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Abstract. We propose a scheme to evidence the Einstein-Podolsky-Rosen (EPR) paradox for photons

produced by spontaneous down conversion, from measurement of purely spatial correlations of photon

positions both in the near and in the far-field. Experimentally, quantum correlations have been measured

in the far-field of parametric fluorescence created in a type II BBO crystal. Imaging is performed in the

photon counting regime with an electron-multiplying CCD (EMCCD) camera.

PACS. 42.50.Ar Photon statistics and coherence theory – 42.50.Lc Quantum fluctuations, quantum noise

and quantum jumps

1 Introduction

Spontaneous parametric down conversion (SPDC) of a

wide monomode gaussian pump results in a strongly mul-

timode beam: the extension of the down converted beam

in the near field (image plane)is identical to that of the

pump, in the limit of low gain and for a sufficiently wide

crystal, while the far field (Fourier plane) extension is lim-
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ited by phase-matching. The etendue of the beam, i.e. the

product of its transverse surface by the solid angle it sub-

tends or the number of transverse modes in appropriate

units (resolution cells in ref. [1]), has been recognized [2,

3] as corresponding to the two-photon Schmidt number.

Note that the spatial extension of a mode in either the

near or the far-field is proportional to the inverse of the

full beam extension in the other plane. For single pho-

ton imaging, the laws of diffraction are equivalent to the
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Heisenberg’s uncertainty relation: a photon that can be

localized in one mode of the near field, for example by

traversing an aperture of the size corresponding to the

mode, will be detected at a random position in the entire

far-field diffraction pattern. However, the laws of quantum

mechanics state that a pair of signal-idler photons will be

detected either in the same mode in the near field or in

opposite modes in the far field, if no detection occurs in

the other plane. Because the detection plane can be cho-

sen at a time where causal interaction between photons

is no more possible, these correlations are not compatible

with local realism, as demonstrated first in the famous

EPR paper [4], though compatible with the Heisenberg’s

uncertainty relation since correlations cannot be measured

in both planes for the same photon pair.

For a sufficiently low SPDC rate, it can be assumed

that a pair does not interact with another, which makes

the system very close of that considered in the original

EPR paper: the positions of photons 1 and 2 are detected

in the near-field and their momenta correspond to the far-

field. Howell et al. [5] have measured in both planes the

probability distribution of the position of photon 2, con-

ditioned by the detection of photon 1. The product of the

conditional variances is 25 times smaller than the limit for

the product of variances for a single photon given by the

Heisenberg’s uncertainty relation. This impressive result

has been obtained by measuring temporal coincidences

between cross-polarized photons in type 2 SPDC. These

photons were separated by a polarizing beam-splitter: for

a fixed position of a narrow slit transmitting the photon 1

to an avalanche photodiode, the level of coincidences was

measured for each position of a similar slit transmitting

the photon 1 to a separate similar detector.

Three directions can be considered in order to add to

the results of ref [5]. First, for a detection in this exper-

iment of a photon 1, the photon 2 is not detected but

at a precise position, resulting in a vast majority of sin-

gle detections without coincidences. In the words of Reid

et al. [6] about the Aspect et al. [7] experiments: ”How-

ever, it is debatable whether this can be regarded as a

rigorous EPR experiment because for the full ensemble,

most counts at one detector correspond to no detection

at the other”. The situation is comparable in the Howell

et al experiment, though with other conjugate variables

(position-momentum instead of polarizations). Note that

the light in several transverse modes has been simultane-

ously recorded in a recent experiment [8].

Second, the asymmetry between photons 1 and 2 could be

relaxed [6], even if this asymmetry is present in the origi-

nal EPR paper. Third, the assumption of a pure biphoton

state [9] does not correspond to a general model of para-

metric amplification of quantum noise: beyond the limit

of a very low gain, stimulated pairs remain perfectly cor-

related [10]. We propose in this paper a purely spatial

detection scheme that has some advantages as regards the

two first points, while assuming strictly spontaneous con-

version without further amplification like in ref. [5]. The

discussion of this third point is left for the conclusion sec-

tion.

In recent papers, we have experimentally demonstrated,
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using an EMCCD camera in the photon-counting regime,

that far-field opposite spatial fluctuations of type 1 SPDC

are correlated in the quantum regime, with a variance of

the photon number difference between opposite areas be-

low the shot-noise level. This conclusion holds close to de-

generacy for opposite pixels [11], as well as for broad-band

SPDC for opposite angular sectors [12]. To demonstrate

EPR correlations, we must also show quantum correla-

tions of signal-idler spatial fluctuations in the near field.

Since an EMCCD cannot distinguish a pair from a sin-

gle photon, a type 2 interaction in a BBO crystal is used,

where the signal and idler photons can be separated be-

cause of their orthogonal polarizations. Hence, our exper-

imental set-up is similar to that of Howell et al. until the

polarization beam splitter, with a completely different de-

tection scheme: images are formed by all detected pho-

tons for each polarization, without any temporal resolu-

tion, as in experiments of Jedrkiewicz at al. [13] and Brida

et al [14] but in the photon-counting regime.

The paper is organized as follows. We propose in Section 2

a measurement procedure to evidence purely spatial EPR

correlations. Section 3 is devoted to experimental results,

in the far-field because presently the results in the near-

field are not still convincing. We quantify in section 4 the

degree of apparent violation of the Heisenberg uncertain-

ties that could be reached. Last, we discuss in the conclu-

sion ways of improvement and extension to the stimulated

regime.

2 Purely spatial EPR correlations

2.1 Spatial measurements of EPR correlations

For a detection of a photon 1 at −→r1 , the probability density

of detection of a photon 2 at −→r2 can be written as:

p(−→r2 |−→r1) = p(−→r2) + f(∆r) (1)

where p(−→r2) is the probability density of detection of a

photon of another pair (accidental coincidences) and f(∆r)

is the probability density of detection of the twin photon,

with ∆r = ‖−→r2 ± −→r1‖, + holding for the far-field (cor-

relation of momenta on opposite modes) and − for the

near-field. It is assumed translational invariance (this hy-

pothesis will be further discussed in the next subsection),

circular symmetry and independence of the pairs (pure

SPDC without further amplification). Hence, if N1 is the

number of photons 1 detected on a surface S1 and N2 the

corresponding quantity for photons 2, we have:

< N1N2 > =
∫

S1

dr2
1

∫

S2

dr2
2 p(−→r1 and−→r2) (2)

=
∫

S1

dr2
1

∫

S2

dr2
2 {p(−→r1)p(−→r2) + p(−→r1)f(∆r)}

Therefore, the probability of detection in S2 of the twin

photon 2 of the photon 1 detected on S1 is simply given

by:

F (S2) =
∫

S2

dr2
2 f(∆r) =

< N1N2 > − < N1 >< N2 >

< N1 >

(3)

If S1 and S2 have the same size, this expression can be

symmetrized and becomes the normalized intercorrelation

function:

F (S2) = F (S1) =
< N1N2 > − < N1 >< N2 >

(< N1 > + < N2 >)/2
(4)
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For independent pairs, this quantity can also be expressed

as a function of the variance of the difference between N1

and N2:

< N1 >=< N2 >=< (N1)2 > − < N1 >2⇒ (5)

F (S2) = 1− < (N1 −N2)2 >

< (N1 + N2) >

Because of the translational invariance, the means in eq.

4 and 5 can be estimated by spatial averages on the dif-

ferent pixels in one image.

To summarize, we have linked the intercorrellation func-

tion with the conditional probabilities of detecting the

twin SPDC photons. The width of the experimental in-

tercorrelation will then be used to demonstrate an EPR

violation of the Heisenberg inequalities. More details on

the violation we expect to obtain are given in section 4.

3 Measurements of far-field spatial quantum

correlations

The experimental setup is sketched in Fig. 1a. The pump

pulse at 355 nm provided by a passively Q-switch Nd:YAG

laser (mean power: 27 mW, pulse duration: 300 ps, repe-

tition rate: 1 kHz), illuminates a 1 mm long type 2 BBO

nonlinear crystal. The far-field image of the parametric

fluorescence is formed in the focal plane of a lens by a

back-illuminated EMCCD camera from Andor Technol-

ogy (Model iXon+ DU897-ECS-BV) with a quantum ef-

ficiency greater than 90% in the visible range. The detec-

tor area is formed by 512×512 pixels, with a pixel size

of 16×16 µm2, or 0.46×0.46 mrad2 after division by the

focal length. We used a readout rate of 10 MHz at 14 bits

and the camera was cooled to -85◦C. Measurements at

degeneracy were performed for a crystal orientation cor-

responding to collinear phase matching by using a narrow-

band interferential filter centered at 710 nm (∆λ=4 nm).

Photon counting regime was ensured by adjusting the ex-

posure time such that the mean fluence of SPDC was be-

tween 0.1 and 0.2 photon per pixel [15].

With a pump beam diameter ∼2 mm, the coherence area

in the far-field is smaller than the area of a pixel. More-

over, the use of pump pulses with 300 ps duration (much

longer than the coherence time of SPDC) and an expo-

sure time of the EMCCD of 5 ms (i.e. 5 laser shots) allow

the excess noise to be limited by increasing the number of

temporal modes [16]: the mean number of photons for one

spatiotemporal mode is less than 10−3, in good agreement

with the hypothesis of pure spontaneous down conversion,

without any stimulated amplification. Fig. 1b shows a sum

of 50 images recorded with the EMCCD in the SPDC far-

field. A type 2 far-field pattern is observed and the phase

matching angular range (∼65 mm−1 FWHM) corresponds

to 100 pixels. Fig. 2a shows the average of the intercor-

relation between the signal and idler patterns (equivalent

to eq. 4), where the surfaces S1 and S2 correspond to the

physical pixels of the EMCCD. We have verified that no

correlation exists between the signal and idler patterns

for different images (fig. 2b). The total correlation can be

estimated either by summing the correlation values be-

tween several physical pixels around those corresponding

to the peak or by binning (grouping) the pixels before the

calculation of the intercorrelation coefficients. A third so-



Devaux et al: Towards the evidence of a purely spatial EPR paradox in images... 5

E
M

C
C

D

D F1 F2Ltype 2

BBO

f' f'pump pulse

@355nm, 

300ps 
s

i

(a) (b)

ROIs

ROIi

 

0

500

1000

1500

2000

~65 mm -1
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Fig. 2. (a):Average intercorrelation between signal and idler patterns.(b): Average intercorrelation between signal and idler

patterns that come from different images.

lution consists in calculating the variance of the difference

of the binned pixels (Eq. 5). Fig. 3 shows a comparison

between these three methods. In all methods, a correction

has been applied to take into account the small proba-

bility of multiple photons impinging on the same pixel :

see below. The agreement is good and the total intercor-

relation coefficient of 0.1 is significant: all single detected

photons contribute to a deterioration of this coefficient,
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in contrast with experiments where only coincidences are

considered. These single photons are due either to loss

of the twin photon or to false positives caused by Clock

Induced Noise [15]. We have also verified that the vari-

ance of the difference between opposite pixels is smaller

than the shot noise level, as in our preceding papers in

type 1 and in ref. [13] and [14] for type 2 in the high flux

regime. Statistics are performed, for each individual im-

age, on binned pixels inside the regions of interest (ROI)

by measuring the difference between individual pixels in

ROIs and the symmetric pixels in ROIi (fig. 1b). The vari-

ance of the difference can be expressed in shot noise units

as: r = c
σ2

s−i

(ms+mi)
. σ2

s−i is the variance of the difference

between symmetric pixels of ROIs and ROIi, and ms,i

is the mean, calculated respectively in ROIs and ROIi.

The correction coefficient c = 1/(1−nmoy), where nmoy is

the measured mean on a physical pixel without binning,

takes into account the fact that two photons or more can
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Fig. 4. Far-field variance of difference for individual images

with respect to the mean number of photons in binned pixels,

for binnings from 1×1 to 7×7.

be detected on the same physical pixel [11]. After this cor-

rection, the experimental spatial fluctuations on one signal

or idler image obey a Poisson statistics: c
σ2

s

ms
and c

σ2
i

mi
are

close to 1. It can be easily shown that the same correction

must be applied to the correlation coefficient (eq.4).

r is calculated for each image and for different binnings.

Fig. 4 shows the values of r measured on 50 images: most

of the measurements for individual images are below the

shot noise level and the average of r lies clearly in the

quantum regime. For example, for a 5×5 binning, 〈r〉 =

0.916± 0.020, at 95% of confidence. Note that r decreases

and spreads out when increasing binning. The second fea-

ture comes from the smaller number of available pixels for

the statistics.

Our experimental results in the near-field are not still

convincing and are therefore not reported here. The most

evident supplementary difficulty is the adding of a polar-

izer beam-splitter that induces losses and distortions. Note
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that these distortions must be eliminated over all the im-

age field, unlike in the experiment of Howell et al where

only a small part of the image plane is used [5]. More-

over, it has been shown [17] that the walk-off should be

taken into account and depends on the crystal thickness.

We plan to use a thinner crystal and to correct some geo-

metrical aberrations in order to obtain convincing results

in the near-field, that would allow the demonstration of a

purely spatial EPR effect.

4 Expected widths of EPR correlations

In an ideal experiment, F tends to 1 if S1 (and S2) is

greater than the coherence cell, in agreement with results

of ref. [10]. We determine in this section the expected size

of this coherence cell, in the far field as well as in the near-

field, and deduce the degree of violation of the Heisenberg

criterion that can be attained by using conditional means.

We compare also the experimental results in the far-field

with this expected size.

4.1 Far field

We first consider an experiment where an ideal narrow

band interferential filter ensures a perfect frequency de-

generacy: νs = νi = νp/2, where ν is the frequency of

respectively the signal (νs), the idler (νi) and the pump

(νp). The biphoton function reads in the far-field [18]:

ψ̃(qs, qi) = χẼp(qs + qi)ζ̃(qs, qi) (6)

where χ is the coefficient of nonlinear interaction, qs and

qi are the transverse spatial frequencies for the signal and

the idler respectively, Ẽp is the pump field in the far-field

and ζ̃ is the phase matching function. Eq. 6 states that the

conditional probability function in the far-field is propor-

tional to the pump amplitude in this plane, and therefore

has the same width inasmuch as this width is much smaller

than the width of the phase matching function. This con-

dition is fully fulfilled in our experimental conditions: the

phase matching function width is around 65 mm−1 ( see

figure 1b), while the width of the pump field in the Fourier

plane is around 0.5 mm−1 (see below), i.e. of the order of

one pixel.

The situation is more complex if we take into account the

non negligible width of the chromatic filter. Eq. 6 is still

valid but the coordinates f ′ sin θ in the far-field detection

plane are no more proportional to the transverse spatial

frequencies. We have now sin θs = qsc/νs

2π , sin θi = qic/νi

2π .

This effect can be roughly quantified as follows. For a

plane wave pump ensuring qs + qi = 0, the shift ∆θ of the

idler photon position with respect to the position symmet-

rical of the signal photon is given by:

∆θ = θs + θi =
qsc

2π
(1/νs − 1/νi) (7)

In a type 2 crystal, the centers of the SPDC patterns of

the idler and the signal are separated in a noncritical con-

figuration by the walk-off angle [19], i.e 120 mrad at 710

nm: see fig.1b. The transmission of the interferential filter

is gaussian with a standard deviation of 4 nm. To obtain a

rough estimate of the maximum value of ∆θ, we consider

an equivalent rectangular filter with unity transmission,

with the same total transmission after integration. The

total width of this rectangular filter is 4
√

2π = 10 nm,
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giving for a couple of signal-idler photons at the edges of

this filter ∆θ = 120 × 10
710 = 1.70 mrad, i.e 4 pixels. Be-

cause of the absence of walk-off, the effect is much weaker

in the horizontal direction (angle ϕ), explaining the asym-

metry in fig.2a.

To take into account more realistically the gaussian char-

acter of the filter and the phase matching function, the

intercorrelation function in the far-field can be written as:

< NsNi >= χ2
∫

T (νs)T (νp − νs)dνs

∫
dϕp × (8)

∫
Ip(ϕp, θp)dθp

∫
dϕs

∫
dθs|ζ̃(θp, νs, ϕs − ϕp, θs)|2

Where T is the transmission coefficient of the filter and Ip

is the pump intensity in the far-field. We have numerically

calculated this intercorrelation function and determined

its width by fitting it with a two-dimensional gaussian

function. As expected, its shape is asymmetrical, with a

standard deviation of 0.57 pixel in the horizontal direction

and of 0.91 pixel in the vertical direction, for a theoretical

value of 0.13 pixel at perfect degeneracy. In our experi-

mental conditions, one pixel corresponds to 4.04 h̄/mm

in momentum units. The same procedure applied to the

experimental intercorrelation of fig.2 gives an horizontal

standard deviation of 1.12 pixel and a vertical one of 1.74

pixel. It seems that some geometric aberrations in the op-

tical system enlarge the correlation peak. Nevertheless,

the asymmetry due to the non perfect degeneracy in tem-

poral frequencies is visible with similar characteristics in

simulation and experiment. Moreover, it can be shown

that the mean probability of transmission by the filter

of the twin photon is 0.56. This relatively low number is

one of the effect leading to an experimental total intercor-

relation coefficient of 0.1. The other important causes of

reduction of this coefficient are the global quantum effi-

ciency of the optical system, including all optics and the

camera, the false positive or negative detections due to the

camera [15], and probably also some residual fluorescence

of the optical components.

4.2 Near field

We suppose first a perfect degeneracy of temporal fre-

quencies. In the output plane of the crystal (we discuss at

the end of this subsection how to take into account the

imaging system), the biphoton function reads:

ψ(xs, xi) =
∫

χEp(x)ζ(xs + x, xi + x)dx (9)

Let us first assume that the pump beam has a constant

amplitude. In this case, the phase matching function in

the direct space depends only of the difference of the co-

ordinates [18]:
∫

ζ(xs + x, xi + x)dx ≡ γ(xs − xi) (10)

where γ(x) is the inverse Fourier transform of ζ̃(qs,−qs).

We now justify our hypothesis: the width of ζ̃ is 65 mm−1,

leading to a non negligible signal-idler correlation only for

distances not much greater than 1/65 mm. On this scale,

we can safely assume that the 2 mm wide pump beam has

a constant amplitude.

We have to find the standard deviation of |γ(x)|2, propor-

tional to the conditional probability P (xs|xi). We have

first:

ζ̃(qs,−qs) =
exp(i∆kzL)− 1

i∆kz
(11)
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where ∆kz is the longitudinal wave vector mismatch and

L the crystal length. By neglecting the index variation

of the extraordinary wave versus the internal angle, ∆kz

becomes a purely geometrical term that reads, for perfect

collinear phase matching:

∆kz =
q2
sλ

4π

(
1
ns

+
1
ni

)
(12)

with ns,i the indices of the signal and the idler. The first

zero of ζ̃(qs,−qs) is obtained for qs0 = 2π
(
λL( 1

ns
+ 1

ni
)
)−1/2

.

We can now determine numerically the standard deviation

σqs of the SPDC in the far-field:

σqs =
(∫

|ζ̃(qs,−qs)|2q2
sdqs

)1/2

= 0.69qs0 (13)

and the standard deviation σxi|xs
of the conditional prob-

ability in the direct space:

σxi|xs
=

(∫
|γ(x)|2x2dx

)1/2

(14)

We find σxi|xs
= 1.89σ−1

qs
. Note that the same relation

(with 1.88 instead of 1.89) has been given in [5], with no

detail on the exact computation process.

Unlike in the far-field, a non perfect degeneracy does not

modify these results: even if not of the same color, the

twin photons are created at the same place, with an un-

certainty proportional to the inverse of their spatial fre-

quency bandwidth.

The effect of the imaging system is much more subtle. It

has been analyzed in detail in [17]. A brief summary is as

follows. Because the signal and idler wave vectors have di-

rections shifted from the walk-off, the twin photons travel

in the same direction in the crystal (the Poynting vec-

tors are identical, see also [19]). However, a direction shift

does exist in the imaging system and the images are lat-

erally shifted. Moreover, to conserve a minimum σxi|xs
,

the transverse plane at the middle of the crystal (at equal

distance between the input and the output face) must be

imaged on the camera. With these precautions, the reso-

lution found in eq. 14 is unaffected.

4.3 Heisenberg violation using conditional probabilities

The standard deviations in intensity of gaussian beams in

the direct space σx and in the Fourier space σq obey the

Heisenberg relation σxσq = 1/2. In other words, if we ad-

mit that the intensity in a gaussian beam is proportional

to the probability of presence of a photon, the Heisenberg

uncertainty relation becomes equivalent to the standard

diffraction theory. With the results of the preceding sub-

sections, the ratio R of the Heisenberg variance product

to the EPR variance product can be expressed as :

R =
(σxσq)2

(σxi|xs
σqi|qs

)2
=

(
2π0.69
1.89

)2
σ2

x

λL( 1
ns

+ 1
ni

)
(15)

In our experimental conditions : σx=1 mm, L=1 mm and

λ=710 nm give σxi|xs
= 0.013 mm, h̄σqi|qs

= 0.52 h̄/mm

and R=5940. If we admit that the interferential filter en-

larges the correlation function in the far-field by a factor

of 5 (see above), R ≈ 200. Of course, other factors will

probably diminish the experimental value by enlarging the

correlation in the near field, like distortions due to the po-

larizing beam-splitter, other geometrical distortions, not

perfect imaging of the middle plane of the crystal, etc...
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Nevertheless, eq.15 gives the conditions that allow a large

violation of the Heisenberg limit, a thin crystal allowing

a large phase-matching range and a wide pump beam.

Once more, we stress that R1/2 can also be interpreted,

at perfect degeneracy, as the number of resolution cells in

one transverse direction [1], or as the number of Schmidt

modes [3].

5 Conclusion

We have proposed a scheme to demonstrate experimen-

tally a purely spatial EPR paradox. Experimental results

in the far-field are compatible with this objective and

we have good hope to obtain soon the lacking results in

the near-field. However, these results cannot easily be ex-

tended to higher fluxes because they are established with

the assumption of independent pairs, or in more techni-

cal terms of a pure biphoton state. This limitation seems

curious since even at high flux the signal-idler spatial fluc-

tuations remain perfectly correlated, as demonstrated in

numerous papers (see for example [17,20]). On the other

hand, the demonstration of the EPR paradox for spa-

tial properties of beams is based on a criterion implying

the amplitude and phase quadratures [21,22]. While these

quadrature operators are conjugate, with a ih̄ commuta-

tor, the field operators respectively in the image plane

and in the Fourier plane are Fourier transform each from

the other and an EPR criterion in the continuous variable

regime seems more difficult to establish. Of course, this

curious asymmetry between the spatial and the temporal

variables does not preclude the demonstration of purely

spatial EPR, because experimentally the recorded intensi-

ties do correspond to purely spontaneous down conversion

with totally negligible stimulated conversion.
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