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ABSTRACT 
The viscoelastic behavior of articular cartilage changes with progression of osteoarthritis. The 

objective of this study is to quantify this progression and to propose a viscoelastic model of 

articular cartilage taking into account the degree of osteoarthritis that which be easily used in 

predictive numerical simulations of the hip joint behavior. 

To quantify the effects of osteoarthritis (OA) on the viscoelastic behavior of human articular 

cartilage, samples were obtained from the hip arthroplasty due to femoral neck fracture (normal 

cartilage) or advanced coxarthrosis (OA cartilage). Experimental data were obtained from 

instrumented indentation tests on unfrozen femoral cartilage collected and studied in the day 

following the prosthetic hip surgery pose. By using an inverse method coupled with a numerical 

modeling (FEM) of all experimental data of the indentation tests, the viscoelastic properties of 

the two states were quantified. 

Mean values of viscoelastic parameters were significantly lower for OA cartilage than normal 

(instantaneous and relaxed tension moduli, viscosity coefficient). Based on the results and in the 

thermodynamic framework, a constitutive viscoelastic model taking into account the degree of 

osteoarthritis as an internal variable of damage is proposed. The isotropic phenomenological 

viscoelastic model including degradation provides an accurate prediction of the mechanical 

response of the normal human cartilage and OA cartilage with advanced coxarthrosis but should 

be further validated for intermediate degrees of osteoarthritis. 
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1. Introduction 
Articular cartilage (AC) is the thin layer (0.5-5.0 mm thick) of hydrated soft tissue covering the 

articulating bony ends in diarthrodial joints. It plays a vital role in the function of the 

musculoskeletal system by allowing almost frictionless motion to occur between the articular 

surfaces of a diarthrodial joint. Furthermore, it distributes the loads over a large contact area, 

thereby minimizing the contact stress, and dissipates the energy associated with dynamic loads 

(Mow et al., 1993). 

1.1. Normal articular cartilage 

AC can be considered as a solid matrix, saturated with water and mobile ions. The solid matrix 

consists of cartilage cells (chondrocytes) embedded in an extracellular matrix. The major 

components of the extracellular matrix are collagen molecules and negatively charged 

proteoglycans. The mechanical properties of cartilage depend primarily on the properties of the 

extracellular matrix. Composition, maintenance and gradual turnover of the matrix depend on the 

biosynthetic activity of chondrocytes (Maroudas, 1975). 

Many studies have been conducted on the mechanical properties of cartilage (Wilson et al., 2005). It 

is generally accepted that, for a correct description of the mechanical behavior of AC, an 

anisotropic, inhomogeneous and viscoporoelastic model should be used. Concurrent 

viscoelasticity and poroelasticity effects have been observed in articular cartilage and in 

poroviscoelastic model both types are included (DiSilvestro et al., 2001). Viscoelasticity results 

from the conformational change of macromolecules (fluid flow-independent), and poroelasticity 

results from the migration of small molecules (fluid flow-dependent). For articular cartilage the 

viscoelastic relaxation time (material-specific) is about 10 s and the poroelasticic relaxation time 

is above 1000 s in macro length scale. These values allow the classification of observations made 

with different lengths (radius of contact in an indentation test) and times (Hu et al., 2012). 
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The objective of this study is to propose a model of articular cartilage taking into account loading 

rate and degree of osteoarthritis that it can be easily used in predictive numerical simulations of 

the hip joint behavior during daily various activities (Pustoc’h and Cheze, 2009). For this 

application, the observation time is approximately in same order of magnitude as the viscoelastic 

relaxation time and much lower than the poroelastic relaxation time (viscoelasticity relaxing and 

poroelasticity unrelaxed). For this reason, only viscoelastic model is used in this study, unlike 

various recent studies that are in different observation time and/or length (Gupta et al., 2009; 

Keenan et al., 2009; Miller et al., 2006). 

1.2. Cartilage damage due to osteoarthritis 

Osteoarthritis (OA) is the most common degenerative disease of human AC, especially in the 

population aged over 65 years (Hamerman, 1995). It is characterized by an extracellular matrix 

damage and an important loss in tissue cellularity (Vignon et al., 1974). 

Several models were used to analyze the mechanical behavior of healthy and degenerated 

cartilage (Korhonen et al., 2003; DiSilvestro et al., 2002; Mäkelä et al., 2012). However, the 

initiation and progression of cartilage degeneration associated with experimental results on fresh 

normal human cartilage and osteoarthritis has so far not been studied and modeled. Understanding 

the mechanical behavior of damaged cartilage and associated parameters allows, through appropriate 

computational modeling, to better understand the beginning of some diseases such as osteoarthritis 

and efficiently analyze the pressure distribution in the joint. 

Cartilage damage due to osteoarthritis is believed to be mechanically induced and the mechanical 

properties of cartilage tissue are strongly related to the OA stage of cartilage (Kleemann and al. 

2005). Nonetheless, the initial event that triggers the pathological process of cartilage 

degeneration is still unknown. In order to investigate the initiation and the evolution of damage 

due to osteoarthritis, a behavior model must be determined with a damage variable which 

represents OA level. 
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1.3. Indentation testing to characterize articular cartilage 

Basically, instrumented indentation testing is a mechanical characterization process designed to 

determine the materials properties by putting an indenter in the surface of a material sample. 

Indentation has been commonly used in testing the mechanical properties of articular cartilage at 

the macro, micro and nanoscales, and its loading conditions is considered more relevant to the 

physiological condition. 

Elastic properties may be obtained from the measurements of the indentation load ( )P t  versus 

the penetration depth ( )h t  from the well-known equation for spherical indentation with the 

assumption of purely elastic solids (Johnson, 1971). It should be noted that unlike in simple 

tension or compression tests, in indentation test, the two material constants E  (Young’s 

modulus) and ν  (Poisson’s ratio) are coupled in the indentation load-deflection relations, and 

additional independent tests are generally needed to uncouple them (Jin and Lewis, 2004). It has 

been shown that human articular cartilage exhibits viscous behavior during indentation and that it 

makes the analysis of the load-penetration curve more difficult. Moreover, it should be noted that 

viscous phenomena introduce errors when traditional elastic-plastic analysis of indentation data is 

used and time-dependence is ignored (Oliver and Pharr, 1992). Linear viscoelastic analytical 

solutions of indentation on a semi-infinite solid with a spherical-tip indenter developed by the 

method of functional equations are available for the load relaxation, creep tests (Cheng et al., 

2005) and harmonic loading (Argatov et al., 2013), but the direct identification of the flow stress 

curve using an analytical model is impossible for more general loading and non linear behavior. 

In this paper, an inverse method is used to identify the parameters of the constitutive law. The 

identification is based on optimization techniques to adjust material parameters in order that the 

calculated response obtained by numerical modeling (Finite Element Method) matches the 

measured one. 

The aim of this study is to identify the viscoelastic parameters of normal and OA femoral head 

cartilage on four distinct areas using instrumented indentation testing coupled with an 

identification method by the way of a numerical approach. The experimental part of this study is 

based on the preparation of human cartilage samples (normal and OA) and indentation tests. The 
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numerical part is based on the simulation of indentation experiments by the finite element method 

coupled with an optimization algorithm to minimize the error between the model and 

experiments. The identifiability analysis of the model parameters is also proposed. 

Analysis results allow to propose a single phase viscoelastic model with an internal damage 

variable in the thermodynamic framework. This damaged model is a good representation of the 

viscoelastic behavior in the two states (normal and OA) and provides a prediction of the 

intermediate states. 

2. Materials and methods 

2.1 Cartilage sampling 

Samples of normal human cartilage from femoral head were obtained during hip replacement 

surgery from 6 patients exclusively with femoral neck fracture and showed no other pathology. 

Samples of OA human cartilage from femoral head were obtained during surgery from 4 patients 

with clinical and radiological features of advanced coxarthrosis (Table 1). 

These specimens were removed immediately after surgery from four study areas (superior, 

inferior, posterior and anterior) delimited by the surgeon at the end of the operation. The samples 

were then stored at 4°C in a solution of Phosphate Buffered Saline (PBS) until the mechanical 

tests that did not exceed 24 hours after collection. Samples have a thickness of 8 mm, a length of 

25 mm and a width of 15 mm (subchondral bone and a small thickness of cancellous bone were 

preserved). For OA femoral head, the samples were carried out in areas where enough cartilage 

remained. 

A total of 29 samples were analyzed (24 normal and 5 OA). To validate the method, other samples 

with the same preparation method were also used and some results are presented to illustrate the 

mechanical behavior of the material and the relevance of the identification process. 
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2.2. Indentation  

2.2.1. Experimental testing 

The tests were performed by using an instrumented micro-indenter system developed at 

DMA/FEMTO-ST institute that is able to measure the indentation load P  and the penetration 

depth h  in various mechanical modes. The principle of this testing method is presented in Fig. 1. 

A spherical and impermeable stainless steel indenter (radius 1.5 mmR = ) was used during the 

experiments (Fig. 2). 

Three consecutive measures spaced by 2 mm were performed on each sample (random 

measurements between indentation). Tests were conducted in load-unload configuration with a 

depth of less than 250 µm and a rate of about 5 µm/s. Load-unload cycle analysis can be used to 

access to viscoelastic properties (Qasmi et al., 2004) and it seems a realistic test for the main 

application of the model. The load rate (5 μm/s) fully activates viscoelastic phenomena and was 

chosen to keep experimental observation time much lower than poroelastic relaxation time for an 

indentation depth about 10% of the cartilage thickness. 

To validate model, other tests have been also carried out on other samples: load-unload (rate from 

1 µm/s to 40 µm/s), creep and relaxation. 

2.2.2. Viscoelastic constitutive law 

Articular cartilage can be characterized as an isotropic viscoelastic material with no interstitial 

fluid flow during short time response. Isotropic viscoelastic constitutive law is based on the idea 

that the dilatational components of the stress tensor kkσ  which involves the volumetric 

compression, and the deviatoric part ijs  which only accounts for shape modifications, are 

decoupled. Thus, the constitutive law can be written as 

(1 ) (1 )ij ij ij ij
E H E E Hs s e e
η ν ν η
+

+ = +
+ +

& &  (1) 
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(1 2 ) (1 2 )kk kk kk kk
E H E E Hσ σ ε ε
η ν ν η
+

+ = +
− −

&&  (2)

with 

1 1,
3 3ij ij ij kk ij ij ij kks eσ δ σ ε δ ε= − = −  (3)

In these equations, E  is the instantaneous Young’s modulus and H a tension modulus connected 

to the relaxed Young’s modulus / ( )E EH E H∞ = + . ν  is the Poisson’ ratio and η  the viscosity 

coefficient of the model. ijδ  is the second order unity tensor, ijs  and ije  represent the stress and 

strain deviatoric tensors. ijσ  and ijε  are the stress and the strain tensors respectively. The above 

equations correspond to the standard linear solid model as shown in Fig. 3. 

It should be noted here that the Poisson ratio is assumed to be constant. This assumption is 

validated experimentally from indentation test (Jin and Lewis, 2004). It also notices that in 

tension, Eq. (1) and (2) are summarized by the following expression 

11 11 11 11
1 EEσ σ ε ε
τ τ

∞

+ = +&&  (4)

Where / ( )E EH E H∞ = +  and / ( )E Hτ η= +  are, respectively, the relaxed tension modulus and 

the relaxation constant. 

The identification of the four parameters model [ , , , ]T E Hν η=θ  is required. The identification of 

these material parameters was performed for each sample by using an inverse method from 

experimental results and numerical modeling of the indentation test. An identifiability analysis 

was performed to determine uncertainties on the obtained parameters. 

2.2.3. Numerical testing 

The indentation test was modeled in a 2D axisymmetric representation with the ANSYS® finite 

element software (Fig. 4). The indenter is considered as a rigid semi-circular arc. Cartilage 

thickness hc is adapted to samples (from 1 mm to 3.2 mm). 
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No friction between indenter/cartilage was considered. Thicknesses and mechanical behavior of 

subchondral hsb and cancellous bones hcb were taken into account in the model and considered as 

elastic and isotropic ( 2000 MPa, 0.3, 600 MPa, 0.2sb sb cb cbE Eν ν= = = = ). The low sensitivity of 

these parameters on the loading-penetration curve (P-h) was tested. 

Substrat’s inferior part was embedded. The contact algorithm between rigid indenter and cartilage 

was the augmented Lagrangian method. The considered material behavior is a viscoelastic model 

detailed in the previous section. An implicit method with non-linear geometric consideration is 

used with higher order 2-D elements. The mesh density is defined in order that the smallest 

elements are localized in the contact region. A convergence analysis has been performed in order 

to avoid any mesh influence. 

2.3. Inverse method for parametric identification 

2.3.1. A least-squares error minimization approach 

The identification of material parameters can be seen as an inverse formulation. In this study, the 

main idea is to simulate the performed experiment (load-unload indentation with a constant rate 

displacement), by adapting the 4  material parameters 1 2 3 4[ , , , ] [ , , , ]T T E Hθ θ θ θ ν η= =θ  in order 

to numerically obtain the same results as the experimental ones (Fig. 5). This approach consists 

of an optimization problem where the objective is to minimize the gap between the experimental 

( )EP t  and the numerical results ( , )NP tθ , whatever the time variable t  belonging to the period of 

the experimental test. The gap (or the residuals) between the experimental and the numerical 

results can be defined as 

[ ]2

1
[0, ]

1( ) ( ) ( , )
2 max ( )

N

N

E i N i
iEt t

f P t P t
N P t =

∈

= −∑θ θ  (5)

In previous equation, the thi  data points corresponding to the acquisition times it . The 

minimization problem can be written formally: 
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[ , ]
[ , , , ] arg min ( )T E H fν η

− +

∗

∈
= =

θ θ θ
θ θ  (6)

Where ∗θ  is the solution of the identification problem. −θ  and +θ  are the minimum and 

maximum limits on the material parameters. The minimization problem was solved for each 

cartilage sample with the optimization software MIC2M (Richard, 2000) by considering an 

algorithm based on the Levenberg-Marquardt method. From numerical modeling of the 

indentation test and experimental results, this software was able to write the functional (5) to be 

minimized. 

2.3.2. Identifiability analysis 

Samples preparation follows the procedure describes in section 2.1. Parameters were identified 

from a loading-unloading experimental indentation test with a rate displacement 5 µm/sh ≈&  

following the procedure describes in the previous section. The solid lines in Fig. 6 are associated 

to the viscoelastic model with the parameters obtained by the identification procedure. The 

resulting parameters are 9.3 MPaE∗ = , 0.49ν ∗ = , 2.0 MPaH ∗ =  and 87.6 MPa.sη∗ = . 

Fig. 6 shows a good correlation between simulation and experiment, but the information 

contained in the available experimental data must be evaluated more precisely to determine if 

they are suitable for a reliable parameter estimation, mainly due to the uncertainty of the 

Poisson's ratio. 

All techniques of identifiability analysis are based on local sensitivity functions. These functions 

quantify the relation between the outputs and the parameters of the model. In this study, the 

sensitivity function is mathematically defined by 

( , )
( , )

jN i
ij

j N i

P tS
P t

θ
θ ∗

∗

∗

∂
=

∂
θ

θ
θ

 (7)

The sensitivity ranking of the thj  parameter is done by using the relation 
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1

1 N

j ij
i

S
N

δ
=

= ∑  (8)

Fig. 7 shows the sensitivity of the response in relation with the different parameters from 

indentation test. Each sensitivities jδ

 

are equivalent in term of magnitude. Sensitivity to other 

parameters of the model has been calculated. The sensitivity to the cartilage thickness ch  

(adjusted for each sample) is equal to 0.2 while the others are negligible ( , , ,...sb cb sbh h E ). 

The poor identifiability of the model parameters can be due to a small sensitivity of the model 

results to a parameter, or by a linear approximation dependence of sensitivity functions on the 

results with respect to the parameters. It is evaluated through an indicator which is a measure of 

the shape of the confidence region 

max min/EJ λ λ= (9)

where maxλ

 

and minλ  are respectively the largest and the smallest eigenvalue of the Fisher’s 

Information Matrix T=F SS , defined from normalized sensitivities (7) of the set of considered 

parameters. According to Gujarati (2004), a low value of EJ  <100 indicates a low collinearity 

(good identifiability) and a high value ( EJ >1000) indicates a very high collinearity (poor 

identifiability). 

Table 2 shows a moderate correlation between the parameters for 4k =

 

( 300EJ ≈ ). It is 

therefore difficult to identify the 4 parameters. At the opposite, the calculation of EJ  for 3k =

 
presents a good identifiability of 

 
[ , , ]E H η∗ ∗ ∗  and [ , , ]E ν η∗ ∗ ∗ . 

In the indentation test, it is well known that the elastic modulus is correlated with the Poisson 

ratio through the indentation modulus and variability of results may be limited by the following 

assumption that the value of Poisson's ratio can vary from 0 to 0.5. To estimate the error on the 

parameters obtained, an identification was performed with 0ν =  and the resulting parameters set 

is equal to: 12.1 MPaE∗ = , 2.7 MPaH ∗ = , 112.7 MPa.sη∗ = . This solution leads to an error on 

the cost function (5) equivalent to the first identification results. It can be estimated that the error 
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parameter is less than 30%. In practice, the Poisson's ratio is not set. It will be observed that this 

uncertainty is lower than inter and intra individual variability. Nevertheless for almost samples 

(normal and OA), the algorithm converges to a value of about 0.47ν = . This result is closed to 

the results obtained by Jin and Lewis (2004). They consider different indenter radius to access to 

this value. 

2.4. Statistical analysis 

For normal and OA cartilage, a variance analysis was performed to compare each viscoelastic 

parameters between the different areas. To compare each viscoelastic parameters between the 

normal and OA cartilage, a t-test was performed. For statistical tests, a significance level of 0.05 

was used. 

3. Results and discussion 

3.1. Identification Results 

A total of 29 samples were analyzed (24 normal and 5 OA). The different results obtained by using 

the identification procedure defined in section 2.3. are summarized in Table 3 and Table 4. 

 

3.1.1. Normal cartilage 

24 samples were analyzed from normal femoral heads. The means and standard deviations values are 

defined in Table 5. The mean values observed for the three considered parameters are respectively 

10.9 MPaE = , 0.47ν = , 2.2 MPaH =  and 218.7 MPa.sη = . This leads to a relaxed tensile 

modulus 1.8 MPaE∞ =  and a relaxation constant 16.7 sτ = . 

No significant differences could be put in evidence in mean values of the viscoelastic parameters 

E , H , and η  between the different areas (p>0.75). However, a significant difference was 

observed for Poisson’s ratio (p<0.05). 
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3.1.2. Osteoarthritis cartilage 

5 samples were analyzed from OA femoral heads. Table 5 shows the means and standard deviations 

obtained. The mean values observed for the three considered parameters are respectively 

3.4 MPaE = , 0.47ν = , 0.6 MPaH =  and 36.0 MPa.sη = . This leads to a relaxed tensile 

modulus 0.5 MPaE∞ =  and a relaxation constant 9.0 sτ = . 

These parameters values obtained are close to the results proposed by Juras et al. (2011) for OA 

human femoral condyles (knee cartilage). Values of E , E∞  and τ  ranged respectively from 2.5 

to 10.7 MPa (mean: 4 MPa), 0.1 to 2.9 MPa (mean: 0.8 MPa), and 3.8 to 22.6 s (mean: 11.0 s). 

No significant differences could be put in evidence in mean values of viscoelastic parameters E , 

H , and η  between the different areas (p>0.36). However, a significant difference was observed 

for Poisson’s ratio (p<0.05). 

3.1.3. Comparison normal/OA 

The mean values of viscoelastic parameters E , H  and η  were significantly lower for OA 

cartilage than normal (p=0.002, 0.025, 0.013 respectively). However, no difference for ν  was 

observed (p = 0.953). 

The E  and H  moduli are about 3.5 times lower for the OA cartilage than the normal cartilage 

but it is interesting to note that the /E E∞  ratio does not change with osteoarthritis. On the 

viscosity coefficient η  and the relaxation constant τ , they are respectively six and twice lower 

for the OA cartilage than the normal cartilage, but the uncertainty in these values is quite 

important, due to high inter-individual and intra-individual variability. 

The means values of cartilage thickness differed between the inferior area (1.61 mm) and 

superior area (2.97 mm). These results are in agreement with the literature (Kurrat and 

Oberländer, 1978). No significant correlation between thickness and the identified viscoelastic 

parameters is observed. 
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3.2. A viscoelastic model including degradation 

In this section, an isotropic phenomenological viscoelastic model used to provide an accurate 

prediction of the mechanical response of human normal and OA cartilage is presented. 

In the context of thermodynamics with internal variables (Lemaitre and Chaboche, 1990) for an 

isothermal process, the continuum damage mechanics concepts developed by the Lemaître’s 

school (Lemaitre et Desmorat, 2005) are considered. Starting from the early proposition of 

Kachanov (1958) and Rabotnov (1969), a scalar damage variable D  which characterizes the 

degree of material degradation is introduced 

1 D
=

−
σσ%  (10)

where σ  is the Cauchy stress tensor and %σ the effective stress tensor. The damage variable D  

may be interpreted as an indirect measure of degree of osteoarthritis and it is assumed that 

0 1≤ ≤ ≤cD D , where cD  is the critical damage parameter defining the local failure, here defined 

as the degree of osteoarthritis corresponding to advanced coxarthrosis. By applying the elastic 

strain equivalence hypothesis (Lemaitre, 1978), the strain behavior of damaged model material is 

represented by the constitutive equation of virgin material which stress is simply replaced by the 

effective stress such as: 

1 1: :e − −= =ε C σ C σ%%  (11)

where eε  is the elastic strain and C the elastic constitutive tensor for the normal cartilage which 

can be written in matrix notation as a function of the bulk modulus K and the shear modulus G 

[ ]

4 / 3 2 / 3 2 / 3 0 0 0
2 / 3 4 / 3 2 / 3 0 0 0
2 / 3 2 / 3 4 / 3 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

K G K G K G
K G K G K G
K G K G K G

G
G

G

+ − −⎡ ⎤
⎢ ⎥− + −⎢ ⎥
⎢ ⎥− − +

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

C  (12)

with 
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and
3(1 2 ) 2(1 )

E EK G
ν ν

= =
− +

 (13)

E is the virgin (undamaged) instantaneous modulus (Young’s modulus). %C is the elastic 

constitutive tensor for the damaged material which can be written by using (10) and (11) as 

follows 

(1 )D= −C C%  (14)

Assuming that the Poisson’s ratio is unaffected by the damage process, the damaged bulk and 

shear moduli can be written as a function of the instantaneous damaged Young’s modulus E% : 

, 
3(1 2 ) 2(1 )

E EK G
ν ν

= =
− +

% %
%%  (15)

The strain partition assumption is used. The total strain is then partitioned in an elastic part eε  

(instantaneous reversible strain) and a viscous part vε  (time-dependent reversible strain): 

= +e vε ε ε  (16)

The state variables can be divided in observable variables and internal variables as defined in 

Table 6. The α  and X  tensors are associated to viscous phenomena. 

The standard generalized framework (Halphen et Nguyen, 1975) assumes that the mechanical 

behavior can be obtained when two potentials are defined: a free energy density ψ  and a 

dissipation potential Ω. By applying the hypothesis that elasticity and viscous behaviors are 

uncoupled, the free energy is proposed as the following expression 

( )1( , , ) 1 : : : :
2

e e e HD D
E

ρψ ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

ε α ε C ε α C α  (17)

Where ρ  is the mass density. State laws can be defined by: 



16 

 

( )1 :ψρ ∂
= = −

∂
e

e Dσ C ε
ε

 (18)

( )1 :HD
E

ψρ ∂
= = −

∂
X C α

α
 (19)

1 : : : :
2

e e HY
D E
ψρ ∂ ⎛ ⎞= = − +⎜ ⎟∂ ⎝ ⎠

ε C ε α C α  (20)

Based on the experimental results, the following dissipation potential is introduced 

1 ( ) : ( ) ( )
2

Y
η

Ω = − − + ϒσ X σ X% %% %  (21)

The potential ϒ  can be integrated into the evolution of creep damage and fatigue. Based on this 

potential Ω , the evolution of internal variables is expressed as 

2(1 )
v

Dη η
∂Ω − −

= = =
∂ −

σ X σ Xε
σ

&
%

 (22)

v∂Ω
= − =

∂
α ε

X
& &  (23)

D
Y Y
∂Ω ∂ϒ

= − = −
∂ ∂

&  (24)

From a rheological point of view the model proposed here can be represented by a standard linear 

solid model with damage and damaged parameters can be defined using the above equations: 

( ) ( ) ( )21 ; 1 ; 1E D E H D H Dη η= − = − = −% % %  (25)

(1 ) and (1 )D E E Dτ τ ∞ ∞= − = −% %% %  (26)

E  and H  are about 3.5 times lower OA cartilage than normal, the critical damage corresponding 

to advanced coxarthrosis is 1 1/ 3.5 0.71cD = − = . The comparison between the proposed model 

and the experiments are presented in Fig. 8. A good correlation between model and experimental 
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data is observed. The proposed model must be validated for intermediate degrees of 

osteoarthritis. 

4. Conclusions 
By using an inverse method coupled with a finite element method of the indentation test, the 

effects of osteoarthritis (OA) on the viscoelastic behavior of the human hip femoral cartilage is 

quantified. 

In the normal and OA cartilage, no significant differences could be put in evidence between the 

different areas and the results showed a relative homogeneity of the viscoelastic parameters 

within each femoral head. However, it reveals a high intra and inter-individual variability. 

Mean values of viscoelastic parameters were significantly lower for the OA cartilage than the 

normal: E  and H  moduli are about 3.5 times lower for OA cartilage than normal cartilage and 

the viscosity coefficient η  is about six times lower. 

The proposed isotropic phenomenological viscoelastic model provides an accurate prediction of 

the mechanical response of the normal and OA cartilages with advanced coxarthrosis. 

Relationships between the viscoelastic material parameters E , H , η  and the internal variable of 

damage D  which represents the degree of osteoarthritis are validated for the two states, 0D =  

(normal cartilage) and 0.71cD D= =  (OA cartilage with advanced coxarthrosis) but it must be 

validated for intermediate degrees of osteoarthritis. Magnetic resonance imaging (MRI) offers 

excellent soft tissue contrast and it has been developed for noninvasive assessment of the 

structure of articular cartilage. In recent studies, significant correlations were observed between 

MRI and mechanical parameters (especially Young's modulus). Therefore, MRI could be a 

powerful technique to access to the internal variable of damage (Lammentausta et al. 2006; Juras 

et al. 2009). 

These viscoelastic model including degradation could be easily introduced in a predictive 

calculation of the hip joint to simulate the effects of osteoarthritis and loading rate on the contact 

areas, pressures, stresses, or others values like relative sliding velocity during various activities of 

daily life. 
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Table 1 - Some relevant characteristics of the normal subjects and patients with OA. 

Sujet Hip 

replacement 

Sex Height 

(mm) 

Mass 

(kg) 

Age 

(years) 

Normal subjects 

1 

2 

3 

4 

5 

6 

P 

P 

P 

P 

P 

P 

F 

F 

F 

F 

F 

F 

165 

150 

168 

160 

160 

174 

63 

50 

65 

50 

60 

83 

81 

83 

73 

85 

94 

83 

Patients with OA 

7 

8 

9 

10 

T 

T 

T 

T 

M 

F 

M 

F 

172 

160 

172 

160 

85 

52 

83 

89 

77 

74 

79 

57 

M = Male; F = Female; P = Partial ; T =Total 
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Table 2 - Identifiability measurement (<100 good; >1000 poor). 

k 4 3 3 3 3 

parameter set [ , , , ]E H    
 [ , , ]H   

 [ , , ]E H   
 [ , , ]E    

 [ , , ]E H  
 

JE 330 223 70 30 95 
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Table 3 - Viscoelastic parameters for normal cartilage. *(MPa), **MPa.s 

Area Superior Inferior Posterior Anterior 

Parameters E * ν H* η ** E * ν H * η ** E * ν H * η ** E * ν H * η ** 

Femur 1                                 

Mesure 1 11.57 0.40 3.24 12.23 13.31 0.49 0.15 367.29 9.67 0.49 0.35 531.12 10.22 0.48 0.86 353.11 

Mesure 2 10.48 0.49 2.34 277.93 13.00 0.48 0.26 356.78 9.36 0.49 0.58 536.22 10.37 0.49 0.46 344.75 

Mesure 3 9.56 0.49 2.28 270.73 13.31 0.48 0.15 367.29 9.96 0.48 0.45 323.58 9.92 0.49 0.14 430.38 

Femur 2                                 

Mesure 1 19.49 0.37 4.20 220.09 18.21 0.48 4.46 191.64 18.96 0.48 4.61 122.29 17.47 0.48 3.74 154.80 

Mesure 2 16.68 0.48 3.50 214.77 16.48 0.48 4.16 184.55 19.50 0.49 4.00 214.89 19.18 0.48 4.01 220.96 

Mesure 3 17.57 0.37 3.90 262.40 20.25 0.48 4.45 319.05 18.48 0.48 4.34 217.93 19.87 0.48 4.12 198.79 

Femur 3                                 

Mesure 1 8.35 0.41 3.05 110.04 11.34 0.48 2.79 113.02 8.66 0.48 2.64 131.80 12.72 0.40 2.31 83.30 

Mesure 2 8.28 0.43 3.11 128.57 12.53 0.48 2.91 128.69 8.41 0.48 2.47 128.15 10.46 0.48 2.54 94.10 

Mesure 3         11.84 0.48 2.83 127.24 12.87 0.48 2.80 139.09 12.41 0.49 2.85 108.37 

Femur 4                                 

Mesure 1 3.33 0.49 1.38 29.37 3.48 0.49 1.42 30.98 4.12 0.40 1.52 34.63 5.17 0.49 1.67 136.91 

Mesure 2 2.91 0.45 1.19 31.79 14.12 0.48 0.34 304.38 3.75 0.49 1.49 36.45 4.73 0.48 1.62 98.42 

Mesure 3 3.10 0.45 1.15 28.82 5.39 0.49 0.09 199.82 3.51 0.46 1.21 29.75 4.78 0.43 0.30 173.35 

Femur 5                                 

Mesure 1 10.30 0.48 0.08 499.21 3.44 0.48 0.85 26.29 12.12 0.48 2.39 344.33 14.12 0.48 5.78 366.09 

Mesure 2 7.79 0.47 0.08 456.44 2.03 0.48 0.49 11.81 10.94 0.48 3.01 284.87 16.48 0.46 0.14 810.59 

Mesure 3 7.74 0.48 0.24 462.65 2.97 0.48 0.72 18.47 10.22 0.48 2.55 206.74 14.05 0.46 1.74 595.20 

Femur 6                                 

Mesure 1 15.54 0.40 4.09 234.79 6.57 0.48 2.00 65.90 10.33 0.49 3.34 208.68 9.72 0.45 3.03 136.88 

Mesure 2 17.67 0.46 5.46 238.03 5.67 0.49 1.47 51.22 10.59 0.47 0.21 396.46 9.72 0.46 3.43 140.86 

Mesure 3 18.45 0.48 6.01 312.33 7.30 0.49 1.95 62.43 10.64 0.48 0.72 407.46 10.75 0.47 0.37 165.38 
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Table 4 - Viscoelastic parameters for OA cartilage. *(MPa), **MPa.s 

Area Superior Inferior Posterior Anterior 

Parameters E * ν H* η ** E * ν H * η ** E * ν H * η ** E * ν H * η ** 

Femur 7 

        

                

        
Mesure 1 2.23 0.49 0.81 16.52 3.95 0.40 0.90 20.33 

Mesure 2 5.95 0.49 0.85 13.26 3.84 0.49 0.94 23.50 

Mesure 3         3.54 0.49 0.93 22.35 

Femur 8 

                

        

        
Mesure 1 5.23 0.45 1.02 97.78 

Mesure 2 3.89 0.45 0.21 82.49 

Mesure 3 4.87 0.45 0.00 149.17 

Femur 9 

        

        

                
Mesure 1 1.98 0.49 0.29 13.26 

Mesure 2 2.17 0.49 0.32 14.19 

Mesure 3 2.43 0.49 0.29 13.62 

Femur 10 

                        

        

Mesure 1 2.61 0.45 0.49 18.85 

Mesure 2 2.15 0.45 0.79 20.17 

Mesure 3         
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Table 5 - Distribution of parameters E, , H and  for normal and OA cartilage 

(n: number of samples, NC: Non Calculable, SD: Standard Deviation). 

Parameter Position  Normal    OA   

   n Mean SD
*
  n Mean SD

*
 

E  
(MPa) Global  24 10.9 5.0  5 3.4 1.1 

 Superior  6 11.1 5.5  0 NC NC 

 Inferior  6 10.1 5.6  2 3.1 1.3 

 Posterior  6 10.7 4.9  2 4.2 0.6 

 Anterior  6 11.8 4.7  1 2.4 NC 

  Global  24 0.47 0.02  5 0.47 0.02 

 Superior  6 0.45 0.03  0 NC NC 

 Inferior  6 0.48 0.00  2 0.49 0.00 

 Posterior  6 0.48 0.01  2 0.46 0.01 

 Anterior  6 0.47 0.01  1 0.45 NC 

H  (MPa) Global  24 2.2 1.4  5 0.6 0.3 

 Superior  6 2.7 1.7  0 NC NC 

 Inferior  6 1.8 1.7  2 0.6 0.4 

 Posterior  6 2.2 1.5  2 0.7 0.4 

 Anterior  6 2.2 1.2  1 0.6 NC 

  (MPa.s) Global  24 218.7 150.6  5 36.0 41.4 

 Superior  6 217.9 150.4  0 NC NC 

 Inferior  6 162.6 125.4  2 14.3 0.8 

 Posterior  6 238.6 153.9  2 65.9 62.0 

 Anterior  6 256.2 191.5  1 19.5 NC 
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Table 6 - Thermodynamic variables. 

State variables  Associated variables 

Observable 

 

Internal  

   σ  

 eε  σ  

 vε  σ  

 α  X  

 D  Y  
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