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Résumé : 
L’objectif de l’étude est de mettre en lumière l’anisotropie des matériaux cristallins de type cfc aux échelles 
micro et nanométriques. Des résultats numériques et expérimentaux de nanoindentation sont présentés. Les 
essais expérimentaux ont été réalisés sur un échantillon de nickel polycristallin, avec un indenteur de type 
Berkovich. Les simulations ont été menées sous le code éléments finis ZEBULON, en y intégrant un modèle 
de plasticité cristalline en grande déformation. Trois directions cristallographiques principales, 
correspondant à trois grains présentant ces mêmes directions, ont été choisies comme axe d’indentation, à 
savoir [001], [101] et [111]. Les empreintes ont été analysées au microscope à force atomique (AFM). La 
topographie de la surface autour des empreintes a révélé des lignes de glissement associées aux différents 
systèmes activés, ainsi que des remontées de matière (bourrelets) fortement anisotropes et non-symétriques, 
dépendantes de l’orientation du cristal par rapport à l’indenteur. Ces observations sont en accord avec les 
résultats des simulations numériques. L’effet de l’orientation de l’indenteur dans chacun des plans 
d’indentation a également été étudié expérimentalement et numériquement. 

Abstract : 
The goal of the study is to probe the anisotropy of fcc grain of polycrystalline material at the micro and 
nano-scales. Numerical and experimental results of nanoindentation are reported. The tests were conducted 
on bulk polycrystalline nickel with a Berkovich indenter. The finite element code ZEBULON, in which a 
large deformation crystal plasticity constitutive model is implemented, was used for the simulations. Three 
main crystallographic directions, corresponding to three grain orientations, were chosen as indentation axis, 
i.e. [001], [101] and [111]. Indentation imprints were analyzed thanks to an atomic force microscope 
(AFM). The surface topography around the indents has revealed slip traces associated to the different 
activated systems and pile-up which are strongly anisotropic and asymmetric, depending on the crystal 
orientation. These observations are in a good agreement with the simulation results. The role of the indenter 
orientation for each indentation plane was also examined experimentally and numerically. 
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1 Introduction 
In the last decades, instrumented indentation has become an efficient tool to analyze at micro and nanoscales 
mechanical properties of materials, such as hardness and elastic modulus. Furthermore, pile-up analysis can 
also be used for investigating anisotropy and plasticity. Indeed, numerous works have shown that pile-up 
directly depends on material properties (Holmes [1], Stelmashenko [2], Nibur [3], McElhaney [4], Wang 
[5]). They are thus precious information sources and may even be considered as a fingerprint of the studied 
material. 

Finite element modelings of nanoindentation test are very powerful for analysis and give a lot of post-
treatment possibilities. In the single crystal context, 3D finite element modeling of nanoindentation test has 
been conducted during the last decade (Wang [5], Liu [6], Casals [7], Zambaldi [8], Eidel [9]). 

To account for the mechanical behavior of single crystal, constitutive models have been developed around 
Hill & Rice [10] works and have been implemented in finite element softwares. In the present study, Méric-
Cailletaud single crystal plasticity model [11] is used with the ZEBULON code. 
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2 Experimental protocol and material 

2.1 Material 
The experimental part makes use of an annealed polycrystalline nickel sample nickel ሺ∅~140	μ݉ሻ. 
Nickel is a fcc material with an anisotropic coefficient ݂ ൌ ଵଵܥସସ/ሺܥ2 െ ଵଶሻܥ ൌ 2,44. EBSD measurements 
gave a map of grain orientations in the studied zone. The sample was chemically etched and then carefully 
polished with colloidal alumina before indenting. 

2.2 Experimental conditions 
A NHT CSM indenter system was used for indentation tests at room temperature. The indenter is a 
Berkovich diamond tip (triangular based pyramid). The indentations are controlled in load and the maximum 
value is set to 30 mN, corresponding to indentation depths of about 800-900 nm. Thanks to EBSD 
measurements, it was possible to perform indentations in three different crystallographic planes belonging to 
the following family of lattice planes : {001}, {101} and {111} (Figure 1). To study the indenter orientation 
effects in each indentation planes, the sample was successively rotated of 30° and 60°. For each indentation 
direction and indenter orientation, three indentations have been made in order to assess the repeatability of 
the results 

FIG. 1 – (a) Schematic view of the three crystallographic planes indented (001), (101) and (111) 
(b) EBSD measurements of the studied zone and indentation positions. 

3 Numerical simulations 

3.1 Single crystal plasticity constitutive equations 
Due to the large grain size, each indented grain can be considered as a single crystal with a defined 
orientation. Simulations were conducted in the large deformation framework. An elastic tensor was 
considered to model the single crystal elastic response. The Méric-Cailletaud single crystal plasticity model 
[11] was used to describe the viscoplastic behavior. The transformation gradient is decomposed as follows: 

ധܨ ൌ  ሺ1ሻ																																																																																									ധധധധܨ	ധധധധ	ܨ

where ܨധധധധ is the transformation gradient due to elastic strain and lattice rotation. In the fcc single crystal 
plasticity framework, ܨധധധധ is the transformation gradient due to plastic shear strain in each of the 12 slip 
systems ݉௦ധധധധ, defined by the normal vectors of the slip planes ݊௦തതത and the slip directions ݈௦ഥ . 
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The resolved shear stress on each slip systems is given by: 

߬௦ ൌ ݉௦ധധധധ:  ሺ3ሻ																																																																																								ധߪ

The inelastic flow is governed by a Norton power law: 
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where ݊ and ܭ are viscosity parameters. The hardening has been considered as kinematic and isotropic 
through the ݔ௦ and ݎ௦ variables, respectively. 

௦ሶݔ	 ൌ ௦ሶߛܥ െ ௦ሶߛหܦ หݔ௦																																																																																ሺ5ሻ 

௦ݎ ൌ ܴ  ݄ܳ௦
ଵଶ

ୀଵ

ሾ1 െ exp	ሺെܾݒሻሿ, ሶݒ	݄ݐ݅ݓ ൌ หߛሶ ห																																										ሺ6ሻ 

 and ܳ are material parameters. ܴ is the critical resolved shear stress of slip systems. ݄௦is the ܾ ,ܦ ,ܥ
interaction matrix (12x12 components) where diagonal terms define self-hardening and off-diagonal terms 
define latent hardening. 

3.2 Finite element modeling 
Numerical simulations of nanoindentation test were conducted using the finite element code ZEBULON. 
The indentation is performed on a cylinder whose radius and height are 36 µm. The maximal indentation 
depth is 900 nm, that is one fortieth of the cylinder height. One can thus impose the lower cylinder surface to 
be clamped. Lateral surfaces are free and the Berkovich indenter, which is considered as rigid, is controlled 
in displacement along the Ԧܼ indentation axis and locked along the other ones. The mesh is refined near the 
contact region. Figure 2 summarizes the modeling conditions. Simulations have been conducted in 3D to 
account for anisotropy. 

FIG. 2 – Modeling boundary conditions and mesh details: bulk (a), Berkovich indenter (b). 

Elastic material parameters are set to ܥଵଵ ൌ 248 GPa, ܥଵଶ ൌ 153 GPa, ܥସସ ൌ 116 GPa and all the ݄௦ 
coefficients have been taken as unity (݄௦=1). The present work is anyway intended to provide qualitative 
description of the surface deformation around the indentation imprint. The number and orientation of pile-up 
depend on the material crystallography and on the activated slip systems. Except for the ݄௦ coefficients, the 
values of the different model parameters have thus no effect on the symmetry of the observed tendencies. 
Even though the same slip systems are experimentally and numerically activated, the pile-up dimensions 
(height, width) will not be compared because they strongly depend on the plasticity parameters introduced in 
the constitutive laws. 

4 Results and discussion 
According to the material crystallography, the evacuation of the material excess at the sample surface around 
the indenter takes place along precise directions and thus results in pile-up. The distribution of these piles-up 
at precise locations around the imprint has been studied by Holmes [1], Wang [5] and Eidel [10] on Y2O3-
stabilized cubic ZrO2, copper and Ni-base superalloy, respectively. 
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FIG. 3 – Octahedral slip systems in a fcc crystal. 

At room temperature, for fcc single crystal metals, the inelastic flow occurs in the octahedral slip systems 
(Figure 3), namely ሼ111ሽ〈110〉. When the indentation is conducted in the [001] direction, four piles-up are 
formed along the ሾ110ሿ, ሾ1ത10ሿ, ሾ11ത0ሿ	and	ሾ1ത1ത0ሿ	 directions involving a four-fold symmetry. In the [101] 
indentation direction, matter flows and piles-up occur along the ሾ121തሿ,ሾ1ത21ሿ, ሾ1ത2ത1ሿ and ሾ12ത1തሿ directions, 
resulting in a two-fold symmetry. Finally, when the indentation is performed in the [111] direction, six piles-
up are susceptible to appear along the ሾ1ത10ሿ, ሾ1ത01ሿ, ሾ01ത1ሿ, ሾ11ത0ሿ, ሾ101തሿ and ሾ011തሿ directions, describing a 
six-fold symmetry. These remarks are valid in the context of axisymmetric indentation, the use of a 
Berkovich indenter will promote certain directions instead of another. 

 
After analyzing the AFM measurements of the different configurations, one can notice that the propagation 
directions of the pile-up are the intersection directions between the ሼ111ሽ family planes and the indentation 
plane. A definition of the pile-up propagation directions for fcc single crystals metals is proposed as follows: 

ሾݔ, ,ݕ ሿݖ ൌ ൛ሼ111ሽ⋂ሺ݅, ݆, ݇ሻൟ																																																																			ሺ7ሻ 

with (i,j,k) the plane whose normal vector is the indentation direction.  

The Figure 4 illustrates the foregoing for the three indentation directions. 

 

 

FIG. 4 – Theoretical pile-up propagation directions for an axisymmetric indentation in the (001) (a), (101) 
(b) and (111) (c) indentation plane. 

 

These theoretical remarks are now compared to the numerical and experiments results. Figures 5a, 5d and 5g 
presents AFM topography measurements of the indented surfaces (001), (101) and (111), respectively. 
Figures 5c, 5f and 5i show the corresponding numerical results. The same color scale is used in order to 

(a) (b) (c) 

Intersection line between indentation plane and {111} family plane  

Prevision of the pile-up positions 
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easily compare experiments and simulation results. Figures 5b, 5e and 5h, show the derivative of the same 
experimental measurement (with respect to Figures 5a, 5d and 5g), allowing the observation of pile-up (red 
lines) and sinking-in (green lines) slip lines. 

One can notice that from one indentation direction to another, the orientation and/or the number of pile-up 
show symmetries: four-fold, two-fold for the (001) and (101) orientations, respectively. Concerning the 
(111) orientation, measurements show a formation of pile-up which presents a three-fold symmetry instead 
of the expected six-fold symmetry. This phenomenon may result from the Berkovich geometry of the 
indenter tip. Indeed, the stress field generated by the indenter tends to confine pile-up in front of the indenter 
faces and in the propagation directions established previously. It is also observed that pile-up dimensions 
(height and width) are not symmetric. Although these dimensions differ between numerical and experimental 
results, one can notice the similarities concerning the pile-up propagation directions. A quantitative study 
will be further carried out with appropriate model parameters for the annealed Ni material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5 – Numerical and experimental indentation results in the (001) (a, b, c), (101) (d, e, f) and (111) (g, h, 
i) indentation planes. AFM Topography measurements: pile-up measurements (a, d, g); slip traces on surface 

bulk (b, e, h). Numerical topography results (c, f, i). 

 

Indenter orientation effects for (101) indentation plane were also analyzed. Figure 6 shows numerical and 
experimental indentation results when the indenter is rotated of 30° and 60°. It can be noticed that the 
indenter rotations have no effect on the pile-up propagation directions. The slip traces at the surface are not 
distorted and keep the same orientation while the piles-up distribution and above all their dimensions appear 
to be strongly affected by the rotation. It is worth noting that simulation and experiments show the same 
tendency. 
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FIG. 6 – Numerical and experimental results after rotating the indenter of 30° (a, b, c) and 60° (d, e, f) in the 
(101) indentation plane. AFM Topography measurements: Pile-up measurements (a, d); Slip traces on 

surface bulk (b, e). Numerical topography results (c, f). 

5 Conclusions 
Nanoindentation measurements were performed on polycrystalline nickel sample, in several large grains 
characteristic orientations. Material anisotropy and plasticity informations have been obtained through the 
pile-up analysis. Their propagation directions strongly depend on the material crystallographic orientation 
under indentation and the stress field generated by the indenter. The nanoindentation test on single crystal 
can be well simulated using a 3D finite element modeling containing the crystal plasticity constitutive 
equations. Numerical and experimental results are in a good qualitative agreement. A quantitative study 
requires the nickel material parameters to be clearly identified. Conical indentations should also be 
considered in order to clarify the exact role of Berkovich shape in the matter flow distribution, particularly 
 for the (111) indentations. 

References 
[1] Holmes D., Dislocation structures around Vickers indents in 9.4mol% Y2O3-stabilized cubic ZrO2 single 
crystals, Philo. Mag.. A, 67, 325-342, 1993. 
[2] Stelmashenko N.A., Microindentations on W and Mo oriented single crystals: an STM study, Acta 
Metall. Mater., 41, 2855-2865, 1993. 
[3] Nibur K.A., Identifying slip systems around indentations in fcc metals, Scripta Mat.49, 1055-1060, 2003. 
[4] McElhaney K.W., Determination of indenter tip geometry and indentation contact area for depth-sensing 
indentation experiments, J. Mater. Res., 13, 1300-1306, 1998. 
[5] Wang Y., Orientation dependence of nanoindentation pile-up patterns and of nanoindentation 
microtextures in copper single crystals, Acta Mat., 52, 2229-2238, 2004. 
[6] Liu Y., Orientation effects in nanoindentation of single crystal copper, Int. J. Plast., 24, 1990-2015, 2008. 
[7] Casals O., Finite element crystal plasticity analysis of spherical indentation in bulk single crystals and 
coatings, 45, 774-782, 2009. 
[8] Zambaldi C., Plastic anisotropy of c-TiAl revealed by axisymmetric indentation, 58, 3516-3530, 2010. 
[9] Eidel B., Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation 
into (001) fcc single crystal, Acta Mat., 59, 1761-1771, 2011. 
[10] Hill R., Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech Phys Solids, 20, 401-
413, 1972. 
[11] Méric L., Single crystal modeling for structural calculations: part 1-Model presentation, J. Eng. Mater. 
Technol., 113, 162-170, 1991. 

(a) (b) (c) 

+ 30° 

(d) (e) (f) 

+ 60° 

108° 

73° 

71° 

110° 

defect 

54° 

52° 


