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Abstract—Reduction is a core operation in parallel computing
that combines distributed elements into a single result. Optimizing
its cost may greatly reduce the application execution time, notably
in MPI and MapReduce computations. In this paper, we propose
an algorithm for scheduling associative reductions. We focus
on the case where communications and computations can be
overlapped to fully exploit resources. Our algorithm greedily
builds a spanning tree by starting from the root and by adding
a child at each iteration. Bounds on the completion time of
optimal schedules are then characterized. To show the algorithm
extensibility, we adapt it to model variations in which either
communication or computation resources are limited. Moreover,
we study two specific spanning trees: while the binomial tree is
optimal when there is either no transfer or no computation, the
k-ary Fibonacci tree is optimal when the transfer cost is equal to
the computation cost. Finally, approximation ratios of strategies
based on those trees are derived.
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I. INTRODUCTION

Reduction is a generic operation that commonly occurs
in parallel computations: it consists in combining several dis-
tributed elements to produce a single result, either as an inter-
mediate or a final computational step. This operation arises, for
instance, in two major parallel programming paradigms: MPI
(Message Passing Interface) and MapReduce [1]. In the context
of the MPI programming model, the MPI_Reduce collective
function produces a single array by combining several arrays of
the same size using an element-wise operation. More recently,
the reduction problem has been brought forward again with
the emergence of the MapReduce programming model: a first
step (Map) filters some initial data sets into intermediate data
that are then aggregated in a second step (Reduce).

When reducing several elements that are stored on separate
machines, elements are first transfered before being processed.
With associative reductions, processing data consists in per-
forming binary operations on those elements. Hence, it is pos-
sible to reduce subsets of elements in parallel for minimizing
the overall completion time. In this case, the execution relies
on a spanning tree that determines the transfers between each
pair of machines: each leaf first sends its element to its parent,
which reduces then the received element with its own. This
process is then repeated by discarding all leaves at each step
until the root contains the final result.

Existing work on this topic has mainly focused on schedul-
ing communications without accounting for computation costs.
In this work, we consider that neither transfer nor computation
costs are negligible and that each of those costs are homoge-
neous. It is the case, for example, when multiplying distributed
square matrices: each machine has a matrix and the objective is
to obtain the product of all matrices on an arbitrary machine.
Depending on the matrix size and the characteristics of the
platform, computation and communication costs may be com-
parable. Therefore, we allow communications to overlap with
computations to fully exploit the resources. This overlapping
occurs when any parent has several children in the spanning
tree: after having received an element from a first child, the
parent may start receiving a second element while processing
the first one. As the communication cost may differ from the
computation cost, the degree of overlapping may vary, which
makes this problem difficult.

We propose an algorithm that schedules optimally transfers
and reductions by relying on a spanning tree. This algorithm
starts by scheduling the root that will contain the final result.
Other transfers are then scheduled greedily. Moreover, this
algorithm is adapted when the number of concurrent transfers
or the number of machines processing data is limited. This
shows the extensibility of the greedy principle that consists in
choosing the parent that minimizes the completion time of each
machine. Two specific tree structures are also investigated.
The binomial tree [2] is a spanning tree that is known to be
optimal when there is either no transfer or no computation.
It is used in two major MPI implementations: MPICH21 and
Open MPI2. We introduce a similar tree, the k-ary Fibonacci
tree, which is optimal when all transfer and computation costs
are equal. While the binomial tree minimizes the number
of steps (at each step, any machine performs at most one
transfer and one reduction), the k-ary Fibonacci tree optimizes
the pipelining of computations by prefetching data whenever
it is possible, which enables some machines to sequentially
perform several computations without waiting. For each tree, a
corresponding strategy is derived from the main algorithm and
its approximation ratio is analytically and empirically studied.
Some of these results are also available in the companion
research report [3].

1For broadcast, reduction, allreduce and barrier operations:
http://www.mcs.anl.gov/research/projects/mpich2/ (version 1.4.1p).

2For broadcast, reduction, gather and scatter operations: http://www.open-
mpi.org/ (version 1.4.5).



The paper is organized as follows. Section II discusses
the related work. The model is then detailed in Section III.
Section IV presents the main algorithm, its correctness proof
and bounds on the completion time of optimal schedules.
Sections V and VI covers a similar analysis for an extension
of this algorithm. Finally, Section VII describes the specific
spanning trees.

II. RELATED WORK

The literature has first focused on a variation of the
reduction problem, the (global) combine problem [4], [5],
[6]. Algorithmic contributions have then been proposed to
improve MPI implementations and existing methods have been
empirically studied in this context [7], [8]. Recent works
concerning MapReduce either exhibit the reduction problem
or highlight the relations with MPI collective functions. We
describe below the most significant contributions.

Bar-Noy et al. [9] propose a solution to the global combine
problem: similarly to allreduce, all machines must know the fi-
nal result of the reduction. They consider the postal model with
a constraint on the number of concurrent transfers to the same
node (multi-port model). However, the postal model does not
capture varying degree of overlapping between computations
and communications.

Rabenseifner [10] introduces the butterfly algorithm for the
same problem, with arbitrary array sizes. Several vectors must
be combined into a single one by applying an element-wise
reduction. The algorithm solves the reduction problem in its
first phase. Then, it broadcasts the result to all machines. The
main principle lies in halving arrays successively. At each step,
machines exchange data pairwise (each machine first contacts
its closest neighbor, then its second closest neighbor, etc). The
first half of the array is sent from one machine to the other
while the second half is transfered in the opposite direction.
Each machine performs reductions on the half for which
they both possess data. Since this half only is considered for
subsequent operations, transfer sizes are divided by two at each
step. When all pairwise interactions have been done, the final
result is scattered across all machines. To gather it, a similar
algorithm is used. Another solution has also been proposed
when the number of machines is not a power of two [11].
Those approaches are specifically adapted for element-wise
reduction of arrays. Van de Geijn [12] also proposes a method
with a similar cost. In our case, the reduction is not applied
on an array and the computation is assumed to be indivisible.

Sanders et al. [13] exploit in and out bandwidths. Although
the reduction does not require to be applied on arrays, the
operation is split in at least two parts. This improves the
approach based on a binary tree by a factor of two.

Legrand et al. [14] study steady-state situations where
a series of reductions are performed. As in our work, the
reduction operation is assumed to be indivisible, transfers and
computations can overlap and the full-duplex 1-port model is
considered. The solution is based on a linear program and
produces asymptotically optimal schedules with heterogeneous
costs. On the other hand, our solution has a lower complexity,
but requires homogeneous costs.

Liu et al. [15] propose a 2-approximation for heteroge-
neous costs and non-overlapping transfers and computations.

Additionally, they solve the problem when there are only two
possible speeds or when any communication time is a multiple
of any shorter communication time. In the homogeneous case,
their solution builds binomial trees, which are covered in
Section VII-C.

In the MPI context, Kielmann et al. [16] design algorithms
for collective communications, including MPI_Reduce, in
hierarchical platforms. They propose three heuristics: flat tree
for short messages, binomial tree for long messages and a
specific procedure for associative reductions in which data
are first reduced locally on each cluster before the results are
sent to the root process. Pjesivac-Grbovic et al. [17] conduct
an empirical and analytical comparison of existing heuristics
for several collective communications. The analytical costs of
those algorithms are first determined using different classi-
cal point-to-point communication models, such as Hockney,
LogP/LogGP and PLogP. The compared solutions are: flat tree,
pipeline, binomial tree, binary tree and k-ary tree. Thakur et
al. [18] perform a similar study for several MPI collective
operations and compare the binomial tree with the butterfly
algorithm [10] for MPI_Reduce. These works, however, do
not provide any guarantee on the performance.

Finally, this problem has also been addressed for MapRe-
duce applications. Agarwal et al. [19] present an implemen-
tation of allreduce on top of Hadoop based on spanning
trees. Moreover, some MapReduce infrastructures, such as
MapReduce-MPI3, are based on MPI implementations and
benefits from the improvements done on MPI_Reduce. Hoe-
fler et al. [20] further discuss how anticipated MPI-2.2 and
MPI-3 features can optimize the Reduction phase.

III. MODEL

The model is divided into two parts. First, we characterize
the operations that are performed and their costs. Then, we
specify how those operations are planned and what constitutes
the output of the problem. We conclude with the problem
definition and a discussion of the main assumptions.

A. Platform and Application Model

Let n denote the number of elements and machines. Each
element is available at time zero on a different machine. Any
machine (numbered from 1 to n) may reduce two elements
and produces a single element of the same nature in time c
with an associative operation. Let d be the time to transfer
an element between any pair of machines. As we assume
that transfers overlap with computations, a machine can fetch
new data for future operations while reducing two elements.
However, each machine is involved in no more than one
transfer at any given time (1-port model [21]). Then, the
time required to process k + 1 elements on a single machine
is d+ (k− 1) max(d, c) + c (d for retrieving the first element
with which the local element is reduced, followed by k
reductions). If d < c, this simplifies as d + kc, otherwise,
it is kd+ c.

3http://www.sandia.gov/ sjplimp/mapreduce.html
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Figure 1. Schedule and corresponding spanning tree for reducing four
elements (n = 4) when the transfer cost is equal to the computation cost
(d = c). The transfer times are: t4 = 0, t3 = d and t2 = 2d. For instance,
machine M2 receives an element from M4 between time 0 and time d,
reduces it with its own between time d and time 2d and sends the result
to M1 between time 2d and time 3d. In the case of the matrix multiplication
A × B × C × D with A on M1, B on M2, C on M3 and D on M4,
the following circular permutation of the machines produces a valid schedule
regarding the commutativity: M1 → M2, M2 → M4, M4 → M3 and
M3 → M1 (each operation consists then in multiplying the local element
with the received one in the correct order).

B. Scheduling Model

All the transfers are characterized by a rooted tree, called
spanning tree, in which each vertex represents a machine
and each edge (i, pi) represents a transfer from machine i
to its parent pi. Moreover, the transfer of the final element
computed by i (or its initial element if i is a leaf) starts
at time ti. Any machine reduces every element it receives
with its own pairwise as soon as possible. The root of the
spanning tree, which contains the final result, is arbitrary (its
parent and its transfer time are both left undefined). Finally,
the schedule characterizing the succession of transfers and
reduction operations (parent and transfer time of each machine)
is noted {pi, ti}1≤i≤n.

As machines are assumed to be homogeneous, their order
has no impact on any schedule structure. The machines can
thus be permuted in any optimal schedule such that the non-
commutative property of the reduction operation is respected
(see Figure 1 for an example). In particular, if the root has
two children which are the roots of two subtrees of sizes S1

and S2 (with n = S1 + S2 + 1), then the first S1 elements
of an expression with a non-commutative operator can be
assigned recursively to the machines of the first subtree, while
the last S2 elements are assigned to the second subtree. This
permutation can thus be found in linear time.

C. Problem Definition

The problem consists in determining a sched-
ule {pi, ti}1≤i≤n with an optimal length, i.e., with the
shortest completion time. Figure 1 illustrates an optimal
schedule and its corresponding spanning tree for reducing
four elements.

D. Discussion

While each machine starts with an initial element in the
MPI reduce collective operation, it is not necessarily the case
in MapReduce applications. This assumption holds when each
mapper becomes a reducer because reducers have then access
to the data resulting from the mappers. On the contrary, when
reductions are performed on distinct machines, initial elements
need to be retrieved locally on reducers. However, once this

retrieval phase is complete, our assumption holds because each
reducer possesses one initial element.

We also assume that all elements are available simultane-
ously. This is valid for the MPI_Reduce collective because
it is blocking. However, for MapReduce applications, mappers
can be executed in waves. Our model does still apply when the
time taken by each wave of mappers is sufficient for reducing
all the available results, in which case the following algorithms
may be used.

Transfer and computation costs are furthermore supposed
to be constant. While this is application-specific for the compu-
tation costs, transfer costs on non-dedicated platforms such as
clouds may be impacted by high variability even with constant
message lengths. The strength of this hypothesis depends thus
on the application and on the platform. Exploring situations
with high variability and heterogeneity is outside the scope of
this article but may be explored in future work.

As schedules are static, their robustness to dynamic
changes and faults is limited. Those methods, however, require
no synchronisation between machines since the reduction tree
can be built identically on each machine (only the identifier
of each machine needs to be globally known). Moreover, this
study allows to highlight the structure of the problem such
as the two specific reduction trees that are characterized in
Section VII and constitutes a first step for further work.

IV. GREEDY ALGORITHM

This section presents the main greedy algorithm. Before
explaining it, we analyse the transfer times of any feasible
schedule and we remark that the problem can be simplified. In
order to prove its correctness, we outline the general structure
of any greedy algorithm. Finally, bounds on the length of
optimal schedules are proposed.

A. Default Transfer Times

We first characterize a lower bound on each transfer time,
i.e., the time at which any machine finishes its reductions and
starts sending the resulting data. Let mi be the number of
children of machine i (i.e., mi = |{j : pj = i}|) and fi be the
time at which machine i finishes its reductions and is ready
to transfer its data to pi (if pi is already receiving an element
at time fi, the transfer is postponed and fi < ti). For any
machine i that is a leaf, fi is set to zero. Moreover, tji is
the jth shortest transfer time among all children of machine i.

Lemma 1: Any machine i that is not a leaf finishes its re-
ductions at time fi = maxj∈[1,mi](t

j
i+d+(mi−j) max(d, c)+

c).

Proof: We prove by induction on k that the reduction
of the first k elements received by machine i finishes at time
fki = maxj∈[1,k](t

j
i + d+ (k − j) max(d, c) + c) and, hence,

that machine i is ready to transfer its data at time fi = fmii .

Induction basis: the case for k = 1 is trivial since the
reduction requires a single transfer and a single reduction, and
thus finishes at time f1i = t1i + d+ c.

Induction step: there are two cases. If the transfer of
the (k+1)th element starts before fki −min(d, c), then the re-



Algorithm 1 Setting default transfer times
1: inputs
2: d {communication costs}
3: c {computation costs}
4: n {number of elements}
5: {pi}1≤i≤n {spanning tree}
6: do
7: M ← {i : 1 ≤ i ≤ n}
8: while M 6= ∅ do
9: L← {i : i ∈M,@j ∈M,pj = i} {select the

leaves in M}
10: for all i ∈ L do
11: P ← {j : 1 ≤ j ≤ n, pj = i} {select children of

machine i}
12: sort P by data availability dates fj in ascending

order
13: tprev ← −∞ {longest defined transfer time

among children of machine i}
14: for all j ∈ P do
15: tj ← max(fj , tprev + d) {fj is determined

using Lemma 1}
16: tprev ← tj
17: end for
18: end for
19: M ←M \ L
20: end while
21: return {ti}1≤i≤n

duction can proceed without interruption. The computation fin-
ishes at time fk+1

i = fki −min(d, c)+d+c = fki +max(d, c).
Using the induction hypothesis, fk+1

i = maxj∈[1,k](t
j
i + d +

(k + 1 − j) max(d, c) + c). As tk+1
i ≤ fki − min(d, c),

fk+1
i = maxj∈[1,k+1](t

j
i + d + (k + 1 − j) max(d, c) + c)

and the induction hypothesis holds for k + 1.

Otherwise, the data transfer of the (k+ 1)th element starts
after fki −min(d, c) and the reduction finishing time depends
only on tk+1

i , i.e., fk+1
i = tk+1

i + d + c. As tk+1
i ≥ fki −

min(d, c), fk+1
i ≥ fki −min(d, c)+d+c. Using the induction

hypothesis, fk+1
i ≥ maxj∈[1,k](t

j
i +d+(k+1−j) max(d, c)+

c) and the induction hypothesis holds for k + 1.

Transfer times can optimally be set to their lowest possible
values with Algorithm 1. This algorithm works by peeling all
the leaves at each iteration (on Line 19) until only the root
remains. At each iteration, the transfer times of the previous
leaves are set to their lowest values on Line 15. As the transfers
to a given machine must not overlap due to the 1-port model,
every ti must be determined in a specific order. The algorithm
starts then by assigning transfer times to machines whose data
are available the earliest (children are sorted accordingly on
Line 12). The time complexity of Algorithm 1 is Θ(n log(n)).

Proposition 1: For any spanning tree, setting the transfer
times with Algorithm 1 leads to the shortest length.

Proof: Lemma 1 presents a tight lower bound for each
transfer time, i.e., it corresponds exactly to the time at which
the data are available. Therefore, it provides the minimum
feasible value for tj on Line 15. The additional tprev +d term
avoids pj = i to be involved in two concurrent transfers. This
term depends on the order (determined on Line 12) on transfers

Algorithm 2 Greedy scheduling algorithm
1: inputs
2: d {communication costs}
3: c {computation costs}
4: n {number of elements}
5: do
6: s1 ← 0
7: for i← 2 to n do
8: M ← argminj∈[1,i−1] sj
9: si ← sM + c+ d

10: sM ← sM + max(d, c)
11: pi ←M
12: end for
13: compute {ti}1<i≤n with Algorithm 1
14: return {pi, ti}1<i≤n

from children to machine i. We can show by contradiction
that any other order cannot decrease fi, the time at which
machine i is ready to transfer data, and thus cannot reduce the
schedule length. If it was the case, then the data on one of the
child j would have to be available before fj which contradicts
Lemma 1.

Thus, this algorithm associates a schedule to each possible
spanning tree in the best possible way. In the following, we
focus on building an efficient spanning tree (i.e., a tree whose
corresponding schedule is efficient).

B. Algorithm Description

The main solution is given by Algorithm 2 and is explained
below.

This algorithm builds a schedule by considering a reverse
reduction operation that would first compute an element before
transferring it to another machine (instead of receiving an
element before processing it). This resembles a broadcast of
distinct elements (or scatter) with intermediate computations.
When time is reversed, si is the earliest time at which an
element can be computed on machine i and then be transfered
(machine i is thus available for a transfer at time si + c).

More specifically, the algorithm relies on a greedy prin-
ciple: machines are successively inserted into a tree in an
arbitrary order and the greedy strategy performed on Line 8
selects the machine M that provides an element to machine i
the earliest (i.e., the machine with the lowest sj). Machine i is
ready for a new computation as soon as the previous transfer
completes (Line 9). The algorithm updates the end date of
machine M on Line 10: machine M must have completed its
computation and its transfers must be finished when the next
computation occurs. The spanning tree is finally updated on
Line 11. As machine 1 stores the final reduced data, its parent
is left undefined. Before returning the schedule, transfer times
are set using Algorithm 1 on Line 13.

The schedule depicted on Figure 1 may be obtained using
this algorithm starting from time 4d (time flows then from
right to left). In the first iteration, M2 is connected to M1

with s1 = d and s2 = 2d. In the second iteration, M3 is
also connected to M1 with s1 = 2d and s3 = 3d. In the last
iteration, M4 may finally be connected to M2 (M1 is also
eligible) with s2 = 3d and s4 = 4d.



If we assume that an appropriate data structure is used for
storing each value si (e.g., a self-balancing binary search tree),
then Algorithm 2 requires Θ(n log(n)) steps (n iterations with
a logarithmic search on Line 8).

C. Correctness

The scheduling algorithm proposed in this paper relies
on a greedy strategy for building the spanning tree, i.e., the
parent of each machine is assigned once according to some
optimisation criterion and this decision is never taken back.
Its correctness proof is based on Lemma 2, which states that
any tree (including the optimal ones, that is the trees of optimal
schedules) can be built greedily by iterating over the machines
and by selecting the parent of each machine among the set of
visited machines.

We generalize the structure of this greedy approach as
follow. Let O ∈ O denote a specific order in which machines
are visited. G ∈ G is a greedy strategy, i.e., a function whose
inputs are the set of visited machines and the currently visited
one while its output is the parent of the currently visited
machine (among the previously visited machines). The general
algorithmic procedure can be modeled as a function A whose
arguments are an order and a greedy strategy and whose image
is a tree. Lastly, two trees (T, T ′) ∈ T 2 are considered to
be structurally equivalent, i.e., T ≡ T ′, if and only if their
respective spanning trees are isomorphic.

Lemma 2: For any spanning tree, there exists a greedy
strategy that builds a structurally equivalent spanning tree
using any arbitrary order for the machines (i.e., ∀(T,O) ∈
T ×O,∃G ∈ G, T ≡ A(G,O)).

Proof: Any spanning tree can be built by adding each
machine in a reverse topological order by specifying the parent
of each inserted machine among the set of visited machines.
Thus, any tree can be built with a specific greedy strategy and a
specific order (i.e., ∀T ∈ T ,∃(G,O) ∈ G×O, T = A(G,O)).

As machines are undistinguishable, there is no distinction
between machines and the vertices in any resulting spanning
tree can be renumbered in any arbitrary order. Thus, any tree
built using a given order is structurally equivalent to all the
trees obtained with the same greedy strategy, but considering
all the possible orders (i.e., ∀(G,O,O′) ∈ G×O2, A(G,O) ≡
A(G,O′)).

Therefore, for any tree, there exists a greedy strategy
allowing the construction of a structurally equivalent tree using
any arbitrary order.

Therefore, there exists a greedy algorithm that builds
optimal schedules and the following theorem states that Al-
gorithm 2 is such an algorithm.

Theorem 1: Algorithm 2 builds optimal schedules.

Proof: Lemma 2 implies that all structurally distinct
schedules can be built by iterating over the machines in any
order and by inserting a child at each iteration. Therefore,
optimal schedules can be obtained using any order as it is
done by Algorithm 2.

By considering a given order, we show by contradiction
that there is no other greedy strategy for selecting the parent

of any added node that leads to a shorter schedule length.
Let {p′i}1<i≤n be the schedule obtained with another greedy
strategy such that its length is lower than the length of the
schedule {pi}1<i≤n built with Algorithm 2. Let k be the lowest
index for which both strategies differ (i.e., p′k 6= pk). It is also
assumed that {p′i}1<i≤n is such that there is no schedule with
a better or equal length and such that the first k parents are
identical to {pi}1<i≤k (otherwise the divergence at index k is
not significant and we consider this other schedule as being
{p′i}1<i≤n instead).

Let k′ be the lowest index (necessarily greater than k) such
that machine k′ sends its data to pk in schedule {p′i}1<i≤n
(p′k′ = pk). If this index exists, the indexes of machines k
and k′ can be permuted without increasing the length. If there
is no such index k′, then machine k can send its data to pk
instead of p′k as Line 8 guarantees that this is the best choice.
In both cases, it contradicts the assumption that there is no
schedule with a better or equal length and such that the first k
parents are identical to {pi}1<i≤k.

D. Bounds on the Schedule Length

The following two propositions characterize lower and
upper bounds on the length of any optimal schedule.

Proposition 2: The optimal length for reducing n elements
is greater than or equal to dlog2(n)emax(d, c) + min(d, c).

Proof: The proof is by induction on the number of
elements. The induction hypothesis Hk is that the optimal
length for reducing n = 2k + 1 elements is greater than or
equal to dlog2(n)emax(d, c)+min(d, c) = (k+1) max(d, c)+
min(d, c).

Induction basis: for k = 0, there is only one possible
schedule with two elements and it is thus optimal. Its length
is d+ c, which is equal to max(d, c) + min(d, c).

We show by contradiction that Hk+1 is true if Hk is true.
Assume that the length of the optimal schedule S for reduc-
ing 2k+1+1 is lower than (k+2) max(d, c)+min(d, c). From
schedule S, we can build two schedules by ignoring the last
reduction that is related to the last data sent to the root. Let S1

be the schedule having the same root as S without the sub-tree
whose root sends the last data to S (the schedule corresponding
to this last sub-tree is denoted by S2). The length of S1 is lower
than (k + 2) max(d, c) + min(d, c) −max(d, c) (for the case
where d > c, we can remark that each pipelined reduction
waits for an element to be received) and the length of S2

is lower than (k + 2) max(d, c) + min(d, c) − (d + c). Both
lengths are thus lower than (k+ 1) max(d, c) + min(d, c). As
the number of elements reduced by S is 2k+1 + 1, one of
the size of S1 or S2 must be greater than or equal to 2k + 1.
Hence, the optimal length for reducing 2k+1 elements is lower
than (k + 1) max(d, c) + min(d, c), which contradicts Hk.

The proof is completed by remarking that the optimal
length is monotonically non-decreasing when the number of
elements to reduce increases. Let n′ = 2blog2(n−1)c + 1
be the highest value not greater than a given number of
elements n and for which the previous induction provides a
lower bound. Therefore, the optimal length for reducing n
elements is greater than or equal to dlog2(n′)emax(d, c) =



Algorithm 3 Greedy scheduling algorithm with a limited
number of concurrent transfers

1: inputs
2: d {communication costs}
3: c {computation costs}
4: n {number of elements to reduce}
5: K {maximum number of concurrent transfers}
6: do
7: t1 ← 0
8: s1 ← 0
9: for i← 2 to n do

10: M ← argminj∈[1,i−1] sj
11: ti ← max(sM + c, tmax(1,i−K)) + d
12: si ← ti
13: sM ← max(sM + c, ti − c)
14: pi ←M
15: end for
16: for all i← 2 to n do
17: ti ← tn − ti
18: end for
19: return {pi, ti}1<i≤n

dlog2(2blog2(n−1)c + 1)emax(d, c) = (blog2(n − 1)c +
1) max(d, c) = dlog2(n)emax(d, c).

Proposition 3: The optimal length for reducing n elements
is lower than or equal to dlog2(n)e(d+ c).

Proof: Consider a schedule that consists of several steps
of length d+c. At each step, half of the machines that have data
transfer them to the other half, which perform the reductions.
Such a schedule takes dlog2(n)e steps and its length is greater
than or equal to the optimal length.

The closer min(d, c) is to zero, the tighter those bounds
are (they are tight when d = 0 or c = 0).

Additional weaker lower bounds that depends on the struc-
ture of the spanning tree can be derived. They provide an
intuition on the structure of optimal schedules. Let deg be
the maximum arity of any reduction in a schedule and depth
be the depth of this tree. Then, the length of this schedule
is greater than or equal to d + (deg−1) max(d, c) + c and
to (depth−1)(d + c). This suggests that optimal schedules
have a maximum degree and a depth in O(log(n)). This is
actually the case for the trees presented in Section VII.

V. LIMITED CONCURRENT TRANSFERS

This section and the next one show that Algorithm 2 can
be adjusted when resources are constrained. The following
algorithm assumes that there is a limit K on the number of
concurrent transfers (see Algorithm 3). This limits the con-
tention in platforms where several machines are interconnected
through a network equipment that has a limited aggregated
bandwidth. This algorithm is explained below, its optimality
is then proved and the length of each generated schedule is
characterized.

This algorithm relies on the same principle as Algorithm 2,
with which it shares the same complexity, Θ(n log(n)). Trans-
fer times must however be defined. When time is reversed, ti
corresponds to the time at which the transfer from pi to i

is completed. The time taken to complete a data transfer is
computed on Line 11. The maximum operation controls the
contention by delaying the current transfer if the number of
concurrent transfer reaches the limit K. The final schedule
is obtained by reversing the transfer times from Line 16 to
Line 18 (p1 and t1 are left undefined as machine 1 stores the
final reduced data).

Theorem 2: When no more than K concurrent transfers
are allowed, Algorithm 3 builds an optimal schedule for
reducing n elements.

Proof: Proving this theorem follows the same structure
as the proof of Theorem 1. Transfer times must, however, be
considered. The arbitrary order in which machines are visited
in Algorithm 3 is supported by Lemma 2.

We consider a given order and we show by contradiction
that there is no other greedy strategy for selecting the parent
of any added node and for setting its transfer time that leads
to a shorter schedule length. Let {p′i, t′i}1<i≤n be the schedule
obtained with another greedy strategy such that its length is
lower than the length of the schedule {pi, ti}1<i≤n built with
Algorithm 3. Let k be the smallest index for which both
strategies differ (i.e., p′k 6= pk or t′k 6= tk). It is also assumed
that {p′i, t′i}1<i≤n is such that there is no schedule with a better
or equal length and such that the first k parents and transfer
times are identical to {pi, ti}1<i≤k (otherwise the divergence
at index k is not significant and we consider this last schedule
as {p′i, t′i}1<i≤n instead). In the following, we consider that
time is reversed (before Line 16). There are three cases.

The case where t′k < tk can be eliminated because the
transfer between machine k and machine p′k cannot complete
before tk. This can be proved by remarking that transfer times
are monotonically non-decreasing in any schedule built by
Algorithm 3 (at each iteration, the minimum value sM of the
set {si}1≤i<k is increased and tk is greater than sM ). On
Line 11, there are two initialization choices. If tk ← tk−K+d,
then a value t′k < tk would violate the contention limit.
Otherwise, tk ← sM + c + d and the schedule {p′i, t′i}1<i≤n
is also invalid by definition of sM , which is the earliest time
at which a computation can occur on machine k.

The second case is when t′k > tk and p′k = pk. Let k′ be
the smallest index greater than k such that tk ≤ tk′ < tk+d. If
there is no such machine, the transfer can directly be advanced
to tk without increasing the length. Otherwise, two steps need
to be performed before. First, the transfer times tk and tk′ are
exchanged. Then, the children of machines k are connected
to machine k′ and vice versa. This leads to a schedule with
the same length as {p′i, t′i}1<i≤n and such that the first k
parents and transfer times are identical to {pi, ti}1<i≤k, which
contradicts the assumption that there is no such schedule.

When t′k ≥ tk and p′k 6= pk, the permutation presented in
the proof of Theorem 1 can be performed, which leads to the
same previous contradiction.

On the one hand, we have shown that it is not possible to
built a better schedule while respecting the contention limit.
On the other hand, having more than K concurrent transfers
is impossible because transfer times are monotonically non-
decreasing when time is reversed. Thus, generated schedules
respect the contention limit.



The length of any generated schedule depends on the
limit K on the number of concurrent transfers. As each
machine is assumed to be involved in at most one transfer
at any time, there is no more than

⌊
n
2

⌋
concurrent transfers.

Thus, we consider that the limit K is lower than or equal to
this hard limit.

Proposition 4: When no more than K concurrent transfers
are allowed, the optimal length for reducing n elements
is lower than or equal to blog2(K)c(d + c) +

⌈
n
K

⌉
d +

min
(⌈

n
K

⌉
,
⌈
c
d + 1

⌉)
c with K ≤

⌊
n
2

⌋
.

Proof: As in the proof of Proposition 3, we consider a
sub-optimal schedule that consists of several steps of length d+
c and that respects the constraint on the number of concurrent
transfers. At each step, some machines compute and transfer
data to other machines (considering that time is reversed).

The behavior of this schedule has three modes. In the first
mode, the number of concurrent transfers increases from 1
to the largest power of two that is not greater than K
(i.e., 2blog2(K)c). This first mode takes blog2(K) + 1c steps
and results in 2blog2(K)+1c machines having an element.

During the second mode, K of those machines compute
and transfer new data to K other machines at each step
until

⌈
c
d

⌉
K machines have data. This mode takes

⌈
c
d − 1

⌉
steps because there are between K and 2K − 1 machines that
have an element when it starts.

The third mode consists in saturating the communication.
First, the previous machines compute new elements. While
they proceed to the transfers, delaying them when required,
they prepared new data. There is always K concurrent transfers
because the machines can provide new data after a time c
whereas it takes

⌈
c
d

⌉
d units of time to transfer them. While

the first step costs c, K new machines receive data each d
units of time. As there is n−2blog2(K)+1c−

⌈
c
d − 1

⌉
K < n−⌈

c
d

⌉
K remaining machines, the third mode takes less than c+(⌈

n
K

⌉
−
⌈
c
d

⌉)
d units of time.

The proof is completed by summing the durations of those
modes. The minimum term comes from a modified schedule
in which the second mode expands until every machine has
data. In this case, the second mode takes less than

⌈
n
K − 1

⌉
steps because n−2blog2(K)+1c < n−K machines require data
when the second mode starts.

VI. LIMITED REDUCERS

In MapReduce frameworks, there may be a predefined
amount of reducers, i.e., machines that perform reductions [1].
In this case, operations must be scheduled only on a subset
of machines of size K. The other machines only transfer
their data to the reducers, as the mappers do in the execution
of MapReduce applications. Algorithm 4 is similar to Algo-
rithm 3 and they both share several properties. However, the
transfer times are set to their smallest values (Proposition 1)
as with Algorithm 2.

In this algorithm, once a machine has been selected for a
reduction on Line 9, it belongs to the subset of K reducers.
In this case, this set comprises the first K visited machines.
The rest of the algorithm is identical to Algorithm 2. Its cost
is also Θ(n log(n)).

Algorithm 4 Greedy scheduling algorithm with a limited
number of reducers

1: inputs
2: d {communication costs}
3: c {computation costs}
4: n {number of elements to reduce}
5: K {maximum number of computing machines}
6: do
7: s1 ← 0
8: for i← 2 to n do
9: M ← argminj∈[1,min(i−1,K)] sj

10: si ← sM + c+ d
11: sM ← sM + max(d, c)
12: pi ←M
13: end for
14: compute {ti}1<i≤n with Algorithm 1
15: return {pi, ti}1<i≤n

Theorem 3: When no more than K reducers are available,
Algorithm 4 builds an optimal schedule for reducing n ele-
ments.

Proof: Before proving the optimality of the algorithm, we
first prove that the limit on the number of reducers is respected.

The parent of any machine i is selected among the set of
the first K machines (Line 9). Thus, the last n−K machines
have no child. As only machines that receive data perform
computations, no more than K reducers are used.

As in the proof of Theorem 1, we consider the smallest
index k for which a strategy leading to a better schedule
differs. Let M = pk be the machine selected by Algorithm 4
and M ′ = p′k the machine in this hypothetical better strategy.
There are three cases, the first two being straightforward.
If M ′ ≤ K, then machine M provides an element earlier
or at the same time (when time is reversed) and should be
selected instead. The same situation occurs when M ′ > K
and sM ′ ≥ sM .

The final case is when M ′ > K and sM ′ < sM . We
show that the limit on the number of reducers is not respected
because the first K machines are reducers. We first prove that
when the machine with smallest si + c+ d does not belong to
the first K machines, then each of the first K machines has a
child. By construction, the values that are assigned to si at each
iteration are monotonically non-decreasing. Hence, when si′ <
si with i′ > i, then si has been incremented at Line 11 and
machine i is a reducer (it performs a computation). Thus, the
expression min(i−1,K) on Line 9 is equal to K only when the
first K machines are all reducers. If M ′ > K and sM ′ < sM ,
then there are K + 1 reducers, which leads to a contradiction.

Therefore, the algorithm does not use more than K reduc-
ers and there is no other schedule with a lower length.

Algorithm 4 also constitutes an optimal and simpler algo-
rithm for the case covered in Section V when the transfer cost
is greater than or equal to the computation cost.

Theorem 4: When no more than K concurrent transfers
are allowed and when d ≥ c, Algorithm 4 builds an optimal
schedule for reducing n elements.



Proof: As any machine that is receiving data is a reducer,
we prove that the number of concurrent transfers is no more
than K because Algorithm 4 limits the number of reducers
to K.

The proof is completed by following the same steps as the
proof of Theorem 3. In the last case, which occurs when there
are already K reducers, there are also K concurrent transfers.
This is due to the fact that any reducer is continuously receiv-
ing data with the computations being completely overlapped
when d ≥ c.

The length of the generated schedules is finally bounded
by Proposition 5.

Proposition 5: When no more than K reducers are avail-
able, the optimal length for reducing n elements is lower than
or equal to

(
blog2(K)c+

⌈
n
K

⌉)
(d+ c) with K ≤

⌊
n
2

⌋
.

Proof: When d ≥ c, it is a direct corollary of Proposi-
tion 4 and Theorem 4. Otherwise, the proof is analogous to
the proof of Proposition 4 in which the second mode expands
until the end.

VII. SPECIFIC SPANNING TREES

This section covers two strategies that exhibit specific
spanning trees: binomial and k-ary Fibonacci trees. Those
trees are first defined and the lengths of the corresponding
schedules are characterized. Then, the situations in which
they are optimal are identified. Finally, the two proposed
strategies are described and their approximation ratios are
studied analytically and empirically.

A. Binomial Tree

The binomial tree is a spanning tree that is already known
to be optimal for broadcast operations [2].

Definition 1: A binomial tree of order k > 0 is a binomial
tree of order k−1 whose root is the child of the root of another
binomial tree of order k − 1. A binomial tree of order 0 is a
single node.

Proposition 6: The length of a schedule whose spanning
tree is a binomial tree of order k ≥ 0 is k(d + c) and the
number of reduced elements is 2k.

Proof: The proof is by induction on the order k of the
binomial tree.

Induction basis: for k = 0, the cost to reduce a single
element is zero.

Induction step: the length for order k ≥ 0 is assumed to
be k(d + c). By definition, the last step with a binomial tree
of order k+ 1 consists in reducing two intermediate results of
two binomial trees of order k. By induction hypothesis, both
elements are available at time k(d+c). The proof is completed
by remarking that the time to transfer one element to the root
and to compute it takes d+ c.

The length of a binomial tree, characterized by the previous
proposition, indicates that the reduction involves several steps
during which data are reduced by half. Since the length of each
step is d+ c, data are first transfered before being processed.
Thus, transfers do not overlap with computations in binomial

trees. Moreover, since all transfers start at the same time at
each step, machines send data as soon as possible. This eager
strategy, however, builds optimal schedules only in the cases
described by the following theorem.

Theorem 5: For any k ≥ 0 and when min(d, c) = 0, no
more than 2k elements can be reduced in k(c+ d) time units
and a binomial tree of order k is the unique solution.

Proof: The proof is by induction on the order k of the
binomial tree.

Induction basis: for k = 0, there is a single element. A
binomial tree of order zero is thus the unique solution.

Induction step: the theorem is assumed to be true for a
given order k ≥ 0. We show by contradiction that it is also the
case for k+ 1. Consider a schedule that reduces at least 2k+1

elements in (k+1)(c+d) time units and that is not a binomial
tree. As in the proof of Proposition 2, we can build two
schedules from this one, both with lengths lower than or equal
to k(c+d) (because d = 0 or c = 0). By induction hypothesis,
each of them is binomial and reduces at most 2k elements,
which leads to a contradiction.

As a corollary, binomial trees are optimal when either
transfers or computations have negligible costs and Algo-
rithm 2 builds such trees when the number of elements is a
power of two and when min(d, c) = 0.

B. k-ary Fibonacci Tree

Although the Fibonacci tree, which is binary, has already
been presented [22, Section 6.2.1], we propose an alternate
definition analogous to Definition 1. A similar structure is also
obtained by Algorithm 1-WAY-GOSSIP-Kn [23].

Definition 2: A k-ary Fibonacci tree of order k > 0 is a
k-ary Fibonacci tree of order k− 2 whose root is the child of
the root of another k-ary Fibonacci tree of order k − 1. For
order −1 and 0, the trees consist each of a single node.

Proposition 7: The length of a schedule whose spanning
tree is a k-ary Fibonacci tree of order k > 0 is d + (k −
1) max(d, c)+ c and the number of reduced elements is Fk+2,
the (k + 2)th Fibonacci number. For order −1 and 0, no data
is reduced.

Proof: The proof is by induction on the order k of the
Fibonacci tree.

Induction basis: for k = 1, the cost to reduce two elements
is d+ c. For k = 2, two elements are sent successively to the
root (the second transfer overlaps with the first computation).
The cost is thus d+ max(d, c) + c.

Induction step: the proposition is assumed to be true for
order k and k + 1, with k > 0. By definition, the last step
with a Fibonacci tree of order k + 2 consists in reducing
two intermediate results of two Fibonacci trees of orders k
and k + 1. By induction hypothesis, the first element is
available at time d + (k − 1) max(d, c) + c and the second
at time d+kmax(d, c) + c. The first element can then be sent
to the root at time d+ kmax(d, c) + c−min(d, c) in order to
overlap the transfer with the penultimate computation of the
root. Transferring one element to the root and computing it
takes d+ c, which concludes the proof.



In contrast to the binomial tree, the length of the k-
ary Fibonacci tree implies that reductions are pipelined: any
machine receiving data overlaps transfers and computations
such that transfers (resp., computations) can be performed
successively without idle period when d ≥ c (resp., d ≤ c).

Theorem 6: For any k > 0 and when d = c, no more
than Fk+2 elements can be reduced in d+(k−1) max(d, c)+c
time units and a k-ary Fibonacci tree of order k is the unique
solution.

Proof: The proof is by induction on the order k of the
Fibonacci tree.

Induction basis: for k = 1, the only solution for reduc-
ing F3 = 2 elements is a Fibonacci tree of order 1 with
length d + c. Three elements can be reduced either with
a chain or a Fibonacci tree of order 2. The length of the
chain is 2(d + c) whereas the length of the Fibonacci tree
is d+max(d, c)+ c. As there is no schedule for reducing four
elements with a lower length, the theorem also holds for k = 2.

Induction step: the theorem is assumed to be true for
order k and k + 1, with k > 0. We show by contradiction
that it is also the case for k + 2. Consider a schedule that
reduces at least Fk+4 elements in d + (k + 1) max(d, c) + c
time units and that is not a Fibonacci tree. As in the proof
of Proposition 2, we can build two schedules from this one,
one with length at most d + (k + 1) max(d, c) + c − (d +
c) = d + (k − 1) max(d, c) + c and another with length at
most d+(k+1) max(d, c)+c−max(d, c) = d+kmax(d, c)+c
(because d = c). By induction hypothesis, each of them is a
Fibonacci tree and the first reduces at most Fk+2 elements
while the second reduces at most Fk+3 elements, which leads
to a contradiction.

C. Approximation Ratios

A direct consequence of Theorems 5 and 6 is that Al-
gorithm 2 builds binomial and k-ary Fibonacci trees for
specific input values. To determine the efficiency of those trees
with arbitrary costs, we propose two simplifications of the
greedy algorithm, one for each tree, and we determine their
approximation ratios.

The binomial strategy is an algorithm derived from Algo-
rithm 2 where one of the cost (d or c) is set to zero such
that min(d, c) = 0. It builds binomial trees when the number
of elements is a power of two, independently of the actual
costs.

Theorem 7: The binomial strategy is a
(

1 + min(d,c)
max(d,c)

)
-

approximation.

Proof: As a corollary of Proposition 6, the binomial
strategy builds schedules with lengths lower than or equal
to dlog2(n)e(d + c). The approximation ratio can be directly
derived from Proposition 2.

As a corollary, the binomial strategy is a 2-approximation
in the worst-case, i.e., when d = c.

The Fibonacci strategy is an algorithm derived from Algo-
rithm 2 where costs are homogeneous (d = c). It builds k-ary
Fibonacci trees when the number of elements is a Fibonacci
number, independently of the actual costs.

Theorem 8: The Fibonacci strategy is a 2-approximation.
When n → ∞, the Fibonacci strategy is a logφ(2)-
approximation, where φ = 1+

√
5

2 is the golden ratio.

Proof: Proposition 7 characterizes the length of any
schedule built with the Fibonacci strategy. When the num-
ber of elements n is the (k + 2)th Fibonacci number, the
Fibonacci strategy builds a schedule with length d + (k −
1) max(d, c) + c. Let F (−1)

k denote the inverse Fibonacci
function that associates the number of elements to the order of
a Fibonacci tree. We assume that this function is monotonically
non-decreasing. Then, the previous length can be expressed
as d+ (dF (−1)

k (n)e− 3) max(d, c) + c, which is lower than or
equal to (dF (−1)

k (n)e − 1) max(d, c).

We then need to prove that this length is lower than
or equal to twice the lower bound given by Proposition 2,
i.e., to 2dlog2(n)emax(d, c). We show that it is the case
when F (−1)

k (n)− 1 ≤ 2 log2(n):

F
(−1)
k (n)− 1 ≤ 2 log2(n)

dF (−1)
k (n)e − 1 ≤ d2 log2(n)e ≤ 2dlog2(n)e

(dF (−1)
k (n)e − 1) max(d, c) ≤ 2dlog2(n)emax(d, c)

To determine the number of elements n for which the inequal-
ity F (−1)

k (n)− 1 ≤ 2 log2(n) holds, we establish a bound on
the inverse Fibonacci function. By definition, Fk ≥ φk−(1−φ)2√

5
.

It follows that F (−1)
k (n) ≤ logφ(

√
5n + (1 − φ)2). The

inequality logφ(
√

5n + (1 − φ)2) − 1 ≤ 2 log2(n) holds for
any n > 2. The Fibonacci strategy is furthermore trivially
optimal for a single element and for two elements.

The asymptotic approximation ratio is obtained by remark-
ing that F (−1)

k (n) = logφ(n) + Θ(1). Thus, the limit of the

ratio dF
(−1)
k (n)e−1
dlog2(n)e

is logφ(n)

log2(n)
= logφ(2) ≈ 1.44 as n→∞.

We further study the approximation ratios for specific
values of n empirically. For each number of elements, the
length obtained with the binomial (resp., Fibonacci) strategy is
compared to the length obtained with Algorithm 2 when d = c
(resp., min(d, c) = 0). This is conjectured to provide the worst-
case ratios for both strategies. Figure 2 depicts those ratios
for 2 ≤ n ≤ 10000. The worst measured ratio is 1.4 for both
strategies.

VIII. CONCLUSION

This paper covers the reduction problem when communi-
cations overlap with computations. This is a general problem
related to two major paradigms in distributed systems: MPI
and MapReduce. An algorithm is introduced and we show how
to extend it to two model variations. Moreover, the structure
of the problem is investigated by characterizing two specific
spanning trees: the well-known binomial tree and the k-ary
Fibonacci tree. Strategies are derived from those trees by
fixing cost parameters in the main algorithm. This leads to two
strategies, which are within a factor of two from the optimal
solution, and asymptotically within a factor logφ(2) ≈ 1.44
for the Fibonacci strategy. The final empirical study suggests
that using an inappropriate method can lead to a performance
overhead that is close to 40%.
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Figure 2. Ratios between binomial (resp., Fibonacci) schedule lengths and optimal lengths when d = c (resp., min(d, c) = 0).

As perspectives, more complex settings in the model could
be explored. Although considering homogeneous costs is a
preliminary step exhibiting structural properties of optimal
solutions, it becomes necessary to consider heterogeneous
costs when accounting for more general operations such as
concatenation. Moreover, this problem frequently occurs in
contexts where the topology of the network is constrained
or where elements have arrival dates. A last direction would
consist in designing dynamic scheduling strategies that are
robust to cost variability.
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