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ABSTRACT
Although Wireless Sensor Networks (WSNs) are capable of
generating a huge amount of data, the ultimate objective of
the underlying applications/end-users is to derive an esti-
mate of a parameter or function of interest through queries
sent to nodes containing raw data. The way these queries
are handled by the network has a deep impact on its over-
all performances ( e.g., required communications, consumed
energy, etc.). Among the numerous centralized and dis-
tributed approaches addressing this issue, serial ones have
shown an interesting improvements in terms of reducing
communication needed for each query and hence reducing
required energy. Nevertheless, serial approaches suffer two
main drawbacks: (a) they require to construct a path pass-
ing through all nodes of the network (which is known to be a
NP-Complete problem) and (b) they experience poor scala-
bility. In this paper, we investigate these issues by proposing
a novel localized serial approach, called Peeling Algorithm
(PA). The proposed approach, because of its localized na-
ture (i.e., no extra-information is needed rather than what it
is already available at each node), has shown better support
for scalability while reducing significantly needed commu-
nications to accomplish a query. The extensive simulation
evaluations we made have confirmed the effectiveness of our
proposed approach in comparison to other serial approaches.
We also provide in this paper formal proofs of its correctness
i.e., our distributed approach terminates (free of looping)
and visits all connected nodes in the network.

Categories and Subject Descriptors
C.2.4 [Computer communication networks]: Distributed
applications
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sensor networks; serial data fusion; distributed and localized
algorithm
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1. INTRODUCTION
Recent technological advances have lead to the emergence

of Wireless Sensor Networks (WSNs) as a promising technol-
ogy for many applications in several domains [4] (environ-
mental monitoring, health-care diagnostics, animals track-
ing, etc.). A WSN consists in a collection of nodes, each of
which provided with sensing, computing and wireless com-
munication capabilities. Nodes are then deployed in a re-
gion of interest, usually in an random fashion, for moni-
toring purposes. Sensors collect data that is forwarded to
the base station, also called Sink, in order to answer the
application/end-user queries. This process is referred to as
query processing.

Because of their intrinsic constraints (energy limitation,
large deployment, etc.) query processing in WSNs remains
a challenging research problem. Many approaches have been
proposed in the literature and could be classified into three
categories: (a) Centralized approaches [3], also called ware-
house approaches, in which raw data are first collected by
sensors and sent to the sink. The latter, with the help
of a database management system, could then answer the
queries. In those approaches, the query processing is inde-
pendent of the the data collection. Although centralized ap-
proaches are simple and efficient in terms of queries answer-
ing, they however have several drawbacks among them we
note overutilization of network resources, mainly communi-
cations, and poor scalability. (b) Distributed approaches [8]
have then been proposed to specifically overcome these lim-
itations. In such approaches, as the general objective is to
derive an estimate of a parameter or function of interest
from raw data (e,g., average, source location [15], , . . . ),
sensor nodes do not need to hold global knowledge about
the current network topology since each node communicates
only with its immediate neighbors. The unknown parame-
ter is then successively (i.e., iteratively) carried out through
local computation from the exchanged data between neigh-
bors. The advantages of such approaches are numerous: (1)
no central base station is required as every node holds the
estimate of the unknown parameter; (2) multi-hop commu-
nications are avoided and consequently maintaining root-
ing data is not needed any more; (3) better behavior is
observed in front of communication and nodes unreliabil-
ity. Nevertheless, distributed approaches observe an impor-
tant resources consumption, particularly communications as
the number of iterations could be important. Furthermore,
because of their synchronized iterations, these approaches
generate an important number of packets collisions which



may decrease the overall network performances (query re-
sponsiveness). (c) Serial approaches [13, 12] have then been
proposed as an interesting alternatives to reduce communi-
cations, including collisions, overhead observed previously in
both centralized and distributed approaches. The basic idea
behind is to let one node initiating the query and the esti-
mate is then successively (i.e., serially) updated from node
to node until all nodes of the network are visited. The last
node holds the correct estimate [10]. As stated in [13], se-
rial approaches perform very efficiently in terms of reducing
needed communications.

Although theoretical foundations of serial approaches have
been provided into [13, 11, 10], some practical issues have
not been, to the best of our knowledge, addressed yet: in
fact, serial approaches make the assumption that an hamil-
tonian path within the network exists. However, construct-
ing such a path is known to be a NP-Complete problem [6]
which is not easy to meet, especially in sparce and large
scale networks. The cost of finding such a path, in a de-
centralized manner to ensure scalability, could generate a
prohibitive communication cost. In [12], the authors pro-
pose to use space filling curves to derive a path through the
network. Besides of its poor scalability, this approach does
not efficiently handle irregular network topologies, i.e., net-
works with holes. Moreover, it does not ensure all nodes
visiting.

In this paper, we propose a novel serial data fusion ap-
proach that is totally distributed and efficient. Two impor-
tant requirements have guided our work. First scalability
which means that the protocol should be totally distributed
to scale proportionally with the size of the network. Sec-
ond, completeness which means that all nodes of the net-
work should be visited i.e. contribute in the parameter es-
timate. Our approach, thanks to its localized nature i.e.,
no extra-information than what is usually available (1 hop-
information), well fulfills the scalability and robustness re-
quirements as the next hop decision is taken locally and inde-
pendently by each node. We also provide theoretical proofs
of its completeness. The simulation results show clearly the
effectiveness of our approach in terms of reducing commu-
nication, energy and responsiveness time in comparison to
other serial approaches.

The rest of the paper is organized as follows: in Section 2
we present our serial algorithm. Section 3 provides proofs of
correctness of the proposed approach. Performance evalua-
tion and results are presented into Section 4 while Section 5
concludes the paper.

2. PEELING ALGORITHM
In this section we present our proposed serial approach,

named Peeling Algorithm (PA). We begin first by sketching
the overall PA behavior through illustrative examples. Then
after, we present the boundary traversal algorithm we used
which of course fulfills our major requirement (e.g., of a
distributed and localized nature).

We consider a geographic wireless sensor network in which
nodes are static and homogeneous, with R as their commu-
nication range. We note N as the set of nodes and E as
the set of links. We consider that each node is aware of its
location by means of a positioning system like GPS or as a
result of a localization process [2]. Furthermore, each node
Ni is aware of its neighboring set Vi = {Nj | E(i,j) ∈ E} and
their corresponding locations.

The commonly communication model used in wireless sen-
sor networks is of a broadcasting nature [4] i.e., when a node
sends a packets, all neighbors within its transmission range
will receive it. Hence, it is worthwhile to notice that the
listening process does not incur any additional transmission
(no explicit request is sent to the transmitter). This inter-
esting feature of the communication model will be used later
on in our approach to update, without any additional com-
munication costs, the visited neighbors table of each node.

We refer in the rest of the paper to the node that issues the
request as the “Query Initiator Node” (QIN). In opposition
to other approaches, mainly centralized ones, the QIN in our
approach could be any node in the network.

We now introduce some definitions used later to highlight
our peeling approach.

Definition 1. (Boundary Node)
A node N is said to be a boundary node in the direction
∠NiNNj, noted BN , iff it has at least two angularly adja-
cent neighbors Ni, Nj such that Ni could not communicate
with Nj or the angle ∠NiNNj ≥ π

In other terms, messages issued on a boundary must re-
main on the same boundary. Hence, a node is facing a
boundary (hole or network boundary) if any message coming
from its right neighbor to its left neighbor ”transits” by it.
Two cases are possible: either its neighbors could not com-
municate with each others or the angle is greater or equal to
π as illustrated into Figure 1. Each node could face at most
six boundaries.

Hole Hole

(a) (b)
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N
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Figure 1: Boundary Node.

With the help of this definition, every node in the net-
work could locally determine if it is located either on the
boundary of a hole inside the network or on the boundary
of the network. The computation can be performed with
only information on 1-hop neighbors.

Definition 2. (Hole Boundary Nodes)
For each hole, noted H, we define the set of nodes belonging
to it as a cyclic sequence of boundary nodes:
H = {Nj , Nj+1, ..., Nj+k, Nj} such that the closed region
bounded by this non self-intersecting polygonal sequence is
empty of any node.

Definition 3. (Network Boundary Nodes)
We define the set of Network Boundary nodes as a cyclic se-
quence of boundary nodes: NBN = {Ni, Ni+1, ..., Ni+k, Ni}
such that the closed region bounded by this non self-intersecting
polygonal sequence contains all nodes of the network.

As explained below, our serial query processing approach
starts from a network boundary node. The identification of
such node is not straightforward and could not be processed
locally as it was the case for boundary nodes. To this end,
we present below a distributed and localized algorithm that
is able to identify a starting network boundary node.



Definition 4. (unvisited Sub-Network)
We define the current unvisited sub-network, noted Ω, as the
set of all currently unvisited nodes.

2.1 PA Overview
The key idea behind our algorithm is to let the serial pro-

cess visiting nodes, starting from one node, located on the
external boundary of the network, by means of a boundary
traversal process. Hence, from this node, the process starts
visiting nodes based on their localization on the boundary
of the unvisited region Ω. Initially, for any query we have
Ω = N . Then, at every step of the serial process, the cur-
rently visited node is removed from Ω (marking itself as
visited) and in turn it selects the next unvisited node lo-
cated on the boundary of Ω. This process is repeated until
all nodes are visited: the last node that has all its neighbors
visited detects query termination and sends the result to the
QIN by mean of any geographical routing approach [5]. The
term peeling comes from the fact that all currently visited
nodes belong to the boundary of Ω. Figure 2(a) illustrates
the peeling process.

Ending
Node

Starting 
Node

Missed
Nodes

(a) (b)

Figure 2: Peeling Serial Algorithm.

This simple process whereas it behaves very efficiently in
dense and hole free topologies (it nearly derives the optimal
path), it however does not ensure completeness (i.e., be able
to visit all nodes) for all network topologies. A simple exam-
ple is when a node is connecting two parts of the network.
Once the latter is visited, the unvisited region connectivity
is not ensured any more leading thus to missed unvisited
nodes as illustrated into Figure 2(b).

To prevent this situation, certain nodes have to be main-
tained ”alive” to ensure network connectivity even though
they have been visited. For this reason, we have introduced
the notion of Bridge Node as follows:

Definition 5. (BRidge Node)
A node is said Bridge Node, noted BRN , when it verifies
the two following conditions: (a) at least two of its unvisited
or BRN neighbors could not communicate and (b) none of
the other unvisited or BRN neighbors are able to connect
these two neighbors.

In other terms, the current node is the only node able
to ensures connectivity between these two neighbors. An
illustration of BRN is given into Figure 3. The left node is
considered as BRN whereas the right one is not.

It has to be noted that the current node could locally
decide whenever it is a BRN or not based only on neigh-
boring information. No additional information than what is
already available is required. This ensures that our approach

Visited
Nodes 

Bridge Node Not Bridge Node 

Figure 3: Bridge Node definition.

remains localized and does not generate any additional com-
munication overhead. We also note that a node could change
its ”status”fromBRN to visited node depending on its local-
ization on one hand and on its currently visited neighbors
on the other hand. The broadcasting/listening nature of
the communication model used in wireless sensor networks
ensures that neighboring status updates do not incur any
additional communication overhead.

Property 1.
Bridge nodes ensure unvisited sub-network (e.g. Ω) connec-
tivity

Proof. We prove by contradiction. Initially Ω is con-
nected. We assume that the current node, Ni is not a bridge
node whereas at the same time it breaks Ω connectivity.
From Definition 5, if Ni is not a bridge node, this means
that for every pair of its neighbors, there is a link connect-
ing them without passing by Ni. Hence, Ω is then connected
which contradicts the fact that Ni breaks Ω connectivity.

Although bridge nodes resolve the problem of unvisited
sub-network connectivity, they however rise another prob-
lem when the network contains hole. In fact, according to
Definition 5, all hole boundary nodes, belonging to the same
hole H, will be marked as bridge nodes. The consequence,
in this case, is that some nodes, with particular localization
around the hole, could not be visited any more i.e., they pre-
vent the peeling process to access those nodes leading hence
to query completeness violation as illustrated into Figure 4.
Moreover, as all hole nodes are ”labeled” as bridge’s nodes,
the termination of the peeling process, as stated earlier, is
not guaranteed too. It leads usually to looping situation as
showed into the example of Figure 4.

Bridge Nodes

Hole

Missed 
Nodes

Figure 4: Example of peeling looping.

To resolve these two important issues, while continuously
maintaining the connectivity of the unvisited nodes (e.g., Ω),
we have associated a particular rule to special hole nodes
defined as follow:

Definition 6. (Hole Gate Node (HGN) )
For each hole H, we define its Hole Gate Node (HGN) (HGN ∈
H) as the first node that holds the peeling process.



The goal behind defining Hole Gate Nodes is to let the
peeling process going inside the hole. By doing so, we avoid
situations in which nodes, located ”around” holes, could not
be visited as explained in the example. The questions that
follow are how a node could be labeled as HGN? and what
is/are the associated rule(s)?

To answer the first question, two steps are necessary: (a)
a node must first determine if it is located on the boundary
of a hole or not? As explained above in Definition 1, this
could be done locally by each node thanks to the neighboring
available information ; (b) Secondly, when a node is aware of
its localization on the boundary of a hole, it could determine
if it is the HGN of this hole or not when it receives the
peeling message for the first time: if the peeling comes from
a node that does not belong to the hole then it deduces that
it is the first visited node of the hole and consequently it is
the HGN of this hole. Otherwise, the hole has already its
HGN. According to that, we note that each hole has only one
corresponding HGN. For these two steps, we mention that
no extra-information is needed and could then be processed
locally.

The second question has to be handled carefully in order
to prevent looping inside the hole. We observe that each
hole node has two hole neighbors. We note them the Left
Neighbor (LN) and the Right Neighbor (RN) as presented
into Figure 5. When a node detects itself as a HGN, it
performs the following steps:

1. It contributes into the query process and marks it self
as a HGN.

2. According to the peeling direction (i.e., clockwise or
counterclockwise), it chooses either LN or RN as the
next query holder. For sake of simplicity, we assume
that it chooses LN as the next hop.

3. Node RN is then notified to update its neighbors table
with ”visited” label for node HGN even when the latter
is considered as BRN. In other terms, we break the link
between the two nodes HGN and RN (see Figure 5).

4. HGN sends the query to LN.

When LN holds the query, the process could continue nor-
mally by using the boundary traversal algorithm. Step 3
prevents the peeling to loop inside the hole since RN will at
its turn consider HGN as visited node and could not select
it as next hop.

Broken LinkHole

Hole Gate Node

Figure 5: Hole Gate Node Rule.

These rules, applied by the HGN of each hole, were practi-
cally sufficient to ensure query completeness. In fact, among
the numerous network configurations, generated randomly
as explained into Section 4, none has experienced network
completeness violation i.e., all alive nodes in the network

have been visited by our approach. Nevertheless, from the-
oretical point of view, we have constructed by hand some
topologies in which our approach fails to visit all nodes. An
example of such a topology is presented into Figure 6(a).
When node N1 receives the query, it considers itself as the
HGN of hole1 and applies the corresponding rules accord-
ing to previous steps. Hence, the link E(1,17) is broken and
the query is oriented toward node N2. Similarly, when node
N4 receives the query, it considers itself as the HGN of the
hole located on its left side and decides to break the link
E(4,5). It sends then the query to node N10. By doing so,
all nodes located on hole2 are lost and could never be visited
later on. The origin of this misbehavior comes from the fact
that node N4 could not locally know that it is located on
the same hole. In other terms, node N4 locally ”views” two
holes whereas it is the same hole, leading hence to a False
HGN detection. This information is not available for N4 at
the moment of receiving the query.
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Figure 6: Peeling Misbehavior.

To alleviate this problem, we have added an additional
rule to the HGN, when it detects itself as a HGN. Before
selecting its next hop according to step 2, it first sends a
control packet, named Hole Control Packet (HCP), toward
the hole as showed in Figure 6(b). The objective of this
packet is twice: first it informs all hole nodes that the hole
has ”got” its HGN and consequently they will not consider
this hole when they receive the query. Secondly, it allows
nodes to detect if their ”local holes” do not belong to the
same hole. For instance, node N4 will know that its left
and right holes belong to the same hole, which has already
got its HGN. In this case, when it receives the query, it will
not consider itself as HGN of this hole and hence lets the
peeling process continuing after contributing in it. However,
node N5 could be able to detect itself as the HGN of hole2
and apply consequently the corresponding rules i.e, sending
a HCP and breaking the link with the right neighbor as
shown into Figure 6(b).

The HGN rules could be seen somehow as a way of lin-
earizing holes preventing hence looping situations and allow-
ing inside holes exploration. On the other hand, they always



preserve the unvisited region connectivity i.e, the removed
links could not lead to Ω partition.

Property 2. HGN rules do not partition the unvisited
region Ω i.e., Ω connectivity remains.

Proof. We assume that the broken link, says E(HGN,RN),
leads to Ω partition. This means that no path could connect
nodes HGN and RN. However, we note that both sides of
the broken link E(HGN,RN) could not by construction be-
long to the same hole, thanks to HCP rule lunched by the
HGN of the hole. Also, by construction, each hole holds one
and only one HGN. Consequently, it exists a path connect-
ing HGN to every node in the hole without passing through
link E(HGN,RN), in particular node RN . This contradict the
initial assumption.

Hole 2 

Hole 3 

Hole 1 

Figure 7: Node’s local holes selection.

The overall serial query algorithm, executed by each node
receiving the query message, is depicted into Algorihm 1.
We assume that the boundary traversal algorithm is using
counterclockwise direction.

Algorithm 1 Peeling Algorithm.

Require: Receive message M from the previous hop
1: if (Not visited for this query) then
2: Contribute in the query.
3: Mark itself as visited node for this query.
4: if (current node is HGN) then
5: // In case where the current node is located on more
6: // than one unexplored hole (see Figure 7).
7: From the incoming message, select the first coun-

terclockwise hole among local unexplored holes.
8: Send HCP toward the selected hole
9: Upon receiving the HCP, mark itself as HGN

10: Select the left neighbor as the next hop.
11: else
12: Select the next hop among unvisited and BRN

neighbors.
13: end if
14: else
15: Select the next hop among unvisited and BRN neigh-

bors
16: end if
17: Compute its status (i.e., is the current node a BRN or

not?)
18: send the message to the next hop Nnext

2.2 Boundary Traversal Algorithm
As seen before, the use of a boundary traversal algorithm

is crucial in our peeling algorithm to ensure its complete-
ness (i.e., visiting all nodes). Of course, the distributed and

localized nature of the boundary algorithm must be main-
tained in order to reach good communication performances.
In previous work [9], we have proposed an efficient boundary
traversal algorithm, called Curved Stick (CS). In addition to
deriving shorter paths, this approach has the advantage of
being fully localized while at the same time formally ensures
boundary traversal. It works as follows:

The process always starts from a boundary node, called
Boundary Traversal Initiator (BTI). The BTI initiates a
”Curved Stick” (CS) which has the form of an arc with ra-
dius of R (node’s communication range). Initially the CS,
hinged at the current node, is oriented in the direction of
the hole/network boundary as shown into Figure 8. From
this position, the BTI sweeps the CS counterclockwise1 until
a neighbors is hit. The latter is then selected as the next
hop and will repeat the same process starting from its cor-
responding ”starting point”, defined as fellow:

Definition 7. (Starting Point)
We define the Starting Point of node Ni+1, noted SPi+1

as the intersection point between the two circles of range R,
centered at Ni and Ni+1 and following the direction ∠Ni−1NiNi+1

where Ni−1 is the previous hop of node Ni and Ni+1 is the
next hop of Ni.

And so on until the message gets back to the BTI which
means that a cycle has been achieved (hole boundary detec-
tion for instance).

Theorem 1.
Whenever started from a boundary node, curved stick process
ensures boundary traversal.

Proof. Because of space limitation, we provide here just
the idea behind our proof. Details can be found in [9]. We
assume that CS does not ensure boundary traversal i.e.,
there is a node located in the grey area if Figure 8 which
is not hit by CS and show that this leads to a contradic-
tion.

Starting Points

Boundary

CSN
1

N
2

N
3

N
4

Figure 8: Curved Stick boundary traversal algo-
rithm.

In our peeling implementation, we have made use of the
curved stick approach.

2.3 Starting Node Detection
As mentioned previously, our peeling approach must start

from a node located on the external boundary of the net-
work. Furthermore, each network boundary node must up-
date the list of its local holes in order to avoid considering
the external network boundary as a hole.

1The sweeping direction does not impact the process i.e.,
the clockwise direction could also be used but the direction
must remain the same during the whole process.



Several approaches could be developed to inform nodes
about their localization on the external boundary of the net-
work. One could though about a centralized approach in
which every node sends its localization information to the
sink and the latter, through local processing, detects those
located on the external boundary of the network. After, this
information is sent back to NBNs. Besides its important en-
ergy consumption, this approach presents another very lim-
itative weakness: it is not scalable any more. Scalability
remains however an important requirement to protocols in
large-scale sensor networks.

To overcome these limitations, we propose a distributed
and localized approach, inspired from our previous work [9],
to ensure external boundary nodes detection. This approach
does not require any additional knowledge than node’s lo-
calization and neighbors information.

The key idea behind our approach is to use geographic
greedy routing to try to reach a virtual node located outside
the network area, as illustrated into Figure 9. Hence, a
message is initiated from a source node, usually the sink,
to reach this virtual node. The source node, knowing the
location of the destination node, sends the packet to its 1-
hop neighbor which is the closest node to the destination
among all neighbors. Knowing the destination location from
the received message, every node in the path repeats this
process until the message fails into local minimum situation
(i.e., the message could not be delivered to the next hop
as the current node is the closest one to the destination).
From this node, also called local minimum node, recovering
process is lunched using Curved Stick boundary traversal
approach as explained earlier. This process is repeated until
the current selected node is close to the virtual node than
the local minimum node. Then the greedy forwarding is
used again, and so on.

Following this approach and knowing that the virtual node
is unreachable by construction, the message will make a cy-
cle and gets back to the last local minimum node, noted
Nl.

Property 3.
The last local minimum node, noted Nl, belongs to the set
NBN.

Proof. Initially, all nodes of the networks are connected
(i.e., network connectivity assumption). Also, from the fact
that CS ensures boundary traversal (c.f., Theorem 1) on
one hand and that greedy rule selects the closest node to
the virtual node on the other hand, it results that the last
local minimum node has the lowest distance to the virtual
node among all nodes of the network. Hence it is located on
the network boundary.

Once a node has been identified as belonging to the set
NBN, we note Node Nl (N14 in the example of Figure 9),
from this node and using the CS boundary traversal algo-
rithm, all visited nodes belong to the set of network bound-
ary nodes. Hence the latter could easily update their local
holes list.

3. PROOF OF CORRECTNESS
As for any decentralized algorithm, we provide in this sec-

tion correctness proofs of our peeling algorithm. More pre-
cisely, we prove that it terminates (i.e., does not fail into
looping) and visits all nodes of the networks (i.e., query
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Figure 9: Network Boundary Nodes detection pro-
cess.

completeness). We point out that PA is based on two main
ideas. The first one is to iteratively shrink the resulting
network by visiting the external boundary without loss of
connectivity (Property 1), while the second one (i.e., HGN
rules) allows the transformation of the input network into a
connected one without holes (Property 2).

Formally, PA constructs iteratively the set Ωi, following
the recurrent relationship defined as follows:{

Ω0 = N
Ωi+1 = Ωi − {Pi}

Where Pi is the first visited node which is not a bridge
node during the scan of Ωi. For instance, in Figure 6(b), if
we note the sub-network of nodes 1 to 18 as Ωk, then Ωk+1 =
Ωk − {N1}, Ωk+2 = Ωk+1 − {N2}, Ωk+3 = Ωk+2 − {N3},
Ωk+4 = Ωk+3 − {N9}, Ωk+5 = Ωk+4 − {N8}, . . .

Lemma 1.
At each iteration i, PA visits a no bridge node Pi (i.e., Pi

exists).

Proof. Suppose that at step i, Pi does not exist. Since
CS ensures boundary traversal (cf. Theorem 1), this means
that all visited nodes are bridge nodes . Consequently, the
visited nodes form a hole. This contradicts the no existence
of holes guaranteed by HGN rules. Therefore, we deduce
that at each step i, Pi exists.

With the help of the previous lemma, we have:

Theorem 2.
PA generates a finite sequence P =

⋃k
i=0 Pi (i.e., PA termi-

nates).

Proof. To prove that PA performs a finite number of
iterations and terminates, we should show that the number
of nodes in Ωi decreases as i grows. Initially we have Ω0 =
N , which is a finite set of nodes. From Lemma 1, Pi exists at
each iteration i. Therefore, it exists k such that Ωk+1 = ∅.
Hence, we prove that P is finite and PA terminates.

We define the set of Ωi boundary nodes, noted B(Ωi), as
follows:

Definition 8. (Ωi Boundary Nodes)
The boundary of Ωi is a cyclic sequence of unvisited or bridge
boundary nodes such that the closed region bounded by this
non self-intersecting polygonal sequence contains all the nodes
of Ωi.



Lemma 2.
At each iteration i, node Pi ∈ B(Ωi) i.e., Pi is on the bound-
ary of the current sub-network Ωi.

Proof. We prove by induction. Initially, PA starts at a
node located on the boundary of the network Ω0 and scans
the nodes of the boundary of Ω0 (as explained in Boundary
Traversal Algorithm, see Subsection 2.2) until it hits P0.
Thus P0 is on the boundary of Ω0, hence the property is
true for i = 0. Suppose that the property is true for i and
we should show that it remains true for i+1. As the property
is true for i, the current node is Pi and it is located on the
boundary of Ωi. Boundary Traversal Algorithm guarantees
that next hop P of Pi is on the boundary of Ωi. This next
hop is also on the boundary of Ωi+1. If P is not a bridge then
Pi+1 = P otherwise starting at P , PA scans the boundary
nodes of Ωi+1 until it hits a no bridge node Pi+1. Hence the
property is also true for i+ 1.

Theorem 3.
The sequence P generated by PA contains all nodes of the
network (i.e P = N ).

Proof. We assume that P is different from N and we
seek to derive a contradiction. We note Nu as an unvisited
node missed by PA algorithm, namely Nu 6= Pi for all i =
0, ..., n. Specifically, consider the integer 0 < j < n such
that Nu belongs to Ωj and does not belong to Ωj+1 (i.e Nu

is missed at iteration j). As at step j, PA hits only nodes
on the boundary of Ωj and does not miss any boundary
node (cf. Lemma 2 and Theorem 1) then Nu cannot be
located on the boundary of Ωj . Thus Nu belongs to Ωj+1,
which contradicts the fact Nu 6∈ Ωj+1, and consequently
contradicts the initial assumption.

In fine, PA terminates and ensures query completeness.

4. PERFORMANCE EVALUATION
For comparison purposes, we have implemented, in addi-

tion to our peeling algorithm, the well known serial approach
called Depth First Search (DFS) [14]. DFS constructs a
rooted tree by expending, at each time, this tree towards
unvisited nodes. Hence, each node, except the root, has
a ”father” node and each node has one or several children
except the leafs. To explore a network with N connected
nodes, this algorithm requires 2 ∗ (n − 1) communications
whereas an optimal Hamiltonian path, that does not exist
in every network, requires (n − 1) hops. DFS ensures com-
pleteness since it allows visiting all nodes. We have used
OMNET++ simulator [1], with the Castalia Package to run
our simulations.

In our comparison, we have considered three main metrics:
(a) communications efficiency which records the number of
communications needed to end a query; (b) energy consump-
tion [7] of all nodes to finish a query and (c) Time-To-End
that reflects the time taken by each query to deliver the
result.

The overall simulation parameters are depicted into Ta-
ble 1. For each query configuration (i.e., network deploy-
ment and query initiator), we have run the two studied ap-
proaches and recorded the obtained results. The presented
results below are the mean values of 30 runs for each network
configuration.

Figure 10 plots the results of required communications
(e.g., number of hops). We have also plotted the theoretical

Parameter value(s)

Network Area (m2) 250 x 250
Transmission range (m) 50
Nodes distribution Uniform
Number of nodes 25, . . . , 300
Query initiator location Random
Packet size 50 Bytes

Table 1: Simulations parameters

optimal path which does not necessary exist in any network
configuration.
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Figure 10: Communication requirement for one
query.

As expected, the communication requirement increases
with the increase of the number of nodes in the network
for the two approaches. This increase is linear for DFS ap-
proach. In sparce networks, with low densities, DFS slightly
outperforms PA. This is due to the fact that in such net-
works, the probability of facing linear topologies is high.
We recall that linear topologies are the most disadvanta-
geous configurations for our peeling algorithm. In fact, a
deep analysis of PA behavior in such topologies reveals that
the initialization phase (i.e., starting node detection) is the
most communications consuming part. As an example, we
have constructed a linear topology composed of 10 nodes,
and chosen the worst case where the query initiator was lo-
cated on the opposite side of the virtual node, as explained
into Subsection 2.3. In this configuration, the initialization
phase required [9 + (2 ∗ 9)] + (2 ∗ 9) communications, repre-
senting respectively the starting node detection and the no-
tification of external network boundary nodes, whereas the
query processing required 9 communications. In compari-
son, DFS required (2 ∗ 9) communications. Nevertheless, it
is worthwhile to notice that our approach does not require
explicitly initialization phase for each query execution. In
fact, once a node has detected itself as the starting node and
noticed all network boundary nodes about their localization
during the first query, it could avoid this operation for all
the remaining queries. For instance, in our linear example,
the second query, even in the worst case (i.e., initiated from
a node located far away form the starting node), will re-
quire 9 communications to reach the starting node and 9
communications to execute the query. An so on. Finally,
for an evaluation of k queries, in the worst cases, peeling



approach requires [9+(2∗9)+(2∗9)]+k(9+9) communica-
tions whereas DFS requires k(2 ∗ 9) communications. When
k becomes large, the difference between peeling and DFS
in terms of communication performance will not be notice-
able. This analysis is valide only in the worst network con-
figuration for our peeling approach (i.e., linear topologies).
However, in randomly deployed networks, beyond a certain
density, PA largely outperforms DFS as shown in the figure,
even for single query as it is the case in our results. For
instance, the improvement when the network is composed
of 300 nodes is more than 31%.

Figures 11 and 12 present the obtained results for the to-
tal energy consumption and the query duration (i.e., time
to end) respectively. Similarly, PA algorithm presents bet-
ter behavior than DFS from a certain network density (e.g.
75 nodes). For energy consumption, the improvement ranges
from 5% in sparce networks to 43% in dense networks whereas
the query responsiveness reduction ranges from 7% to 30%.
In summary, the overall results show clearly the effectiveness
of our proposed peeling algorithm.
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Figure 11: Total energy consumption for one query.
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5. CONCLUSION AND FUTURE WORKS
Serial approaches for data fusion in WSNs have shown

their effectiveness in terms of reducing communication over-
heads as well as energy consumption. Nevertheless, previous
research works have not explicitly addressed the key issue of

constructing the serial path. Moreover, the query complete-
ness (in the sense of visiting all nodes) was not ensured any
more. In this paper, we have tackled this important issue
by proposing a localized approach, named peeling algorithm.
The main advantage of our approach is that does not re-
quire any additional knowledge than what is traditionally
available in WSNs. It is one hop approach and does not
require any knowledge about the topology of the network.
We have formally proven that our approach ensures query
completeness and is free of looping. The obtained simulation
results have highlighted its effectiveness in terms of reducing
communications requirement, energy consumption and time
responsiveness to accomplish one query.

In future work, we plan to consider additional network
nodes distributions than the uniform one. In fact, some
preliminaries results on other distributions, while they con-
firmed again the effectiveness of our peeling algorithm, have
highlighted however other possible enhancements because
we have noticed that some links and bridge nodes are so-
licited more frequently than the average. We believe that
introducing additional rules for these specific nodes will en-
hance our peeling algorithm.

Another important issue, that we plan to address in future
work, is robustness. in fact, serial approaches are known to
be vulnerable to links and nodes failures. How to make our
peeling algorithm robust will constitute our future challenge.
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