaining sub-rules of
a choice-point to cover. This improvement guarantees that
two consecutive executions of the algorithm will not produce
the same data (unless the grammar is not permissive). When
all sub-rules of a choice-point have already been explored
(successfully or partly, when they exist in the call stack), the
algorithm chooses amongst the existing derivation so as to
easily cover the rule. Unless the grammar is left-recursive,
this process always terminates.

This algorithm improves the previous ones in two ways.
Firstly, it makes it possible to easily generate longer test data in
very short time, and it guarantees the coverage of all the rules.
Secondly, as its execution is fast, it can be used repeatedly to
produce a large variety of test data.

V. EXPERIMENTATIONS

We report here two experiments. The first one was designed
to validate our approach by testing that the PHP parser and
test data generator work correctly (i.e. they do not throw any

Grammar / N 1 2 3 4 5 6 7 8 9 10 11 12 13 14

JSON 4 0 6 4 30 20 180 128 1,156 848 8,060 6,256 59,596 TO
PCRE 1 4 9 36 117 420 1,525 5,608 21,021 79,528 304,201 1,173,288 4,559,049 TO

Fig. 6. Number of structures of size N for each grammar.

error and must be correct; in addition, the parser should accept
valid data and reject invalid data). This experiment is based
on the self-validation of the tools we developed. The second
experiment represents a simple use of the Praspel approach
for validating web applications.

A. Self-Validation of the Grammar-Based Testing Approach

Our first experiment aimed at validating our grammar-based
testing approach, so as to ensure that: (i) the PP compiler
works correctly (it accepts correct data and rejects incorrect
data), and (ii) the data generator works correctly (it does not
generate incorrect data w.r.t. the grammar).

For this purpose we worked in two steps. First, we gen-
erated sample data and validated the data generator with
the PP parser. To achieve that, we considered a set of
grammars that exercise the different constructs available in
the PP language. Second, we validated the PP parser by
generating sample data from a given grammar and parsing the
resulting data with different parsers. The goal is to check that:
(i) correct data are accepted by the parsers, (ii) incorrect data
are refused by the parsers, (iii) all considered parsers agree
on the validity of the data.

We consider a grammar for JavaScript Object Notation
(JSON) [20] and a (simplified) grammar for PCRE. Their
choice is motivated by the targeted domain of Praspel, namely
web applications, and, most importantly, because these gram-
mars were natively implemented inside web-oriented lan-
guages, such as PHP, JavaScript or Java, which provide an
API to check the validity of a data.

Figure 6 gives an overview of the size of the grammar in
terms of number of data of a given size that can be produced.
In this figure, TO means “Time Out” and indicates that the
count of the number of structures took more than 10 minutes.

We first experimented on the JSON grammar to produce
JSON object descriptions. These test data were produced using
the bounded exhaustive and coverage-based testing algorithms.
Due to the complexity of nested rules, the BET algorithm can
not produce data of reasonable size that covers all the rules
(and thus generate complex objects) although we generated
all objects descriptions of size ≤ 9 in reasonable times (a few
minutes). The test generator based on rule-coverage produced
less test cases, but it led to the creation of complex object
descriptions of length up to 32 tokens. It is interesting to notice
that the coverage of all rules is realized within a small number
of test data, here an average of 3 tests was sufficient to achieve
the coverage of rules of the JSON grammar. We also noticed
that this algorithm behaves as the Chinese postman algorithm
in the domain of FSM testing, as it tends to produce one
long test data that covers a maximum amount of rules, and
additional smaller test data, that aim at covering the few rules
that were not covered previously. Also, contrary to the previous

algorithms which are relatively slow (the uniform random
generator needs a exponential pre-computation phase, and the
bounded exhaustive generator is also highly combinatorial)
this algorithm is able to produce complex data in a few
milliseconds. Thus, we used it repeatedly to produce huge sets
of test data whose variety was ensured by random choices
made in the rule selections, as explained in Section IV-C.
During the evaluation, we found a bug in our data generator,
that was detected by the PP parser. The bug was due to an
incorrect management of escaped characters which caused
invalid data to be produced from a correct set of rules.

To evaluate our compiler compiler, we re-injected the pro-
duced data inside the compiler. We reported no bugs in this
phase, meaning that all (correct) data produced by our data
generators were correctly parsed by our parser. In addition, we
validated the generated data using the Gecko (from Mozilla)
and PHP libraries for JSON. All the produced data were
correctly parsed by these libraries. To further evaluate the PP
parser, we introduced faults in grammar rules, so as to gen-
erate possibly falsified data. We considered simple grammar
mutation operators [21], such as: (i) replacement of iteration
operators (+ becomes ∗, change of the minimal/maximal
iteration bound), (ii) removal of a token/sub-rule in a rule,
(iii) addition of a new choice pointing to an existing rules.
We then checked if the produced data were accepted/rejected
by our parser, and compared this verdict with the other two
JSON validators we considered. During this evaluation, we
also found a bug in our PP parser which considered incorrect
data as valid, due to an incorrect management of backtracking.

After correcting the bug, we performed the same kinds of
experiments with the PCRE syntax without discovering new
bugs, validating our data generator and our PP parser.

B. Praspel in Practice

We also designed an experiment of the use of Praspel for the
validation of web applications. We targeted student projects
in the “Web Language” classes, in which student learn the
PHP language and use it to generate the HTML code of an
web application. In a first exercise, the students had to check
data sent through a form including email addresses. We used
the email address realistic domains introduced in the paper to
generate input data for their function checking the validity of
email addresses. Although we did not find any error in their
validation function, we suspected that these functions were
indeed too weak and would accept incorrect email addresses
(e.g. displaying two @ symbols). To expose them, we decided
to use similar mutations in the email addresses grammar to
generate invalid email addresses, and we compared the verdict
of their function with the verdict of our parser exploiting the
initial (correct) grammar.

In a second exercise, students had to generate pieces of
HTML code (to be included later into a more complete
web page). The system under test is a function, for which
we retrieved 7 versions made by different students. This
function aims at generating form inputs for defining a date by
means of three combo-boxes (<select> tag) respectively
representing a day, a month, and a year. The inputs of the
function are 3 integers representing the default value for each
of these fields. The informal specification of the function is
the following:
• The code produced consists of three combo-boxes in a

row.
• The HTML code produced has to be protected (all accent

characters have to be replaced by their corresponding
HTML entities).

• Days range from 1 to 31, months range from 1 to 12 and
years range from 2011 to 1911.

• Exactly one option has to be selected by default.
We designed several conformance relationships based on

different levels of granularity.
At the first level, we checked that the code was well-

structured. To achieve that, we used a simple grammar of XML
structures, given in Figure 4, verifying that all opened tags are
properly closed. All students codes passed this test.

At the second level, we checked that the generated HTML
code had the specified requirements: three <select> tags,
with the correct syntax. To achieve that, we designed a second
simple grammar of the considered subset of HTML. Four
student codes did not pass this test.

Finally, at the third level, we added a dedicated visitor which
was in charge of checking the content of the generated code:
values of the options inside the combo-boxes, existence of
exactly one option with the selected attribute. Only two of
the remaining student codes passed the test.

Apart from showing us that only two out of seven stu-
dents are able to follow simple specifications, this experiment
showed that Praspel was also very convenient for testing.
Besides, the grammar-based testing feature was useful for
specifying the expected format of the code produced in web
applications. In addition, the flexibility provided by the visitor
mechanism made it possible to easily validate more complex
texts, by checking structural constraints that could not be
embedded inside the grammar description.

VI. RELATED WORKS

Various works consider Design-by-Contract for unit test
generation [22], [23], [24]. Our approach is inspired by the
numerous works on JML [8]. Especially, our test verdict as-
signment process relies on runtime assertion checking, which
is also considered in JMLUnit [22], although the semantics
on exception handling differs. Recently, JSConTest [24] uses
contract-driven testing for Javascript. We share the idea of
adding types to weakly typed scripting languages (Javascript
vs PHP). Nevertheless our approach differs, by considering
flexible contracts, with type inheritance, whereas JSConTest
only considers basic typing informations on the function

profile and additional functions that require to be user-defined.
Thanks to a more expressive specification language, Praspel
performs more general runtime assertion checks. Praspel
presents some similarities with Eiffel’s types, especially re-
garding inheritance between realistic domains. Nevertheless,
the two properties of predicability and samplability displayed
by realistic domains do not exist in Eiffel. Moreover, Praspel
adds clauses that Eiffel contracts do not support, as @thro-
wable and @behavior, which are inspired from JML.
Also for JML, Korat [25] uses a user-defined boolean Java
function that defines a valid data structure to be used as input
for unit testing. A constraint solving approach is then used
to generate data values satisfying the constraints given by
this function, without producing isomorphic data structures
(such as trees). Our approach uses a similar way to define
acceptable data (the predicate feature of realistic domains).
Contrary to Korat, which automates the test data generation,
our approach also requires the user to provide a dedicated
function that generates data. Nevertheless, our realistic do-
mains are reusable, and Praspel provides a set of basic realistic
domains that can be used for designing other realistic domains.
Java PathFinder [26] uses a model-checking approach to build
complex data structures using method invocations. Although
this technique can be assimilated to an automation of our
realistic domain samplers, its application implies an exhausive
exploration of a system state space. Recently, the UDITA
language [27] makes it possible to combine the last two
approaches, by providing a test generation language and a
method to generate complex test data efficiently. UDITA
is an extension of Java, including non-deterministic choices
and assumptions, and the possibility for the users to control
the patterns employed in the generated structures. UDITA
combines generator- and filter-based approaches (respectively
similar to the sampler and characteristic predicate of a realistic
domain).

In the domain of web application testing, the Apollo [28]
tool makes it possible to generate test data for PHP appli-
cations by code analysis. The tests mainly aim at detect-
ing malformed HTML code, checked by a common HTML
validator. Our approach goes further as illustrated by the
experimentation, as it makes it possible to only validate
a piece of HTML code (produced by a Praspel-annotated
function/method), and, moreover, it is possible to express and
check structural constraints on the resulting HTML code. On
the other hand, the test data generation technique proposed
by Apollo is of interest and we are now investigating similar
techniques in our test data generators.

Finally, the domain of grammar-based testing has been
widely covered in the literature, and applied to many applica-
tion domains especially related to security testing [30], [29].
One of the most experienced grammar-based test generator
is yagg [31], based on the yacc syntax, which implements a
bounded exhaustive testing approach. Like us, Geno [32] aims
at providing user-defined approximations, by means of addi-
tional annotations in the grammar (e.g. for bounding the depth
of recursion), that reduce the combinatorial explosion while

preserving some exhaustiveness in the resulting test data. Sim-
ilarly, YouGen [33] also provides an annotation mechanism
based on tags introduced in the grammar to bound the number
of derivations during the generation process, along with pair-
wise reductions. Our work on uniform random generation and
bounded exhaustive test generation applies classical techniques
(see Flajolet’s [17] and Howden’s work [34] respectively).
Our rule coverage technique differs by proposing systematic
heuristics to avoid combinatorial explosion. Although such
a technique, when used as a test suite reduction criterion,
has been pointed out as less effective in fault detection [35],
we believe that its use as a test generation criterion may
provide an interesting trade-off between exhaustiveness and
computational efficiency.

VII. CONCLUSION AND FUTURE WORKS

We have presented in this paper the integration of a
grammar-based test generation approach inside a contract-
based testing framework for PHP, named Praspel. This ap-
proach relies on the notion of realistic domain, assigned to a
data by contractual assertions written inside the source code
of PHP applications. The test generation framework then uses
the contracts to generate relevant test data for unit testing.
In addition, the membership of a data to a realistic domain,
and more generally the assertions inside the contracts, are
checked at run-time so as to establish the conformance verdict.
Realistic domains thus provide two testing-oriented features,
namely predicability (used for runtime assertion checking) and
samplability (used for test data generation). In this context, our
grammar-based testing approach relies on a grammar descrip-
tion, that makes it possible to describe complex textual data.
We have introduced here a parser for PHP which implements
the predicability feature of realistic domains, and a random
data generator, also based on a grammar description, which
is used as a sampler for test data generation3. We provide
two realistic domains, called regex and grammar, that are
respectively parameterized by a string representing a regular
expression to match and generate, and a grammar description
file containing the grammar to be matched and from which
data have to be generated.

For now, we are integrating most of realistic domains
with our grammar-based test generation technique into the
atoum4 PHP unit testing framework. For the future, we plan
to compare the efficiency of our various test data generation
techniques in an extended case study, in order to evaluate
the relevance of the coverage-based test generation technique,
in terms of fault detection. We also plan to improve the
generation algorithms so as to avoid rejection as much as pos-
sible. One direction of investigation would be to automatically
generate the code of the test data generator, as done in the
implicit programming approach used in UDITA [27].

3An online demonstrator is available at http://hoa-project.net/Research/
EDGB12/Experimentation.html

4http://www.atoum.org

REFERENCES

[1] B. Beizer, Black-box testing: techniques for functional testing of software
and systems. New York, NY, USA: John Wiley & Sons, Inc., 1995.

[2] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Software Testing, Verification and Reliability, 2011.

[3] E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon, “Selective test
generation method for evolving critical systems,” in REGRESSION’11,
1st Int. Workshop on Regression Testing - co-located with ICST’2011.
Berlin, Germany: IEEE Computer Society Press, Mar. 2011, pp.
125–134. [Online]. Available: http://dx.doi.org/10.1109/ICSTW.2011.95

[4] J. Zander, I. Schieferdecker, and P. J. Mosterman, Eds., Model-Based
Testing for Embedded Systems. CRC Press, 2011.

[5] B. K. Aichernig, “Contract-based testing,” in Formal Methods at the
Crossroads: From Panacea to Foundational Support, ser. Lecture Notes
in Computer Science. Springer, 2003, vol. 2757, pp. 34–48.

[6] B. Meyer, “Applying ”design by contract”,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[7] ——, “Eiffel: programming for reusability and extendibility,” SIGPLAN
Not., vol. 22, no. 2, pp. 85–94, 1987.

[8] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: A notation for
detailed design,” in Behavioral Specifications of Businesses and Systems,
H. Kilov, B. Rumpe, and I. Simmonds, Eds. Boston: Kluwer Academic
Publishers, 1999, pp. 175–188.

[9] P. Baudin, J.-C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy, and
V. Prevosto, ACSL: ANSI C Specification Language (preliminary design
V1.2), 2008.

[10] M. Barnett, K. Leino, and W. Schulte, “The Spec# Programming
System: An Overview,” in Proceedings of the International Workshop
on Construction and Analysis of Safe, Secure and Interoperable Smart
devices (CASSIS’04), ser. LNCS, vol. 3362. Marseille, France: Springer-
Verlag, March 2004, pp. 49–69.

[11] I. Enderlin, F. Dadeau, A. Giorgetti, and A. Ben Othman, “Praspel: A
specification language for contract-based testing in PHP,” in ICTSS’11,
23-th IFIP Int. Conf. on Testing Software and Systems, ser. LNCS,
B. Wolff and F. Zaidi, Eds., vol. 7019. Paris, France: Springer, Nov.
2011, pp. 64–79.

[12] P. M. Maurer, “Generating test data with enhanced context-free gram-
mars,” IEEE Softw., vol. 7, pp. 50–55, July 1990.

[13] “Perl compatible regular expressions,” 2011, http://www.pcre.org.
[14] D. J. Rosenkrantz and R. E. Stearns, “Properties of deterministic top

down grammars,” in Proceedings of the first annual ACM symposium
on Theory of computing, ser. STOC ’69. New York, NY, USA: ACM,
1969, pp. 165–180.

[15] “Java compiler compiler - the java parser generator,” 2006, http://javacc.
java.net.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Boston, MA: Addison-Wesley, January 1995.

[17] P. Flajolet, P. Zimmerman, and B. Van Cutsem, “A calculus for the
random generation of labelled combinatorial structures,” Theoretical
Computer Science, vol. 132, no. 1-2, pp. 1 – 35, 1994.

[18] D. Marinov and S. Khurshid, “Testera: A novel framework for automated
testing of java programs,” in ASE. IEEE Computer Society, 2001, pp.
22–.

[19] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson, “Software
assurance by bounded exhaustive testing,” in Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing and
analysis, ser. ISSTA ’04. New York, NY, USA: ACM, 2004, pp. 133–
142. [Online]. Available: http://doi.acm.org/10.1145/1007512.1007531

[20] “Javascript object notation,” 2011, http://www.json.org.
[21] J. Offutt, P. Ammann, and L. L. Liu, “Mutation testing implements

grammar-based testing,” in Proceedings of the Second Workshop
on Mutation Analysis, ser. MUTATION ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 12–. [Online]. Available:
http://dx.doi.org/10.1109/MUTATION.2006.11

[22] Y. Cheon and G. T. Leavens, “A simple and practical approach to unit
testing: The JML and JUnit way,” in ECOOP 2002 — Object-Oriented
Programming, 16th European Conference, ser. LNCS, B. Magnusson,
Ed., vol. 2374. Berlin: Springer, Jun. 2002, pp. 231–255.

[23] P. Madsen, “Unit Testing using Design by Contract and Equivalence
Partitions,” in XP’03: Proceedings of the 4th international conference
on Extreme programming and agile processes in software engineering.
Berlin, Heidelberg: Springer, 2003, pp. 425–426.

[24] P. Heidegger and P. Thiemann, “Contract-Driven Testing of JavaScript
Code,” in TOOLS 2010 - 48th Int. Conf. on Objects, Models, Compo-
nents, Patterns, ser. LNCS, vol. 6141, 2010, pp. 154–172.

[25] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated Testing
based on Java Predicates,” in ISSTA’02: Proceedings of the 2002 ACM
SIGSOFT international symposium on Software testing and analysis.
New York, NY, USA: ACM, 2002, pp. 123–133.

[26] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input generation
with Java PathFinder,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 4, pp.
97–107, 2004.

[27] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov, “Test generation through programming in UDITA,” in
ICSE’10: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering. New York, NY, USA: ACM, 2010, pp. 225–
234.

[28] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. Ernst,
“Finding bugs in dynamic web applications,” in Proceedings of the 2008
international symposium on Software testing and analysis, ser. ISSTA
’08. New York, NY, USA: ACM, 2008, pp. 261–272.

[29] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, ser. PLDI ’08. New
York, NY, USA: ACM, 2008, pp. 206–215.

[30] D. Hoffman, H.-Y. Wang, M. Chang, and D. Ly-Gagnon, “Grammar
based testing of html injection vulnerabilities in rss feeds,” in Proceed-
ings of the 2009 Testing: Academic and Industrial Conference - Practice
and Research Techniques, ser. TAIC-PART ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 105–110.

[31] D. Coppit and J. Lian, “yagg: an easy-to-use generator for structured test
inputs,” in Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, ser. ASE ’05. New York, NY, USA:
ACM, 2005, pp. 356–359.

[32] R. Lämmel and W. Schulte, “Controllable combinatorial coverage in
grammar-based testing,” in Umit Uyar and Mariusz Fecko and Ali
Duale, ser. LNCS, The 18th IFIP International Conference on Testing
Communicating Systems (TestCom 2006), New York City, USA, May
16-18, 2006, Ed., vol. 3964. Springer Verlag, 2006.

[33] D. M. Hoffman, D. Ly-Gagnon, P. Strooper, and H.-Y. Wang, “Grammar-
based test generation with yougen,” Softw. Pract. Exper., vol. 41, pp.
427–447, April 2011.

[34] W. E. Howden, Functional program testing and analysis. New York,
NY, USA: McGraw-Hill, Inc., 1986.

[35] M. Hennessy and J. F. Power, “Analysing the effectiveness of rule-
coverage as a reduction criterion for test suites of grammar-based
software,” Empirical Softw. Engg., vol. 13, pp. 343–368, August 2008.

