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Abstract

In this study, we describe a GPU-based filter for im-
age denoising, whose principle rests on Matheron’s
level sets theory first introduced in 1975 but rarely
implemented because of its high computation cost.
We use the fact that, within a natural image, sig-
nificant contours of objects coincide with parts of
the image level-lines. The presented algorithm as-
sumes an a priori knowledge of the corrupting noise
type and uses the polygonal level-line modeling con-
straint to estimate the gray-level of each pixel of the
denoised image by local maximum likelihood opti-
mization. Over the 512 × 512 pixel test images, the
freely available implementation of the state-of-the-art
BM3D algorithm achieves 9.56 dB and 36% of mean
improvement in 4.3 s, respectively for peak signal to
noise ratio (PSNR) and mean structural similarity
index (MSSIM). Over the same images, our imple-
mentation features a high quality/runtime ratio, with
a mean improvement of 7.14 dB and 30% in 0.09 s,
which is 470 times as fast and potentially allows pro-
cessing high-definition video images at 19 fps.

1 Introduction

For the past few years, because of a fast growth in dig-
ital devices able to take pictures or make movies, digi-
tal processing has become more and more important.
Moreover, the wide range of applications requiring
noise removal makes it difficult to design a universal
filter and the increase in pixel density of the CCD
or CMOS sensors leads to higher noise levels and re-
quires high data rates in the processing algorithms.
In addition, it is difficult to quantify the quality of
an image processing algorithm, as visual perception
varies significantly from one person to another.

To date, many researchers have successfully sped
up image processing algorithms by implementing
them on GPUs. For example Mc Guire [9], Chen
et al. [4] and Sanchez [13] reported quite fast me-
dian filters. Sanchez’s filter is able to output up to
300 million pixels per second, i.e 150 fps of high def-
inition video images. Bilateral filtering has also been
successfully proposed by Yang [17].

However, most high quality algorithms, such as
NL-means [5] or BM3D [6] make use of non-local sim-
ilarities and/or frequency domain transforms, so the
speedups achieved by their current GPU implemen-
tations (see NL-means [11]) do not come near those
achieved by local methods such as Gaussian, median

1



or neighborhood filters.

Considering that a natural image, i.e any photo-
graph of an outdoor or indoor scene taken by a stan-
dard camera, is of bounded variation and thus can be
decomposed into a set of level-lines [3, 8], researchers
have implemented algorithms that make use of level-
lines properties, dedicated, in particular, to segmen-
tation and classification [3, 7, 10, 14, 15].

Bertaux et al. described a method which signifi-
cantly reduces speckle noise inside coherent images
by using the properties of the level-lines in the image
to constrain the minimization process. In [1], isolines
(iso-gray-level lines) consist in neighborhoods of poly-
line shapes determined by maximum likelihood opti-
mization.

This method proved that is was able not only to
bring good enhancement but also to preserve edges
between regions. Nevertheless, the costs in compu-
tation time, one minute to process a 2 Mpixel image
on a PIII-1GHz CPU, do not allow real-time image
processing.

We started by implementing Bertaux et al. al-
gorithm on GPU and testing various optimization
heuristics, in order to find out which tracks could
be followed towards both minimizing loss in quality
and preserving admissible execution times. Our tests
were carried out with reference images taken from the
denoiseLab site 1.

As will be detailed further down, statistical obser-
vations of the output images produced by the Bertaux
et al. method enabled us to propose a very fast and
simple parallel GPU-based method with good results
in terms of PSNR and edge preservation.

In terms of processing speed, on the basis of the
BM3D timings listed in [6] and with our own mea-
surements, our GPU-based filter runs around 470
times faster and is thus able to process high defini-
tion images at 19 fps. It also achieves good denoising
quality.

In the following, section 2 briefly focuses on recent
GPU characteristics. Section 3 introduces the theory
and notations used to define isolines. Then, in section
4, we describe the two isoline-based models that led

1http://www.stanford.edu/∼slansel/denoiseLab/ is appar-
ently no longer accessible from the site.

to our final hybrid model, while section 5 details the
parallel implementation of the proposed algorithm.
Results are presented in section 6.

2 GPU architecture

GPUs are multi-core, multi-threaded processors, op-
timized for highly parallel computation. Their de-
sign focuses on the single instruction multiple threads
(SIMT) model that devotes more transistors to data
processing rather than data caching and flow con-
trol. Three main manufacturers produce GPUs : In-
tel, Nvidia and ATI.

We only have had access to two Nvidia cards, re-
spectively models C1060 and the more recent C2070,
both designed for general purpose computing. The
C2070 card features 6 GBytes global off-chip mem-
ory and a total of 448 cores (1.15 GHz) bundled in
several streaming multiprocessors (SM). An amount
of on-chip memory (much faster), is also available:
thread registers (63 per thread) and shared memory
(up to 48 KB per thread block). The memory band-
width claimed by the manufacturer is 144 GB per
second.

Moreover, Nvidia provides CUDA (for compute
unified device architecture), which makes it quite
easy to write parallel code for their target GPUs.
However, writing efficient code is not trivial and re-
quires to pay special attention to a number of points,
among which:

1. CUDA organizes threads by a) thread blocks in
which synchronization is possible, b) a grid of
blocks with no possible synchronization between
them.

2. The order in which threads are scheduled is not
defined. Threads are run in parallel by groups
called warps. One execution engine runs the
odd-indexed threads of each warp and another
runs the even-indexed threads.

3. Data must be kept in GPU memory, to reduce
the overhead generated by copying between CPU
and GPU.
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4. The total amount of threads running the same
computation must be as large as possible.

5. The number of execution branches inside one
block should be as small as possible.

6. Global memory accesses have to be coalescent,
i.e. memory accesses done by physically parallel
threads (2 x 16 at a time) must be consecutive
and contained in an 128 Byte aligned block.

7. Shared memory is organized in 32x32 bit-wide
banks. A bank conflict occurs when two threads
in a half-warp map to the same bank at different
locations.

Among the various heuristics presented in the follow-
ing sections, the PI-LD model implementation can
hardly comply with the above constraint n◦5 and
does not allow high performances. That led us to
design the presented hybrid PI-PD of section 4.3,
which gets rid of this particular constraint. The use
of shared memory is restricted and does not have
any noticeable impact on the implementation’s per-
formances.

3 Isolines

In the following, let I be the reference noiseless image
(assuming we have one), I ′ the noisy acquired image
corrupted by additive white gaussian noise of zero
mean value and standard deviation σ. Let Î be the
denoised image. Each pixel of coordinates (i, j) has
its own gray level z(i, j).

Within the noisy image, our goal is to select, for
each pixel, the set of neighboring pixels that best
fits the underlying level line of the reference image
I (in Matheron’s meaning). From now on, we shall
refer to such sets of pixels as isolines. An isoline can
be either one single isoline-segment or one polyline
composed by at least two connected isoline-segments.
The generalized likelihood criterion (GL) is used to
select the best isoline among all the considered ones.
The output gray level value of the considered pixel is
the average of all gray level values along the selected
isoline.

3.1 Isoline-segments

For each pixel (i, j) of the corrupted image, we esti-
mate the likelihood of each candidate isoline-segment
inside a rectangular window ω centered on (i, j). In-
side ω, let Sn be the isoline-segment; the center pixel
belongs to it. Sn is a set of n pixel positions (iq, jq)
(q ∈ [0..n[).
The gray level z along Sn follows a gaussian proba-
bility density function whose parameters µSn (mean
value of isoline-segment) and σ (standard deviation
brought by gaussian noise) are unknown.
Let Sn be defined by ω = Sn ∪ Sn.
Figure 1 shows an example of such a ω region with
its two separate sub-regions Sn and Sn. The allowed
patterns of the isoline-segment Sn, among all the
possible ones in ω, are predefined and grouped into
a look-up table pn−1 presented in figure 2. We de-
fined D = 32 directions, each corresponding to one
pattern. All of them have the same number of pix-
els, in order to be compared by maximum likelihood
optimization. For each pixel, the mean values µij of

Figure 1: Example of organization of the set of pixels
to which maximum likelihood optimization is applied.
The whole window ω is divided into 2 sets of pixels,
candidate isoline-segment Sn and Sn. All isoline-
segments patterns share the same number of pixels
and are predefined as shown in Figure 2

gray levels z over Sn are unknown and supposedly
independent.
Let Z be the set of gray levels of pixels in ω and
{µij}Sn the mean values of pixels in Sn. With the
above assumptions, the likelihood of Z is given by:

P
[
Z|Sn, µSn , {µij}Sn , σ

]
3



When separating contributions from regions Sn and
Sn, it becomes:∏
(i,j)∈Sn

P [z(i, j)|µSn , σ]
∏

(i,j)∈Sn
P
[
z(i, j)| {µij}Sn , σ

]
(1)

The goal is then to estimate the value of the above
expression, in order to find the boundaries of Sn that
maximize expression (1).
Let us consider that, on Sn, the values z(i, j) are the
likelihood estimations µ̂ij for µij . The second term
of expression (1) becomes:∏

(i,j)∈Sn
P
[
z(i, j)| {µ̂ij}Sn , σ

]
= 1 (2)

which leads to the generalized likelihood expression:∏
(i,j)∈Sn

P [z(i, j)|µSn , σ] (3)

As we know the probability density function on Sn,
(3) can then be re-written as∏

(i,j)∈Sn

1√
2πσ2

e−
(z(i,j)−µSn )2

2σ2 (4)

The log-likelihood is then given by:

−n
2
log (2π)− n

2
log
(
σ2
)
− n

2
(5)

inside which the vector of parameters (µSn , σ) is de-
termined by maximum likelihood estimation

µ̂Sn =
1

n

∑
(i,j)∈Sn

z(i, j)

σ̂2 =
1

n

∑
(i,j)∈Sn

(z(i, j)− µ̂Sn)
2

The selected isoline-segment is the one which maxi-
mizes equation (5).

3.2 Extendable isolines

Searching for longer isolines should lead to better fil-
tering as a larger number of pixels would be involved.
However, processing all possible isolines starting from

P5 =



(0, 1) (0, 2) (0, 3) (0, 4) (0, 5)

(0, 1) (0, 2) (−1, 3) (−1, 4) (−1, 5)

(0, 1) (−1, 2) (−1, 3) (−2, 4) (−2, 5)

(−1, 1) (−1, 2) (−2, 3) (−3, 4) (−3, 5)

(−1, 1) (−2, 2) (−3, 3) (−4, 4) (−5, 5)

(−1, 1) (−2, 1) (−3, 2) (−4, 3) (−5, 3)

(−1, 0) (−2, 1) (−3, 1) (−4, 2) (−5, 2)

(−1, 0) (−2, 0) (−3, 1) (−4, 1) (−5, 1)

. . . . . . . . . . . . . . .



Figure 2: Top: example segment patterns p5,d for
d ∈ [0..7]; the black pixel represents the center pixel
(i, j), which does not belong to the pattern. The
gray ones define the actual pattern segments. Bot-
tom: the first 8 lines of corresponding matrix P5

whose elements are the positions of segment pixels
with respect to the center pixel.

each pixel would be too costly in computing time,
even in the case of a small GPU-processed 512× 512
pixel image. Therefore, we chose to build large iso-
lines inside an iterative process including a manda-
tory validation stage between each extension itera-
tion, so as to reduce the number of pixel combinations
to be examined and keep the estimation of deviation
σ within a satisfactory range of values.

Let Sn be a previously selected isoline part (com-
posed of isoline-segments) and Sp connected to Sn

in such a way that Sp could be an extension to Sn

so as to define an isoline Sn+p. Figure 3 illustrates
this situation with parts of an image on the left side,
showing a supposedly validated isoline-segment Sn

and two possible candidates for its extension: Sp
′

and Sp
′′
. The right side of the figure represents both

situations in another system of reference coordinates,
with the gray level value on the ordinate axis and the
linear pixel index along the abscissa. In this exam-
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ple, one can imagine that Sp
′′

may represent a valid
extension to Sn.

Figure 3: Extension of an isoline: Sn is supposed to
be a valid n-pixel isoline, while Sp

′
and Sp

′′
are two

sample candidates for Sn extension by p pixels length.
This extension of Sn is submitted to the GLRT con-
dition (see eq. (8)). Left: zoom on a small window of
the airplane image, featuring Sn, Sp

′
and Sp

′′
. Right:

gray levels of all pixels vs the 1-D pixel index. Dotted
lines represent the average values of the gray levels
of Sn, Sp

′
and Sp

′′
. In this particular example, with

a Tmax = 2 (which is often near the optimal value in
our benchmarks), Sp

′
would not be accepted as an

extension of Sn, while Sp
′′

would be.

In order to decide whether Sn+p can be considered
as an actual isoline, we compare the log-likelihood of
both hypotheses below by using GLRT (Generalized
Likelihood Ratio Test):

If Sn+p is a valid isoline, the gray levels of its pixels
share the same mean value µn+p. According to (5),
its log-likelihood is

− (n+ p)

2
(log (2π) + 1)− (n+ p)

2
log
(
σ̂1

2
)

(6)

where σ̂1 is the estimation of the standard deviation
along Sn.

Alternately, if Sn and Sp are two separate isolines
connected together, the gray levels of their pixels
have two different mean values µn and µp. The log-
likelihood is the sum of both log-likelihoods, given
by

− (n+ p)

2
(log (2π) + 1)− n

2
log
(
σ̂2

2
)
− p

2
log
(
σ̂2

2
)

(7)

where σ̂2 is the estimation of the standard deviation
along Sn and Sp.

The difference between (6) and (7) leads to the
following expression of GLRT (Sn+p, Sn, Sp, Tmax):

Tmax − (n+ p)
[
log
(
σ̂1

2
)
− log

(
σ̂2

2
)]

(8)

The decision to validate the extension
from Sn to Sn+p depends on whether
GLRT (Sn+p, Sn, Sp, Tmax) is superior or infe-
rior to 0. Value Tmax is the GLRT threshold.

4 Isoline models

We construct isolines as polylines. Each isoline can
then be curved by allowing a direction change at the
end of each isoline-segment.

In order to keep the number of candidate iso-
lines within reasonable range, we chose to build
them by combining segments described by simple pre-
computed patterns. Each pattern pl,d describes a
segment of length l and direction d. For one given
l value, all pl,d patterns are grouped into a matrix
denoted Pl. Figure 2 shows an example of such a
pattern matrix for l = 5.

4.1 Isolines with limited deviation an-
gle (PI-LD)

Due to the amount of memory involved and because
the necessary reduction stage involves variable size
vectors, parsing the tree of all possible polyline con-
figurations proved far too slow regarding our goal.
So, we focused on a variant inspired by Bertaux et
al. [1] in which the selected direction of the next seg-
ment depends on the whole of the previously built
and validated isoline.

Let us consider an isoline Sn under construction,
starting from pixel (i, j) and made of K validated
segments sk (k ∈ [1..K]) of length l, each of them
having its own direction dk. The coordinates of the
ending pixel of each segment sk are denoted (ik, jk).
During the previous extension steps, both of the fol-
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lowing sums have been obtained:

Cx (Z(Sn)) =
∑

(i,j)∈Sn
z(i, j) (9)

Cx2 (Z(Sn)) =
∑

(i,j)∈Sn
z(i, j)2 (10)

Let us now examine how to decide whether to add
a new segment to Sn or to stop the extension pro-
cess. The main idea is to apply each pattern pl,d to
the ending pixel (ik, jk), on the condition that its di-
rection is contained within the limits of maximum di-
rection change ∆dmax. The above condition is meant
to prevent the artifacts generated by:

• isolines rolling onto themselves.

• isolines being backward-oriented.

• isolines segments crossing each other.

Another of its benefits is to reduce the number of
combinations to be evaluated.

For each pattern, we use GLRT to decide if the
segment can extend isoline Sn. If no segment satisfies
the test, Sn is terminated.

If at least one segment has been accepted by
GLRT, the one that leads to the maximum likelihood
(ML) value of the extended isoline Sn+l is selected
and integrated to Sn+l as sK+1.

Figure 4 illustrates one stage of the extension pro-
cess with the example of a two-segment isoline at the
beginning of stage (l = 5 and ∆dmax = 2).

We simultaneously extend D isolines, each of
them having the same primary direction as pat-
tern pl,d (d ∈ [0..D]). Eventually, the isoline with
the maximum likelihood value is selected among the
longest ones. That prevents the selected isoline from
being critically sub-optimal, which could be the case
if the first selected isoline-segment did not follow the
primary direction of the optimal isoline, in which case
the limiting deviation angle would forbid the isoline
under construction to come near the optimal one.

Though much faster, the PI-LD-based filter may
still be considered inferior to state-of-the-art filters
such as the BM3D family of algorithms [6]. Fur-
thermore, this way of building isolines requires the

alternate use of two different types of validation at
each extension stage: GLRT and maximum like-
lihood minimization, each of them generating nu-
merous divergent branches, sequentially run by each
thread warp and leading to unwanted overhead. This
led us to propose the optimization heuristics detailed
in the following section.

4.2 Isolines with precomputed direc-
tions (PI-PD)

Within the PI-LD model, at each starting pixel (i, j),
D isolines are computed and kept as candidates
though only one follows the actual isoline at (i, j).

It needs to evaluate (2.∆dmax + 1) segments at
each extension stage (∆dmax segments on both sides
of the previous direction angle). Allowing a max-
imum of K extension stages and mandatorily eval-
uating the first D directions lead to the evaluation
of D. (2.∆dmax + 1)

K−1
segments at each pixel posi-

tion.
If we assume we can achieve a robust determination

of the direction of this isoline at (i, j), it becomes un-
necessary to perform the selection at each extension
step. Thus, at each pixel (i, j), only the direction of
the first segment has to be determined in order to ob-
tain the local direction of the isoline. This drastically
reduces work complexity as only D.K evaluations are
needed.

For example, with a maximum of K = 5 segments
and a maximum direction change of ∆dmax = 2, the
PI-LD and the above equations lead to a count of up
to 20, 000 segments per pixel where only 160 should
be enough.

On the basis of these observations, we propose a
new model that we shall call PI-PD, that completely
separates the validation stages performed in the PI-
LD model implementation mentioned above:

• A first computation stage selects the best first
segment s1 starting at each pixel (i, j) of the in-
put image. Its direction index d1(i, j) is then
stored in a reference matrix denoted IΘ; sums
Cx and Cx2 along s1(i, j) are also computed and
stored in a dedicated matrix IΣ. It can be no-
ticed that this selection method of s1 segments
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is a degraded version of PI-LD constrained by
K = 1.

• A second stage manages the now independent
extension process. For one given state of an
isoline where the last added segment has been
sK , the pattern whose direction index is given
by d = IΘ(iK , jK) defines the only segment to
be evaluated. Both corresponding sums Cx and
Cx2 are read from matrix IΣ and used in GLRT
evaluation.

It remains necessary to prevent isolines from gener-
ating artifacts much in the same way as in PI-LD.
Figure 5 details this process, starting from the same
initial state as in figure 4 with the noticeable differ-
ence that no direction change limit is needed.

This optimization heuristics avoids multiple diver-
gent branches during kernel execution, which better
fits GPU constraints. It remains, however, that the
building of isolines is done without global likelihood
optimization.

In addition to the above extension process, the
model has been further improved by adding the abil-
ity to thicken isolines from one to three pixels, al-
lowing higher PSNR values. This may preferably ap-
ply to large images that do not contain small rele-
vant details, liable to be slightly blurred. Still, this
feature makes PI-PD more versatile than our refer-
ence BM3D, which has prohibitive computation times
when processing such large images (over 5 minutes for
a 4096x4096 pixel image).

4.3 Hybrid PI-PD

As the determination of each segment’s direction only
involves a few pixels, the PI-PD model may not be
robust enough in regions where the surface associated
with Z has a low local slope value regarding power
of noise σ2. We shall call such regions Low Slope Re-
gions (LSR). Figure 7 shows that lack of robustness
with an example of two drawings of additive white
gaussian noise applied to our reference image (Fig-
ure 6). We focused on a small 11 × 11 pixel window
containing two LSRs with one sharp edge between
them.

Figures 7d and 7e show that the directions com-
puted by PI-PD are identical from one drawing to
the other near the edge (lines 5-7), while they vary
in LSR (lines 1-4, 8-11).

Within such regions, our speed goals forbid us to
compute isoline directions with the PI-LD model,
more robust but far too slow. Instead we propose a
fast solution which implies designing an edge detec-
tor whose principle is to re-use the segment patterns
defined in section 4 and to combine them by pairs
in order to detect any possible LSR around the cen-
ter pixel. If a LSR is detected, the output gray-level
value is the average value computed on the current
square window; otherwise, the PI-PD output value is
used.

In order to use GLRT correctly and without adding
too many computations, we only involve patterns
that do not share any pixel between them. They are
those whose direction is a multiple of 45◦.

Each base direction (Θi) and its opposite (Θi +
π) [2π] define a line that separates the square window
in two regions (top and bottom regions, denoted T
and B). We assume that segments on the limit belong
to the T region which includes pixels of direction from
Θi to Θi + π. This region comprises three more seg-
ments of directions (Θi+

π
4 ), (Θi+

2π
4 ) and (Θi+

3π
4 ).

The other region (B) only includes three segments of
directions (Θi + 5π

4 ), (Θi + 6π
4 ) and (Θi + 7π

4 ).
Figure 8 illustrates this organization for Θi = Θ4 =

45◦. Each bar represents a pixel in the detector’s
window. Pixels with null height are not involved in
the GLRT. Pixels represented by taller bars define
the T region and those represented by shorter bars
define the B region.

For each Θi, one GLRT is done in order to decide
whether the two regions T and B defined above are
likely to be seen as a single, or as two different regions
separated by an edge as shown in figure 8. The center
pixel is located on the edge. Equations (6), (7) and
(8) lead to a similar GLRT expression:

T2max − (8l + 1)
[
log
(
σ̂3

2
)
− log

(
σ̂4

2
)]

(11)

where σ3 is the standard deviation considering that
the two regions are likely to define a single one and σ4

the standard deviation if an edge is more likely to sep-
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arate the two regions. T2max is the decision thresh-
old. With equation (11), a negative result leads to an
edge detection oriented towards direction Θi. When
GLRT is known for each Θi, we apply the following
hybridation policy:

a) more than one negative GLRT: the PI-PD out-
put value is used.

b) only one negative GLRT: the center pixel is likely
to be on a well-defined edge, and only the region
it belongs to is considered. The average value of
its pixel gray levels is then used.

c) no negative GLRT: the window around the cen-
ter pixel is likely to be a LSR. The average value
on the whole square window is used (11x11 pixels
in the example of Figure 8).

It must be noticed that point b) has been intro-
duced in order to achieve smoother transitions be-
tween regions to which PI-PD is applied and those
in which the plain average value is used. Figure 9
shows an example of such classification achieved by
the edge detector. The detector has been applied to
the noisy airplane image with GLRT threshold value
T2max = 2. Darker dots belong to an edge, whiter
dots belong to a LSR.

5 Hybrid PI-PD filter Imple-
mentation: details

All implementation details given here are relative to
the proposed PI-PD models and Nvidia c© GPU de-
vices.

5.1 Segment patterns

The first kernel to be run is kernel genPaths()

which generates matrix Pl. Its elements (∆i; ∆j) are
the relative coordinates of the pixels which define seg-
ment patterns pl,d. The dimensions of matrix Pl are
D rows × l columns. To fit GPU architecture as
closely as possible, we chose D = 32 patterns. Each
segment sk of an isoline can then be seen as a pat-
tern pl,d applied on the starting pixel (i, j) of this
segment, denoted pl,d(i, j).

The example in figure 2 shows the first quarter of
matrix P5 and the corresponding eight discrete seg-
ment patterns in the first quadrant. The three re-
maining quarters are easily deduced by applying suc-
cessive rotations of angle π

2 to the above elements.

5.2 Generation of reference matrices
IΣ and IΘ

In order to generate both matrices, a GPU kernel
named kernel precomp() computes, in parallel for
each pixel (i, j):

• the direction δ of the most likely segment s1 =
pl,δ(i, j) among the D possible ones. This value
is stored in matrix IΘ at position (i, j).

• values Cx(s1) and Cx2(s1) defined in equations
(9) and (10). This vector of values is stored in
matrix IΣ at position (i, j).

In order to reduce processing time, the input image
is first copied into texture memory (see algorithm 1
for initializations and memory transfer details), thus
taking advantage of the 2D optimized caching mech-
anism.

This kernel follows the one thread per pixel rule.
Consequently, each value of Pl has to be accessed
by every thread of a block. That led us to load it
from texture memory first, then copy it into all shared
memory blocks, which has proved to be the fastest
scheme.

Algorithm 2 summarizes the computations
achieved by kernel precomp(). Vector (Cx, Cx2)
stores the values of Cx(s1) and Cx2(s1) asso-
ciated with the current tested pattern. Vector
(Cx−best, Cx2−best) stores the values of Cx(s1) and
Cx2(s1) associated with the best previously tested
pattern.

In the same manner, σ and σbest are deviation val-
ues for current and best tested patterns.

The selection of the best pattern is driven by the
value of the standard deviation of candidate isolines.
Lines 2 and 3 compute both sums for the first pattern
to be evaluated. Line 4 computes its standard devi-
ation. Then, lines 5 to 14 loop on each pattern and
keep values associated with the best pattern found,
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that are eventually stored in matrices IΘ and IΣ on
lines 16 and 17.

Algorithm 1: Initializations in GPU memory

1 l← step size;
2 D ← number of primary directions;
3 In ← noisy image;
4 Intex ← In; /* copy to texture mem. */

5 Pl ← kernel genPaths ; /* pattern matrix */

6 Pltex ← Pl; /* copy to texture mem. */

7 Tmax ← GLRT threshold (extension);
8 T2max ← GLRT threshold (edge detection);

5.3 PI-PD extension process:
kernel PIPD()

This parallel kernel is run in order to obtain the image
of the isolines. It is detailed in algorithm 3, (see
section 4.2 for process description).

Lines from 2 to 11 perform the allocations needed
by the evaluation of the first extension. More pre-
cisely, (i1, j1) represents the starting pixel of the cur-
rent segment; (i2, j2) is both its ending pixel and
the starting pixel of the next segment; d1 and d2

are their directions, read from precomputed matrix
IΘ. C1

x and C1
x2 are the gray-level sums along the

current isoline; C2
x and C2

x2 are the gray-level sums
of the candidate segment. The current isoline ends
at (i1, j1) and is made of l1 pixels (already accepted
segments); its standard deviation is σ1. The loop ex-
tending from lines 12 to 21 performs the allocations
needed to proceed one segment forward, as long as
GLRT is true. If the extension has been accepted,
the length of the isoline is updated in line 13, and
the same is done with Cx and Cx2 which are read
from precomputed matrix IΣ (see equations (9) and
(10) for definitions). Finally, using direction value
d2, it translates the coordinates (i1, j1) to the end of
the newly extended isoline and coordinates (i2, j2) to
the end of the next segment to be tested. As soon as
the GLRT condition becomes false, line 23 eventually
produces the output value of the denoised image at
pixel (i, j), that is, the average gray-level value along
the isoline.

Algorithm 2: generation of reference matrices,
kernel kernel precomp()

1 foreach pixel (i, j) do /* in parallel */

2 Cx−best ←
∑

(y,x)∈pl,0(i,j)

Intex(i+ y, j + x) ;

3 Cx2−best ←
∑

(y,x)∈pl,0(i,j)

I2
ntex(i+ y, j + x) ;

4 σbest ← standard deviation along pl,0(i, j) ;
/* loop on each pattern */

5 foreach d ∈ [1..D − 1] do

6 Cx ←
∑

(y,x)∈pl,d(i,j)

Intex(i+ y, j + x);

7 Cx2 ←
∑

(y,x)∈pl,d(i,j)

I2
ntex(i+ y, j + x);

8 σ ← standard deviation along pl,d(i, j);
9 if σd < σbest then /* keep the best

*/

10 Cx−best ← Cx ;
11 Cx2−best ← Cx2 ;
12 Θbest ← d ;

13 end

14 end
15 IΣ(i, j)← [Cx−best, Cx2−best] ; /* stores */

16 IΘ(i, j)← Θbest ; /* in matrices */

17 end
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Algorithm 3: PI-PD extension process
kernel PIPD()

1 foreach pixel (i, j) do /* in parallel */

2 (C1
x, C

1
x2)← z(i, j) ; /* starting pixel */

3 (i1, j1)← (i, j) ; /* first segment */

4 (C1
x, C

1
x2)← IΣ(i1, j1) ; /* read matrix */

5 d1 ← IΘ(i, j) ; /* read matrix */

6 l1 ← l ; /* isoline length */

7 σ1 ← (C1
x2/l1 − C1

x)/l1;
8 (i2, j2)← end of first segment;

9 (C2
x, C

2
x2)← IΣ(i2, j2) ; /* 2nd segment */

10 d2 ← IΘ(i2, j2);
11 σ2 ← (C2

x2/l − C2
x)/l ;

12 while GLRT (σ1, σ2, l1, l) < Tmax do
13 l1 ← l1 + l ; /* extension */

14 (C1
x, C

1
x2)← (C1

x, C
1
x2) + (C2

x, C
2
x2);

15 σ1 ← (C1
x2/l1 − C1

x)/l1 ; /* update */

16 (i1, j1)← (i2, j2) ; /* step forward */

17 d1 ← d2;
18 (i2, j2)← end of next segment;

/* next segment */

(C2
x, C

2
x2)← IΣ(i2, j2);

19 d2 ← IΘ(i2, j2);
20 σ2 ← (C2

s2/l − C2
s )/l ;

21 end

22 end

23 Î(i, j)← C1
x/l1 ; /* isoline value */

5.4 Hybrid PI-PD :
kernel edge detector()

As introduced in section 4.3, the aim of the kernel
named kernel edge detector() is to divide pixels
into two classes according to their belonging to a LSR
or not. Algorithm 4 explains the detailed procedure.
Lines 2 to 6 initialize values of the direction index
(Θ), the number of edges detected (edgeCount), the
gray-level sum along the pixels that defines the H
half-plane (sumEdge) and the number of pixels that
defines both half-planes H and L (nH, nL). Then the
loop starting at line 7 uses the GLRT for every con-
sidered direction index Θ. Values sumH and sumL
are vectors of two parameters x and y, parameter x
being the sum of gray-level values and y the sum of

square gray-level values. Value sumH is computed
along the pixels of half-plane H and is obtained by
the loop at lines 10 to 14. Value sumL is computed
along the pixels of half-plane L and is obtained by
the loop at lines 15 to 19. Value Intex(i, j) refers to
the gray-level value at pixel (i,j) previously stored in
texture memory. Eventually, the isoline level value is
output at line 27, 30 or 33 depending on the situation
(see 4.3 for details about the decision process).

6 Results

The proposed hybrid PI-PD model has been evalu-
ated with the 512x512 pixel sample images of the S.
Lansel denoiseLab, in order to make relevant compar-
isons with other filtering techniques. As we aim to
address image processing in very noisy conditions (as
in [12]), we focused on the noisiest versions, degraded
by AWGN of standard deviation σ = 25.

Quality measurements of the denoised images in
comparison with reference images have been obtained
by the evaluation of:

a) Peak Signal to Noise Ratio (PSNR) that quanti-
fies the mean square error between denoised and
reference images: MSE(I, Î). We used the fol-
lowing expression:

PSNR = 10.log10

(
max(Î)

MSE(I, Î)

)
PSNR values are given in decibels (dB) and the
higher values mean better PSNR.

b) The Mean Structure Similarity Index (MSSIM,
defined in [16]), which quantifies local similari-
ties between denoised and reference images in-
side a sliding window. MSSIM values belong to
an interval [0; 1]; the closer to 1 the better.

PSNR is widely used to measure image quality but
can be misleading when used as only quality assess-
ment: as demonstrated in [16], a high PSNR value
does not necessarily mean good visual quality. This
can be avoided by using the MSSIM index along with
the PSNR value: when both of them show high val-
ues, the overall visual quality can be considered high.
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Algorithm 4: edge detector and pixel classifier
kernel edge detector()

1 foreach pixel (i, j) do /* in parallel */

2 Θ← 0; /* direction index */

3 edgeCount← 0;
4 sumEdge← 0;
5 nH ← 5l + 1;
6 nL← 3l;
7 while (Θ < 32) do
8 sumH ← (Intex(i, j), I2

ntex(i, j));
9 sumL← (0, 0);

10 for (α = Θ to α = Θ + 16 by step 4) do

11 sPat←
∑

(y,x)∈Pl,α(i,j)

Intex(i+y, j+x);

12 sPat2←∑
(y,x)∈Pl,α(i,j)

I2
ntex(i+ y, j + x);

13 sumH ← sumH + (sPat, sPat2);

14 end
15 for (α = Θ + 20 to α = Θ + 28 by step 4)

do

16 sPat←
∑

(y,x)∈Pl,α(i,j)

Intex(i+y, j+x);

17 sPat2←∑
(y,x)∈Pl,α(i,j)

I2
ntex(i+ y, j + x);

18 sumL← sumL+ (sPat, sPat2);

19 end
20 if

(GLRT (sumH,nH, sumL, nL) > T2max)
then

21 edgeCount← edgeCount+ 1;
22 sumEdge← sumH.x;

23 end
24 Θ← Θ + 4;

25 end
/* outputs isoline value */

26 if (edgeCount == 0) then

27 Î(i, j)← (sumH.x+ sumL.x)

nH + nL
; /* LSR

*/
28 end
29 if (edgeCount == 1) then

30 Î(i, j)← (sumEdge)

nH
31 end
32 if (edgeCount > 1) then

33 Î(i, j)← ̂IPIPD(i, j); /* PI-PD */

34 end

35 end

The BM3D code is run on a quad-core Xeon
E31245 at 3.3GHz and 8GByte RAM under linux ker-
nel 3.2 (64bits), while both hybrid PI-PD and average
filter codes are run on a Nvidia C2070 GPU hosted
by a PC running linux kernel 2.6.18 (64bits). The
average filter we used is our own implementation of a
generic and versatile convolution kernel, able to out-
put over 1, 200 million pixels per second in the 5× 5
averaging configuration.

Result figure 10 provides the PSNR improvement
and MSSIM values of reference images, denoised with
average 5× 5, hybrid PI-PD and BM3D filters. The
noisy column shows values prior to denoising. BM3D
([6]) is taken as a reference in terms of denoising qual-
ity, while the average filter is taken as a reference in
terms of processing time. The window size of 5 × 5
pixels has been chosen to achieve PSNR values sim-
ilar to those obtained by PI-PD. The Hybrid PI-PD
measurements were performed with n = 25, l = 5,
Tmax = 1 and T2max = 2. BM3D measurements
have been performed with the freely available BM3D
software proposed in [6].

The hybrid PI-PD model proves much faster than
BM3D and better than the average 5× 5 filter. Pro-
cessing the thirteen images of the database reveals
that hybrid PI-PD brings an average improvement of
1.52 dB (PSNR) and 7.26 % (MSSIM) against the av-
erage filter at the cost of 128 times its computational
duration. Against the hybrid PI-PD, BM3D achieves
an average improvement of 2.41 dB and 4.64 % at the
cost of 475 times as much duration. The 5× 5 aver-
age filter takes 0.07 ms to process an image while
the hybrid PI-PD needs 9 ms and BM3D 4.3 s.
Data transfers from CPU to GPU texture memory
and from GPU global memory to CPU pinned mem-
ory need 0.15 ms additional time. The use of pinned
memory saves 0.09 ms for each 8 bit-coded 512× 512
pixel image.

It must also be noticed that measurements show
that the vector of parameter values Tmax = 1 and
T2max = 2 is optimal for 11 of the 13 images of the
database. Better results are obtained with a slightly
different value of T2max for peppers or zelda whose
denoised images can obtain a MSSIM index of 0.90.
Most of the computational time of the hybrid PI-PD
is spent by the edge detector, which clearly does not
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fit GPU requirements to achieve good performance.
For information, the simple PI-PD model runs in less
than 4 ms in the same conditions.

Figure 11 shows denoised images produced by the
hybrid PI-PD model compared with the output of the
BM3D and the average 5× 5 filters. It illustrates the
merits and drawbacks of each model: edges are well
preserved by the hybrid PI-PD, but a staircase effect
is visible, a well-known artifact inherent to this type
of neighborhood filters. Our GPU-implementation of
the regression method proposed in [2] brings interest-
ing quality improvement over processing time with an
average of 1.00 dB at the cost of 0.2 ms.

7 Conclusion

Generally speaking, our chosen approach has been to
focus on what a GPU can do fast to design efficient
and robust elementary kernels that can be re-used
in complex programs that achieve signal processing
functions, without necessarily trying to parallelize
any existing CPU algorithms or designing CPU ver-
sions to validate results.

Instead of only searching to obtain speedups from
existing CPU algorithms, we have tried to design a
specific GPU-based high-speed denoising filter. For
that purpose, we chose to design a method we called
hybrid PI-PD that both remains local and provides
very significant benefits, thanks to our technique of
progressive isoline extension.

Processing speeds are much higher than the BM3D
implementation taken as quality reference. This is
very promising and currently allows real-time high
definition image sequence processing at 19 fps (High
Definition: 1920x1080 pixels). We also implemented
a parallel version of the staircase effect reduction
technique presented by Buades et al. [2] which fur-
ther improves the quality of output images without
significant performance loss.

Though our research has been so far focused on ad-
ditive white Gaussian noise, we are currently trans-
posing the criterion to various multiplicative noise
types. We also extended the process to color images
with very interesting visual results to be confirmed by
the experimental measurements currently in progress.
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(a) Isoline with two vali-
dated segments s1 and s2.

(b) First evaluated seg-
ment, corresponding to
pattern p5,0.

(c) Second evaluated
segment, corresponding to
pattern p5,1.

(d) Third evaluated seg-
ment, corresponding to
pattern p5,2.

(e) Fourth evaluated
segment, corresponding to
pattern p5,3.

(f) Fifth evaluated seg-
ment, corresponding to
pattern p5,4.

Figure 4: Example of an extension process starting
with a two-segment isoline (l = 5, ∆dmax = 2). The
initial situation is shown in 4a, while 4b to 4f rep-
resent the successive candidate segments. The direc-
tion index of the second validated segment is d2 = 2
(4a). This implies that direction indices d3 allowed
for the third segment range from d2−∆dmax = 0 to
d2 +∆dmax = 4 (4b to 4f). The extension of the iso-
line is accepted if at least one segment has a positive
GLRT. If there are several, the one which minimizes
the standard deviation of the gray levels of the whole
isoline is selected.

(a) Isoline with
two validated seg-
ments.

(b) Next direction is read from element
(i2, j2) of IΘ.

(c) Pattern pl,d3 is then applied
at (i2, j2) and GLRT is used.
Both sums needed to use GLRT
are read from element (i2, j2) of
IΣ.

(d) If accepted by
GLRT, segment s3 is
added to isoline.

Figure 5: Example of the PI-PD extension process
starting with a two-segment isoline (l = 5). The ini-
tial situation is presented in 5a, while 5a to 5d repre-
sent the successive processing steps. The end pixel of
the last validated segment is (i2, j2) (5a). Reference
matrices IΘ and IΣ provide the values needed to se-
lect the pattern to be applied on (i2, j2) (5b and 5c).
GLRT is used to validate the extension or not. This
process goes on until one submitted segment does not
comply with GLRT.
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(a) Reference noiseless air-
plane image

(b) Location of the exam-
ple window in the reference
image.

Figure 6: Location of the example window inside the
reference image. Figure 6a shows the whole reference
image and 6b zooms on the part which the example
11× 11 pixel window is taken from.

(a) Reference image

(b) Image corrupted by
random drawing n◦1

(c) Image corrupted by
random drawing n◦2

(d) Isoline directions for
random drawing n◦1

(e) Isoline directions for
random drawing n◦2

Figure 7: Zoom on a small square window of the
airplane image. 7a reproduces the zoom on the win-
dow, taken from the reference image of Figure 6. 7b,
7c and 7a are 3D views where each bar represents a
pixel whose gray-level corresponds to the height of
the bar. Figures 7d and 7e are 2D top views of the
window. The chosen window shows an edge between
two LSRs. Images 7b and 7c are corrupted with two
different random drawings of the same additive white
gaussian noise (AWGN) of power σ2 and mean value
0. 7d and 7e show the direction of the isoline found
by PI-PD, for each pixel of the window. In low slope
regions (top and bottom regions), the determination
of the direction is not robust. Near the edge, direc-
tions do not vary from one drawing to another.
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Figure 8: Edge detector. 3D view representing an ex-
ample square 11x11 pixel window (l = 5) used in the
edge detector for Θ4 = 45◦. Each pixel is represented
by a bar. Bars of 0 height value are for pixels that are
not involved in the detector. The top region is de-
fined by five pattern segments and includes the center
pixel. The bottom region only includes three pattern
segments. The different height values are meant to
distinguish between each of the three different sets
of pixels and their role. The edge detector uses one
GLRT for each value of Θi, from O◦ to 315◦ by step
of 45◦.

(a) Noisy airplane image (b) Pixel classification per-
formed by the edge detec-
tor.

Figure 9: Pixel classification inside the noisy im-
age. Figure 9a shows the noisy input image and 9b
reproduces the output classification of pixels, as a
black and white image, obtained with threshold value
T2max = 2. Black pixels are supposed to be near an
edge, while white pixels belong to Low Slope Regions.

Image Noisy average hybrid BM3D
5 × 5 PI-PD

PSNR (dB) gain (dB) – –
MSSIM MSSIM – –

airplane 19.49 6.90 8.97 11.39
0.58 0.84 0.88 0.93

barbara 20.04 2.72 4.22 10.56
0.70 0.76 0.83 0.94

boat 20.33 5.25 7.21 9.69
0.66 0.81 0.87 0.91

couple 20.28 4.97 7.05 9.49
0.69 0.79 0.87 0.91

elaine 19.85 8.86 9.09 10.75
0.59 0.86 0.87 0.91

fingerprint 20.34 2.99 5.73 7.59
0.93 0.87 0.95 0.96

goldhill 19.59 6.88 7.84 9.63
0.67 0.82 0.87 0.88

lena 19.92 8.07 9.22 11.88
0.60 0.84 0.88 0.93

man 20.38 4.36 6.36 7.76
0.71 0.80 0.86 0.87

mandrill 19.34 1.00 3.04 5.41
0.77 0.69 0.83 0.88

peppers 19.53 7.77 9.15 11.34
0.61 0.86 0.87 0.92

stream 20.35 2.88 5.00 5.99
0.80 0.78 0.87 0.88

zelda 17.71 10.42 10.00 12.78
0.58 0.87 0.88 0.93

Figure 10: Comparison between hybrid PI-PD, aver-
age and BM3D filters. The PSNR values represent
the improvement brought to the noisy image by the
filters, the MSSIM values are absolute values. PI-
PD parameter values: n = 25, l = 5, Tmax = 1 and
T2max = 2. The noisy column correspond to the
noisy input images, before denoising.
Timings: average filter in 0.07 ms hybrid PI-PD in
9.0 ms and BM3D in 4.3 s. Data transfers between
CPU and GPU need 0.15 ms additional time.
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(a) Noisy image σ = 25 (b) Average 5 × 5 filter, in
0.07 ms

(c) PI-PD hybrid filter,
n = 25, l = 5, Tmax = 1,
T2max = 2, in 9 ms

(d) BM3D filter, in 4.3s

Figure 11: Comparison of 512x512 images denoised
from noisy airplane image (11a) with a PI-PD fil-
ter (11b), PI-PD hybrid filter (11c) and BM3D filter
(11d). Only zoomed parts of images are shown in
order to ensure better viewing.
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