
Dynamicity to Save Energy in Microrobots
Reconfiguration

Hicham Lakhlef, Hakim Mabed, and Julien Bourgeois
UFC/FEMTO-ST, UMR CNRS 6174, 1 cours Leprince-Ringuet, Montbeliard, France

{hlakhlef, hmabed, julien.bourgeois}@femto− st.fr

Abstract—In this paper we present a dynamic self-
reconfiguration protocol for MEMS microrobots. The protocol
presented in this paper is without map of the target shape which
makes it efficient and scalable. In other words, nodes do not store
the positions that build the target shape. Consequently, memory
usage for each node is reduced to a constant complexity. An
algorithm of self-reconfiguration is deeply studied showing how
to manage the dynamicity (wake up and sleep of microrobots)
of the network to save energy. Our algorithm is implemented in
Meld, a declarative language, and executed in a real environment
simulator called DPRSim.

Index Terms—MEMS, Distributed Algorithms ; Self-
reconfiguration; Physical Topology; Dynamicity; Mobility

I. INTRODUCTION

Micro-electro-mechanical systems (MEMS) microrobots are
low-power and low-memory capacity devices that can sense
and act. Microrobots systems have a wide range of applica-
tions such as odor localization, firefighting, medical service,
surveillance, search, rescue, and security. To do these tasks the
nodes have to perform the self-reconfiguration [3], [18].

One of the major challenges in developing a microrobot
is to achieve a precise movement to reach the destination
position while using a very limited power supply. Many
different solutions have been studied. For example, within the
Claytronics project [1], [2], microrobots can only turn around
its neighbor which introduce the idea of a collaborative way
of moving. But, even if the power requested for moving has
been lowered, it still costs a lot regarding the communication
and computation requirements [10].

In the literature, self-reconfiguration can be seen from two
different points of view. First, it can be defined as a protocol,
centralized or distributed, which transforms a set of nodes to
reach the optimal logical topology from a physical topology
[9], e.g, the chain represents the worst complexity case with
O(n), the square represents the best one with O(

√
n). On

the other hand, the self-reconfiguration is built from modules
which are autonomously able to change the way they are
connected, thus changing the overall shape of the network
[7]. This process is difficult to control, because it involves
the distributed coordination of a large numbers of identical
modules connected in time-varying ways.
Mobility and dynamicity of the system are making the problem
even harder to handle as the logical topology of the system has
to be stored in a distributed data structure, usually a spanning
tree. The range of exchanged information and the number
of movements determine the communication and the energy

complexity of the distributed algorithm. When the information
exchange involves close neighbors, the complexity is moderate
and the resulting distributed self-reconfiguration scales grace-
fully if the algorithm does not need the predefined positions
of the target shape. An open issue is whether distributed self-
reconfiguration would result in an optimal configuration with
a moderate complexity in message, number of movements and
memory usage (number of state per node).
This work takes place within the Claytronics project and aims
at optimizing the logical topology of the network.

II. RELATED WORKS

Many terms refer to the concept of self-reconfiguration.
In several works on wireless networks the term used is
self − organization. This term is also used to express the
partitioning and clustering of ad-hoc networks to cliques or
clusters. Also, the self-organization and redeployment terms
can be found in protocols for sensors networks to form a
sphere or a polygon from a center node [14], [20]. For self-
reconfiguration with robots or microrobots, there are protocols
[7], [17] where the desired configuration is grown from an
initial seed module. A generator uses a 3D CAD model of the
target configuration and outputs a set of overlapping blocks
which represent this configuration. In the second step, this
representation is combined with a control algorithm to produce
the final self-reconfiguration algorithm. Among the centralized
algorithms we find centralized self-assembly and/or reconfig-
uration algorithms [16]. Other approaches give each node a
unique ID and a predefined position in the final structure;
see for instance [19]. The drawback of these methods is the
centralized paradigm and the need for nodes identification.
More distributed approaches in [4], [5], [8], [11] and [12].
Claytronics, is a project led by Carnegie Mellon University and
Intel corporation. In Claytronics, microrobots called catoms
(Claytronics atoms). The idea is to have hundreds of thou-
sands of microrobots forming by self-reconfiguration together
objects of any shape or size. Much like the cells in a body
or complex organism, each small member of the whole is
committed to doing its own part and communication between
parts results in a unified form. Many works have already
been done within the Claytronics project. In [6], the authors
propose a metamodel for the reconfiguration of catoms starting
from an initial configuration to achieve a desired configuration
using creation and destruction primitives. The authors use
these two functions to simplify the movement of each catom.

In [2], a scalable protocol for Catoms self-reconfiguration is
proposed, written with the MELD language [1], [15] and using
the creation and destruction primitives. In all these works, the
authors assume that all Catoms know the correct positions
composing the target shape at the beginning of the algorithm
and each node is aware of its current position. The first self-
reconfiguration without predefined positions of the target shape
appears in[11], [13]. However, this solution is not energy-
efficient and does not deal with the dynamicity of the network.

III. CONTRIBUTIONS

In this paper, we propose a new distributed approach for
self-reconfiguration of MEMS microrobots, where the target
form is built incrementally, and each node in the current
increment acts as a landmark for other nodes to form the
next increment, which will belong to the form. We introduce a
state model where each node can see the state of its physical
neighbors to achieve the self-reconfiguration for distributed
MEMS microrobots, using the states the nodes collaborate and
help each other. In this paper each node predicts its future
actions (movements), so it can compute the energy amount
that will spend before the beginning of the algorithm. The
prediction property makes the algorithm robust and energy-
aware, because the node can make sure that it has correctly
followed the algorithm and it is aware of the amount of energy
that it will use. Also, to keep the energy and to augment the
probability that the node will finish its task, each node is aware
of the time slots where its can sleep to save energy.

In the proposed algorithm, the exchange of messages is
limited to the construction of the spanning tree. The spanning
tree is used to ensure the connectivity of the network and
dynamically manage the nodes that can move. Contrary to
existing works, in our algorithm each node has no information
on the correct positions (predefined positions) of the target
shape, the algorithm does not need to know the network size
and movement of microrobots is fully implemented.

We propose here an efficient distributed algorithm for
nodes self-reconfiguration where each node moves by rotation
around their physical neighbors. We study the case of a self-
reconfiguration from a chain of microrobots to a square. The
performance of the self-organization algorithm is evaluated
according to the number of rotations and the time taken.
In this paper the MEMS network is organized initially as a
chain. By choosing a straight chain as the initial shape, we
aim to study the performance of our approach in extreme
case. Indeed, the chain form represents the worst physical
topology for many distributed algorithms in terms of fault
tolerance, propagation procedures and convergence. First, the
number of direct contacts between macro-robots is minimal
and secondly the average distance between two robots (in
terms of number of hops) is of (n + 1)/3 where n is the
number of robots. Also, a chain of microrobots represents the
worst case for message broadcasting complexity with O(n).
The redeployment into a square organization allows to obtain
the best messages broadcasting complexity with O(

√
n).

To assess the distributed algorithm performance, we present
the results of the simulations made with Meld [1] and the
DPRSim simulator [21].

The rest of the paper is organized as follows: Section 4
discusses the model and some definitions. Section 5 discuss
the proposed algorithm and analyzes the number of sent
messages, the number of movements, it shows how to manage
the dynamicity of the network and discusses the generalization
of the algorithm. Section 6 details the simulation results.
Finally, section 7 summarizes our conclusions and illustrates
our suggestions for future work.

IV. MODEL AND DEFINITIONS

Figure 1. Two catoms.

R

M0

P1

P2

P3

P4

P5

P6

EW

NE

SE

NW

SW

wt

y

x

O

V
M(x(t), y(t))

Figure 2. Node modeling, in each move-
ment the node travels the same distance.

 D2

 D1
A

B

A

A

Figure 3. Traveled distance in
one movement = 2R, the node
A travels 2R in one movement.

A

B

C

D

t0
t

t

1

2

A

A

Figure 4. Message transmission, there
will be message exchange if the node needs
to know the state of a non neighbor node.

Within Claytronics, a catom (figure 1) that we call in this
paper a node is modeled as a sphere which can have at most
six neighbors. Each node is able to sense the direction of
its physical neighbors (east (E), west (W), north-east (NE),
south-east (SE), south-west (SW) and north-west (NW)). In
this work, the starting physical topology is a chain of n
nodes linked together. A chain corresponds to a connected
set of nodes where each node has two neighbors excepting
the two extremities having only one neighbor. We will take
the example of nodes that have neighbors in NW and SE
directions and we will show after how to generalize. A node
A is in neighbor’s list of node B if A is physically linked to
B. Direct communications are only possible through contact.
We consider the connected undirected graph G = (V, E)
modeling the network, where v ∈ V , is a node that belongs to
the network and, e ∈ E a bidirectional edge of communication
between two physical neighbors. For each node v ∈ V , we
denote the set of neighbors of v as N(v) = {u, (u, v) ∈ E}.
Each node v ∈ V knows the set of its neighbors in G, denoted
N(v). We define the following terminology:

Connectivity : in a graph G = (V,E), if ∀v ∈ V ,
∀u ∈ V,∃Cv,u ⊆E : Cv,u = (ev,−, ..., e−,−, ..., e−,u), with
ex,y is an edge from x to y and Cv,u represents a path from
v to u.
Snap−Connectivity : let T be the total execution time of our
distributed algorithm DA and t1..., tm are the time slots of
execution of DA. There is a Snap-Connectivity in DA with the
dynamic graph Gt(Vti, Eti) the network state at the instant ti,
if ∀ti, i ∈ {1, ...,m}, Gti(Vti, Eti) maintains the connectivity.
Spanning tree: is a graph composed of all without any cycle.
In the spanning tree, a node is either a child or a parent, a leaf
is node without children.
We call the own movements of a given node the number of
movements it performs.
Consider the figure 2 which represents a microrobot. We
say that a microrobot has done a single movement if the
distance between its former position and its new position is
exactly twice the radius D1 = 2R. For example, if the node
is in a position at a distance D2 (see the figure 3) from
the former position it has done two movements. We have
360◦ can be divided to six equal angles each one has 60◦,
since the perimeter at an angle a is Pa = π Ra/180 and
P = 2πR we find P1 = P2 = P3 = P4 = P5 = P6, this
means that the node can have without overlapping at most six
neighbors and in each movement the node travels Ra (a=60◦)
from m0 to m. In this paper, we assume that the change
of message (consultation) between two physical neighbors is
carried without complexity (0 message), while the distance
between them is zero. If a node to decide needs to know the
state of a non-physical neighbor message exchange is required,
for example in the figure 4:
• At t0: the node A needs to know the state of B to move to

the new position, this movement is done without message
exchange.

• At t2: if A is in the new position and it needs to know
the state of D to move then D sends a message to C
informing its state to C that forwards the message to A.
So, in this case there is a message exchange and A must
wait two rounds to decide.

• But if at t0 or at t1 a message has been sent from D
to C, so A at t2 can have the state of D with a simple
consultation of C’s state.

It is important to minimize the number of movements vis-a-
vis the energy and time of execution. And it is important to
minimize the space of memory used, therefore the number of
states per node.

V. PROPOSED PROTOCOL

A. Dynamic Algorithm with Safe Connectivity (DASC)

In DASC, each node can only move around its physical
neighbor. To ensure snap-connectivity only nodes that do not
cause network non-connectivity can move around neighbors.
Keeping the network connected is very important because the
node can move only around its physical neighbor using magnet
forces and can communicate only with its physical neighbor,

if the property of connectivity is broken nodes will be lost
(cannot join the network). For this purpose we introduce
the use of the tree to dynamically manage the leaf nodes
authorized to move.
Description of the algorithm
The algorithm runs in rounds. In each round, satisfied pred-
icates are executed. In a current round predicates with best
priority are executed while others with lowest priority are
ignored. We notice that in DASC, the state change actions,
represented by predicates labeled P1, are considered more
prior than a movement actions represented by P2. The dis-
tributed algorithm seeks the desired form by an incrementally
process. In a completed increment, the nodes that build it
belong already to the form. The initiator which is the root
initializes the tree and becomes a parent of itself (5). A node
if it does not have a parent becomes a child of one of the
neighbor parents (6), a node is a leaf if all its neighbors are
parents (7). At the beginning all nodes are initialized with
the bad state with predicate (2). The initiator belongs to the
target shape, so it changes its state to good (3), it will help
its neighbors or future neighbors to take correct positions.
The nodes already in the target shape act as a benchmark
to neighbor or future neighbor nodes to complete a new layer.
The nodes already in the form change their states with the
predicate (3) and (8) and they become constant, the node can
check if its neighbor have the good state with the predicate (3)
and (8). The node that starts the move is the lowest node in
the chain that is the first leaf of the first tree built, it rises until
the root using motion around other nodes with predicates (11)
and (12). The nodes of the current layer (layer being built)
may make motion either at left directly or NW directly with
the last three predicates. The node can change its state to good
with predicate (3) if it cannot move to left or in NW. With
the predicate (13) the node moves at left, it will have the
neighbor that used it to move at NE direction, it repeats the
same motion until it arrives to the diagonal node that have the
state spe, it cannot move around this last only if the diagonal
node has not a neighbor node in the E direction. Diagonal
nodes take the state spe with the predicate (4) and (10), and
with (14) the node moves until it takes a correct position. The
state change has a priority as the moving actions to avoid
bad motion, because of this we introduce the priority in our
algorithm. To avoid message exchange the node can change
its state to good if it has 3 neighbors having the state good (9)
or one neighbor has spe state and has neighbors in the both
NE and NW directions with predicate (10).
Complexity of sent messages
DASC needs only O(n) messages to construct the first tree.
Avoiding message for state changing will better accelerate the
algorithm. In DASC the node can change its state only by
looking to the state of its physical neighbors, it does not need
to wait for message informing the state of nodes which are
not its physical neighbors to make the decision.

Variables and predicates
- v, u, u1, u2: variables denote a node belongs to the

network.
- {U}:set of nodes.
- good, bad, spe: states, a node can take one or two
states at the same time, but not spe and bad or good
and bad.
- Nx(v): the neighbor in the direction x of the node
v: x ∈ {(N), (E), (W), (NE), (SE)or(NW)}.
- connectedv: true if the node v is connected to the
network, false else (Boolean).
- Statev(k): the state of the node v, taking one or two
of these values k = good, bad or spe.
- Statev(s, good): the node v has s (s an integer)
neighbors that have the good state State(good) .
- moveAroundgoodv(u, Px): move around the neigh-
bor u in such a way that u becomes a v’s neighbor in
the direction x relative to v.
- Parent(v, u): the node v is parent of node u.
- isLeaf(v): the node v is a leaf in the tree.

Predicates checked only in the first round
1: Initiator(v) ≡ (¬Nnw(v) =) ∧ connectedv .
2: Statev(bad) ≡ connectedv ∧ ¬Initiator(v).
3: Statev(good) ≡ Initiator(v).
4: Statev(spe) ≡ Initiator(v).

Predicates checked in each round

5: Parent(v, v) ≡ Initiator(v).
6: Parent(v, u) ≡ (Parent(w, v), u 6=
w) ∧ neighbor(v, u) ∧ Stateu(bad) ∧ (6 ∃z ∈
N(v), Parent(v, z)).
7: isLeaf(v) ≡ (∀u ∈
N(v),¬Parent(v, u) ∧ ¬Parent(v, v)).
8: (P1): Statev(good) ≡ (Ne(v) =
u ∧ Stateu(good) ∧ ¬Nne(u)) ∨ Statev(3, good) ∨
(Statev(2, good) ∧ (Nne(v) = u ∧ Stateu(spe)) ∨
(Nw(v) = u ∧ Stateu(good))) ∨ Statev(spe).
9: Statev(s, good) ≡ (Nx(v) = {U} , |U | =
s ∧ State{u}(good)).
10: (P1): Statev(spe) ≡ (Nnw(v) =
u1)) ∧ (Nne(v) = u2, Stateu2(spe)).
11: (P2): moveAroundbadv(u, Pe) ≡ isLeaf(v) ∧
Statev(bad) ∧ (Nnw(v) = u ∧ Stateu(bad)).
12: (P2): moveAroundbadv(u, Pse) ≡ isLeaf(v) ∧
Statev(bad) ∧ (Nne(v) = u ∧ Stateu(bad)).
13: (P2): moveAroundgoodv(u, Pne) ≡ isLeaf(v) ∧
Statev(bad) ∧ (Nnw(v) = u ∧ Stateu(good)).
14: (P2): moveAroundgoodv(u, Pe) ≡ isLeaf(v) ∧
Statev(bad) ∧ (Nne(v) = u ∧ Stateu(good)).

the DASC Algorithm .

This is guaranteed with predicate (8) when the node changes
its state from bad to good. It is obvious that if a node
changes its state before it is sure of the good state of other
nodes that have moved before it in the current layer, the self-
reconfiguration desired will be not achieved. The predicate (8)

ensures without exchanging of message that the node changes
its state only if all nodes that have moved before changed
their states to good, therefore the first node that begins the
construction of the new layer does not need to wait for the
message of the first node that began the previous layer, since
the node that is currently checking the predicate (8) can have
this information by consulting the state of its neighbor. In
other words, the message was being sent before the node
needs to know the state of its sender, when the node needs
to know this state it will find the message at its physical
neighbor. This efficiency is explained by the fact that DASC
made synchronization in state changing is not required for
nodes that are in the same layer.

B. Predicting the number of movements for each node

To form the matrix of our square with NxN nodes, we
begin with an incremental process with a single node that we
assume in a correct square 1x1. After, we add each time a new
layer contains the number of nodes of the last column plus the
number of nodes of the last line of the current square plus one
node. Consider the figure 5, the node i will take a position
p+ x. Following the path from top to bottom the node i will
never move or move after all nodes after it, so if node A is
before B, A will take a position p+ c, and node B will take a
position p+k, with c > k. Adding layers, each time we add a
new layer with number of nodes equal to the number of nodes
of the previous layer plus two nodes, this can be expressed on
the form of this numerical sequence:

Uj = Uj−1 + 2. (1)

Where: Uj is the number of nodes in the layer j and Uj−1 is
the number of nodes in layer j − 1.
In the chain we take a partitioning of the nodes to levels,
a level can be associated to one or many nodes. The nodes
take their levels with this following process: the first nodes
that have i ≤

√
n take the root level (level 0), for the other

nodes, the first x = (2
√
n − 2) nodes after the node i =

√
n

take the first level (level 1), and the second x− 2 nodes take
the second level and so on (figure 5 shows an example). So
each node i gets one level at the end.
The number of movements for each node i of level j can be
given with the composition of two sequences Ui,j and Rj .

Rj =


0, if j = 0

2
√
n− 5, if j = 1

Rj−1 − 2, otherwise

(2)

With Rj is a number associated to nodes having the level j
and n is network size.

Ui,j =


0, if i ≤

√
n

2, if i =
√
n+ 1, j = 1

Ui−1 −Rj , if l(i+ 1) 6= j

Ui−1 + 2, otherwise

(3)

Where: Ui,j and Uj is the number of movements of node i
having level j or the number of movements rounds of nodes
having the level j and n is the network size.

1

2

3
4

5
6

7

8
9

10

11

12
13

14

15

16

L0

L1

L2

L3

L
Si

L
Si

p

p+15

p+1

p+2 p+3

p+4

p+5

p+6 p+7 p+8

p+9

p+10

p+11

p+12 p+13 p+14 p+15

Figure 5. Example of nodes partitioning into levels and the final positions

Theorem 5.1: n is highest number of movements in this
algorithm.
Special case This case deals with the situation when the
number of nodes is not a square root. We assume it r. To
calculate the own movements we take a similar partitioning
to the previous. In this special case also r is the number
of movements. The next lines are used to express the own
movements for each node.
Let n = b

√
rc, and diff = r − n2.

Rj has the same definition in (2).

Ui,j =



0, if i ≤ n.
diff + 2n− 1, if i = n+ 1.

Ui−1 − 2, if n+ diff ≥ i > n.

diff + 2, if i = n+ diff + 1.

Ui−1 −Rj , if i > n+ diff, l(i+ 1) 6= j.

Ui−1 + 2, otherwise.

(4)

C. Energy saving

1

2

3

4567

8

9

10

1112

13

14

15

16 n/16

n+1/15 n+2/2n+1/15

n+5/14

n+6/13

n+14/10

n+15/9 n+6/13n+15/9

n+18/6n+17/7

n+17/7

n+16/8

n+1/15n+6/13n+15/9

n+16/8

n+16/8

n+17/7 n+18/6n+18/6 n+19/5 n+19/5

n+19/5

n+7/12n+7/12 n+8/11n+8/11

n+7/12 n+8/11

n+9/3

n+20/4

With:

it/j

t/j t/j

: i is the node, t/j is the time t when the node j changes
its state to well and becomes a final neighbor of i

Figure 6. Represents the time when the final neighbor changes its states to
good. The value in a circle represents the slot time when the node i can enter
into sleep state, in the last line the value for some nodes are indicated with
arrows

Sleeping state is used to save energy and awake state is
used to do the task for each node. The node cannot enter to a

1

2

3

4567

8

9

10

1112

13

14

15

16 n+2

n+9

n+20

n+20n+20n+19n+18

n+17

n+16

n+15 n+15

n+16

n+18

n+6

n+8

n+19

it

With:

: i is the node and t is the time corredponds to the last neighbor
of the node i has changed its state to well

Figure 7. Represents the time of the last neighbor changed its state, so the
node i will not have a new neighbor to help it.

sleep state by changing its state to good since the node after
changing its state to good becomes a reference for neighbors
or future neighbors and it should help its neighbors so they can
take correct positions belong to the final shape. So, it should
stay wake to send messages (consultation) to neighbor nodes
that need to know its state to decide. The aim of the following
functions is to find with an optimal and deterministic method
the time slots when the node must wake up to help neighbors
and where the node must sleep to save energy. The following
functions have a form of mathematical sequences which are
in fact messages. Thus, by receiving the information from its
neighbor the node can know its value which refers to the time
of entering wake or sleep state.
We take a partitioning of nodes into levels, each node will
have a level l(i), and some nodes take a special level noticed
lsi.Nodes with i ≤

√
n take the level 0. For the others nodes:

the x = 2
√
n− 2 nodes after i =

√
n take level 1. After, the

following x − 2 nodes take the following level (level 2) and
so on. A special level lsi is associated to some nodes: node
4
√
n− 4 takes the level lsi, the following node that takes the

level lsi is the one after y = 2
√
n− 5, and the the following

node that will take the level lsi is the one after y − 2 nodes
and so on. Figure 5 shows an example. Once the node has
taken a child (in the tree) it can enter into the sleep state and
it must wake up at the time when it will have new neighbors,
it is the time to reach it for nodes that are going up. The root
node starts the building of the tree at the round t0, it becomes
a parent and enters into sleep state to save energy.

Si=n+2Si

Si

=n+6Si=n+15Si=n+15

Si=n+9

Si=n+20Si=n+20

Si=n+20Si

=n+18

Si =n+19Si=n+18

Si

=n+17

Si=n+16 Si

=n+19Si

=n+16 =n+8

(A)

(B)

(B)

(C)(G) (C)

(D)

(G)

(G)

(G)

(G)

(D)

(E)

(E)

(F)

(G)

With:

(X)
iS i :

1

2

3

4567

8

9

10

1112

13

14

15

16

ii is the node and (X) is the action used to calculate S in (7)

Figure 8. Represents how the last time corresponds to the sleeping time is
calculated.

Predicates:
Initiatorr(v): the node has at the beginning only one neighbor in r direction, with r ∈ {nw, ne, w} .
Noded(v): the node was at the beginning in a chain d , with d ∈ {nw − se, ne− sw,w − e} .
x: index means for any type of the chain ∈ {nw − se, ne− sw,w − e}.
Predicates checked only in the first round
Initiatornw(v) ≡ (¬Nnw(v)) ∧ (¬Nsw(v)) ∧ (¬Nne(v)) ∧ (¬Ne(v)) ∧ (¬Nw(v)) ∧ (Nse(v)).
Initiatorne(v) ≡ (¬Nnw(v)) ∧ (¬Nse(v)) ∧ (¬Nne(v)) ∧ (¬Ne(v)) ∧ (¬Nw(v)) ∧ (Nsw(v)).
Initiatorw(v) ≡ (¬Nnw(v)) ∧ (¬Nsw(v)) ∧ (¬Nse(v)) ∧ (¬Nne(v)) ∧ (¬Ne(v)) ∧ (¬Nw(v)) ∧ (Ne(v)).
Nodenw−se(v) ≡ ((Nnw(v) ∨Nse(v)) ∧ (¬Nne(v)) ∧ (¬Ne(v)) ∧ (¬Nw(v)) ∧ (¬Nsw(v)).
Nodene−sw(v) ≡ ((Nsw(v) ∨Nne(v)) ∧ (¬Nnw(v)) ∧ (¬Nse(v)) ∧ (¬Ne(v)) ∧ (¬Nw(v)) .
Nodew−e(v) ≡ ((Nw(v) ∨Ne(v)) ∧ (¬Nnw(v)) ∧ (¬Nsw(v)) ∧ (¬Nse(v)) ∧ (¬Nne(v)).
Statev(bad) ≡ Nodex(v) ∧ ¬Initiatorx(v).
Statexv(good) ≡ Initiatorx(v).
Statexv(spe) ≡ Initiatorx(v).
Predicates checked in each round
Parent(v, v)≡ Initiatorx(v).
Parent(v, u)≡ (Parent(w, v), u 6= w) ∧ neighbor(v, u) ∧ Stateu(bad).
isLeaf(v)≡ (∀u ∈ N(v),¬Parent(v, u) ∧ ¬Parent(v, v)).
(P1):Statenwv (good) ≡ (Ne(v) = u1∧ Stateu1(good)∧¬Nnw(u1))∨ Statev(3, good)∨ (Statev(2, good)∧ (Nne(v) =
u1 ∧ Stateu1(spe)) ∨ (Nw(v) = u1 ∧ Stateu1(good))) ∨ Statev(spe) ∧Nodenw−se(v).
(P1):Statenev (good) ≡ (Nw(v) = u1 ∧ Stateu1(good) ∧ ¬Nne(u1)) ∨ Statev(3, good) ∨ (Statev(2,) ∧ (Nnw(v) =
u1 ∧ Stateu1(spe)) ∨ (Ne(v) = u1 ∧ Stateu1(good))) ∨ Statev(spe) ∧Nodene−sw(v).
(P1):Statewv (good) ≡ (Nne(v) = u1 ∧ Stateu1(good) ∧ ¬Ne(u1)) ∨ Statev(3, good) ∨ (Statev(2, good) ∧ (Nnw(v) =
u1 ∧ Stateu1(spe)) ∨ (Nsw(v) = u1 ∧ Stateu1(good))) ∨ Statev(spe) ∧Nodew−e(v).
(P1):Statev(s, good) ≡ (Nx(v) = {U} , |U | = s ∧ State{u}(good)).
(P1):Statenwv (spe) ≡ (Nnw(v) = u1)) ∧ (Nne(v) = u2, Stateu2(spe)) ∧Nodenw−se(v).
(P1):Statenev (spe) ≡ (Nne(v) = u1)) ∧ (Nnw(v) = u2, Stateu2(spe)) ∧Nodene−sw(v).
(P1):Statewv (spe) ≡ (Nw(v) = u1)) ∧ (Nnw(v) = u2, Stateu2(spe)) ∧Nodew−e(v).
(P2):moveAroundnwbadv(u, Pe) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nnw(v) = u ∧ Stateu(bad)) ∧Nodenw−se(v).
(P2):moveAroundnwbadv(u, Pse) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nne(v) = u ∧ Stateu(bad)) ∧Nodenw−se(v).
(P2):moveAroundnwgoodv(u, Pne) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nnw(v) = u ∧ Stateu(good)) ∧Nodenw−se(v).
(P2):moveAroundnwgoodv(u, Pe) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nne(v) = u ∧ Stateu(good)) ∧Nodenw−se(v).
(P2):moveAroundnebadv(u, Pw) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nne(v) = u ∧ Stateu(bad)) ∧Nodene−sw(v).
(P2):moveAroundnebadv(u, Psw) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nnw(v) = u ∧ Stateu(bad)) ∧Nodene−sw(v).
(P2):moveAroundnegoodv(u, Pnw) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nne(v) = u ∧ Stateu(good)) ∧Nodene−sw(v).
(P2):moveAroundnegoodv(u, Pw) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nnw(v) = u ∧ Stateu(good)) ∧Nodene−sw(v).
(P2):moveAroundwbadv(u, Pw) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nw(v) = u ∧ Stateu(bad)) ∧Nodew−e(v).
(P2):moveAroundwbadv(u, Psw) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nnw(v) = u ∧ Stateu(bad)) ∧Nodew−e(v).
(P2):moveAroundwgoodv(u, Pnw) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nw(v) = u ∧ Stateu(good)) ∧Nodew−e(v).
(P2):moveAroundwgoodv(u, Pw) ≡ isLeaf(v) ∧ Statev(bad) ∧ (Nnw(v) = u ∧ Stateu(good)) ∧Nodew−e(v).

The Generalized algorithm of DASC : DGASC

Ti =

{
7, if i = 1.

Ti−1 + 4, otherwise.
(5)

Where : Ti is a number associated to node i, i ≤
√
n− 2.

Ij =

{
2
√
n− 1, if j = 3.

Ij−1 − 2, otherwise.
(6)

Where : Ij is a number associated to node i has level j > 1.

Si =



n+ 2, if i = 1.(A)

Si−1 + Ti−1, if i ≤
√
n− 1.(B)

Si−1, if i =
√
n ∨ i =

√
n+ 1.(C)

Si−1 + 2
√
n− 4, if l(i) = 2 ∧ l(i− 1) = 1.(D)

Si−1 − 2, if ls(i− 1).(E)

Si−1 − Ii, if l(i− 1) 6= l(i).(F)

Si−1 − 1, otherwise.(G)
(7)

Where : Si +O(n) refers to the sleeping time for node i.

Since the first leaf node will move n rounds, (to become
root’s neighbor in the E direction) it will be neighbor of the
root at the time n− 1. So, the root adjusts the local clock to
wake up at n−1+O(n)(with O(n)) is the time the first tree)
in order to collaborate with its new neighbors. Similarly, other
nodes are waiting for the construction of the first tree and enter
into sleep sate after having a child, each node located after z
nodes from the root enters into awake state at n−z−1+O(n).
The sequence Si expresses in term of n the time when each
node can enter into sleep state after helping its neighbors to
take correct positions.

Example : figures 6, 7 and 8 present an example showing
how the values Si are calculated.

D. Generalization of the algorithm (DGASC)

We have presented an algorithm that deals with one case
of the chain, exactly with the case where nodes can have at
the beginning neighbors in directions SE or NW or in both
directions at the same time. To show how to generalize the
algorithm in order to deal with any chain at the beginning it
is important to show how to distinguish the initiator (the root)
whatever the case. For other nodes can know what form of
chain is by looking at the direction of their two neighbors. The
root can be distinguished with principle that it has only one
neighbor in the direction SW or SE or E, obviously ,whatever
the shape of the chain we cannot find one where another node
that has only one neighbor in the direction SW or SE or E,
other nodes have two neighbors in the same time one in the
direction D and the other in the inverse direction say −D
for examples: one neighbor in SE direction and the other in
the direction NW (NW-SE), SW and NE (NE-SW) or E and
W(W-E). The last node in the chain has one neighbor in the
direction NW, NE or W. After recognizing the form of chain,
an algorithm similar to DASC presented is called, for example
if the chain was with the form where the nodes can only have
neighbors in the directions NE or SE or in both directions, we
have to call DASC−d if we define DASC−d as the previous
algorithm but the move is made from NE to NW or to W or
from NW to W. The given DGASC generalizes the algorithm.
We note in GASC that the predicates cheeked only in in the
first round if they were true it remain always true. For clarity,
the predicate indexed with nw means that this predicate is
called if the chain at the beginning was NW-SE, the predicate
indexed with w means that this predicate is called if the chain
at the beginning was W-E, the predicate indexed with nw
means that this predicate is called if the chain at the beginning
was NE-SW.

VI. SIMULATION

We have done the simulation with the declarative language
Meld using DPRSim. In our simulations the radius of the node
is 1 mm. We simulated with a laptop with processor Intel(R)
Core(Tm) i5, 2.53 Ghz. The results of these simulations come
to agree the results obtained previously, in particular the
number of movements for each node and the effectiveness of
dynamicity. The nodes applied the procedure of partitioning

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180 200

nu
m

be
r

of
 m

ov
em

en
ts

Nodes

Figure 9. Highest number of movements.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000
T

ic
ks

Nodes

DASC
DASC’

Figure 10. Execution time.

to levels and predicted with the two functions Ui,j and Rj

the number of movements for each node, at the end of the
algorithm each node compares the results of prediction to
the results calculated by it. For instance, figure 9 represents
simulation results of node performed the highest number of
movements. The figure 11 represents the overall number of
movements in the networks corresponds to

O =

i=n,j=
√
n−1∑

i=1,j=0

Ui,j (8)

The figure 12 represents the average of the overall number
of movements corresponds to

O

n
(9)

The nodes applied the procedure of nodes partitioning into
levels and obtain with the function discussed previously the
time slot when they enter into the sleep state and the wake
up state. The figure 10 represents the execution time in ticks
by the number of nodes, with counting the tree (DASC’) and
without counting the tree (DASC). In the curve representing
the number of movements, we remark for some values of the
network size n, the number is always n as found in theory. For
the curves that represents the execution time figure 10, without
counting the time of construction of the tree of DASC we see
that if the number of nodes increases the time increase. If we
count the time of the tree (O(n) time), the execution time of
the algorithm increases dramatically. As conclusion, to ensure
a Snap-connectivity through all time slots of the algorithm
and to manage dynamically the nodes that can move, we have

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 200 400 600 800 1000 1200

ov
er

al
l n

um
be

r
of

 m
ov

em
en

ts

Nodes

Figure 11. The overall number of movements in the network.

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

av
er

ag
e

of
 th

e
ov

er
al

l n
um

be
r

of
 m

ov
em

en
ts

Nodes

Figure 12. The average of the overall number of movements in the network.

to use the tree, and by using the tree, we need more time to
achieve the self-reconfiguration.

VII. CONCLUSION

In this paper, we presented a new method to complete
the self-reconfiguration where the nodes do not know the
fixed positions of the target shape but only the aimed shape;
nodes collaborate and help each other by analyzing the
characteristics of the target shape. Compared the literature
works this algorithm is scalable because each node needs
only three state to achieve the algorithm. Nodes in our paper
can perform algorithm regardless the place where they are
because the algorithm is independent of the map, that what we
call portability. We have presented a protocol that guarantees
the connectivity throughout its execution time. The proposed
algorithm is characterized by a constant memory needs and
message exchange is limited to neighboring consultations. We
presented how to manage the dynamicity of the network to
save the energy and how to predict the movements of nodes
in order to make the algorithm robust and energy-aware.
However, some open problems remain; we will study the
fault tolerance on self-reconfiguration in microrobots net-
works. Also, the use of tabu algorithms to achieve the self-
reconfiguration.

VIII. ACKNOWLEDGMENTS

This work is funded by the Labex ACTION program
(contract ANR-11-LABX-01-01), ANR/RGC (contracts ANR-
12-IS02-0004-01 and 3-ZG1F) and ANR (contract ANR-2011-
BS03-005). The authors wish to express their appreciation

to the three anonymous reviewers for their constructive com-
ments.

REFERENCES

[1] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and P. Pillai,
Meld: A Declarative Approach to Programming Ensembles,In Proceedings
of the IEEE International Conference on Intelligent Robots and Systems
(IROS ’07), October, 2007.

[2] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, Padmanabhan Pillai, and
Jason D. Campbell, A Language for Large Ensembles of Independently
Executing Nodes,In Proceedings of the Int. Conf. on Logic Programming,
July, 2009.

[3] J. Bourgeois and S.C. Goldstein. Distributed Intelligent MEMS: Pro-
gresses and perspectives, 3-rd Int. Conf. ICT Innovations, volume of
Communications in Computer and Information Science, Macedonia, 2011.

[4] H. Bojinov, A. Casal, T. Hogg, Emergent structures in modular self-
reconfigurable robots, Proc. of the IEEE International Conference on
Robotics and Automation, vol. 2, pp. 1734-1741. IEEE Computer Society
Press, Los Alamitos, 2000.

[5] Z. J. Butler, K. Kotay, D. Rus, K. Tomita, Generic decentralized con-
trol for lattice-based self-reconfigurable robots, International Journal of
Robotics Research 23(9):919-937, 2004.

[6] D. Dewey, S. S. Srinivasa, M. P. Ashley-Rollman, M. D. Rosa, P. Pillai, T.
C. Mowry, J. D. Campbell, and S. C. Goldstein, Generalizing Metamodules
to Simplify Planning in Modular Robotic Systems, In Proc. of IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, September, 2008.

[7] K.Stoy, R.Nagpal, Self-reconfiguration using Directed Growth, 7th
International Symposium on Distributed Autonomous Robotic Systems
(DARs), France, June23-25, 2004.

[8] C. Jones, M. J. Mataric, From local to global behavior in intelligent
self-assembly.In: Proc. 2003 IEEE International Conference on Robotics
and Automation, , vol. 1, pp. 721-726, Los Alamitos, 2003.

[9] S. Jeon, C. Ji, Randomized Distributed Configuration Management
of Wireless Networks: Multi-layer Markov Random Fields and Near-
Optimality CoRR abs/0809.1916, 2008.

[10] M. E. Karagozler, A. Thaker, S. C. Goldstein, D. S. Ricketts, Elec-
trostatic Actuation and Control of Micro Robots Using a Post-Processed
High-Voltage SOI CMOS Chip,IEEE International Symposium on Circuits
and Systems (ISCAS), May 2011.

[11] H. Lakhlef, H. Mabed, J. Bourgeois, Distributed and Efficient Algorithm
for Self-reconfiguration of MEMS Microrobots, in the 28th ACM Sympo-
sium On Applied Computing, P 560-566, Coimbra, Portugal, March 2013.

[12] H. Mabed, H. Lakhlef, J. Bourgeois Fully Distributed Redeployment
Algorithm for Multi-Robot System.In: 6th Int. Conf. on NETwork Games,
COntrol and OPtimization, NetGCooP’12. IEEE Computer Society, Avi-
gnon, France, 2012.

[13] H. Lakhlef, H. Mabed, J. Bourgeois, Distributed and Dynamic Map-
less Self-reconfiguration for Microrobot Networks, 12th IEEE International
Symposium on Network Computing and Applications (NCA 2013), P. 55-
60, Cambridge, MA, United States, 2013.

[14] M. Mamei, M. Vasirani, F. Zambonelli, Experiments of Morphogenesis
in Swarms of Simple Mobile Robots, Journal of Applied Artificial
Intelligence, 8(9-10):903-919, Oct. 2004.

[15] M. D. Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and P. Pillai,
Programming Modular Robots with Locally Distributed Predicates, In
Proceedings of the IEEE International Conference on Robotics and Au-
tomation ICRA’08, 2008.

[16] D. Rus, M. Vona, Crystalline robots: Self-reconfiguration with com-
pressible unit modules,Autonomous Robots 10(1), 107-124, 2001.

[17] K. Stoy, R. Nagpal, Self-Repair Through Scale Independent Self-
Reconfiguration, Proc. IEEE/RSJ International Conference on Intelligent
Robotsn and systems, Sendai, japan, 2004.

[18] B. Warneke, M. Last, B. Leibowitz, and K.S.J Pister,K.S.J., 2001,
Smart Dust: Communicating with a Cubic-Millimeter Computer,Computer
Magazine, pp. 44-51, 2001.

[19] P. White, V. Zykov, J. C. Bongard, H. Lipson, Three dimensional
stochastic reconfiguration of modular robots In: Proceedings of Robotics
Science and Systems, pp. 161-168. MIT Press, Cambridge , 2005.

[20] F. Zambonelli, M.P. Gleizes, M. Mamei, R. Tolksdorf,Spray Computers:
Explorations in Self-Organization, Journal of Pervasive and Mobile
Computing, Elsevier, Vol. 1, p. 1-20, 2005.

[21] Physical rendering simulator (dprsim): http://www.pittsburghintel-
research.net/dprweb.

