
Efficient Parallel Self-reconfiguration Algorithm for
MEMS Microrobots

Hicham Lakhlef, Hakim Mabed, and Julien Bourgeois
FEMTO-ST/DISC, University of Franche-Comté, 1 Cours Leprince Ringuet, 25201, Montbeliard, France

{hlakhlef, hmabed, julien.bourgeois}@femto− st.fr

Abstract—In this paper we propose a distributed and efficient
parallel self-reconfiguration algorithm for MEMS microrobots.
MEMS microrobots perform various missions and tasks in a wide
range of applications including odor localization, firefighting,
medical service, surveillance and security, and search and rescue.
To achieve these tasks the self-reconfiguration for MEMS micro-
robots is required. The self-reconfiguration with shared map does
not scale. Because with the map (predefined positions of the target
shape) each node should store all predefined positions of the
target shape, therefore this is not always possible as MEMS nodes
have a low-memory capacity. In this paper, we present an efficient
self-reconfiguration algorithm without predefined positions of the
target shape, which reduces the memory usage to a constant
complexity. This algorithm improves the energy consumption
by minimizing the amount of displacement and the number of
messages.

Index Terms—Parallel Algorithms; Distributed Algorithms;
Self-reconfiguration; Optimality; Logical Topology; Physical
Topology

I. INTRODUCTION

Micro electro mechanical system (MEMS) is a technology
that enables the batch fabrication of miniature mechanical
structures, devices, and systems. MEMS are miniaturized and
low-power devices that can sense and act. It is expected that
these small devices, referred to as MEMS nodes, will be mass-
produced, making their production cost almost negligible.
Their applications require a massive deployment of nodes,
thousands or even millions [7], [26] which will give birth
to the concept of Distributed Intelligent MEMS (DiMEMS)
[3]. A DiMEMS device is composed of typically thousands
or even millions of MEMS nodes. Some DiMEMS devices
are composed of mobile MEMS nodes [1], some others are
partially mobile [32] whereas other are not mobile at all [3].
Due to their small size and the batch-fabrication process,
MEMS microrobots are potentially very cheap, particularly
through their use in many areas in our lifetime [11], [30]. At
the present time, swarm robotics is gaining increasing attention
since large-scale swarms of robots can perform various mis-
sions and tasks in a wide range of applications including odor
localization, firefighting, medical service, surveillance and
security, and search and rescue [22], the self-reconfiguration
for MEMS microrobots is necessary to do these tasks. One of
the major challenges in developing a microrobot is to achieve
a precise movement to reach the destination position while
using a very limited power supply. Many different solutions
have been studied for example, within the Claytronics project
[1], [2], [8], [12], [19] each microrobot helps its neighbor to

move to the desired position, which introduce the idea of a
collaborative way of moving.
In the literature, the self-reconfiguration can be seen from two
different points of view. First, it can be defined as a protocol,
centralized or distributed, which transforms a set of nodes to
reach the optimal logical topology from a physical topology
[10]. On the other hand, the self-reconfiguration is built from
modules which are autonomously able to change the way
they are connected, thus changing the overall shape of the
network [8], [24]. This process is difficult to control, because
it involves the distributed coordination of a large numbers of
identical modules connected in time-varying ways. The range
of exchanged information and the amount of displacement,
determine the communication and energy complexity of the
distributed algorithm. When the information exchange involves
close neighbors, the complexity is moderate and the resulting
distributed the self-reconfiguration algorithm scales gracefully
with network size.
This work takes place within the Claytronics project and aims
at optimizing the logical topology of the network through
rearrangement of the physical topology as we will see in the
next sections.

II. RELATED WORKS

Many terms refer to the concept of self-reconfiguration.
In several works on wireless networks the terms used are
redeployment and self − organization, this last term is
also used to express the partitioning and clustering of ad-
hoc networks or wireless networks to groups called cliques
or clusters. Also, the self-organization term can be found
in protocols for sensors networks to form a sphere or a
polygon from a center node [28]. Others algorithms for the
redeployment of sensor networks in [14], [23]. In [24], a
protocol of self-configuration where the desired configuration
is grown from an initial seed module, after a generator uses a
3D CAD model of the target configuration and outputs a set
of overlapping bricks which represent this configuration.
A growing number of research on self-reconfiguration for
microrobots using centralized algorithms have been done,
among them we find centralized self-assembly algorithms [21].
Other approaches give each node a unique ID and a predefined
position in the final structure; see for instance [27]. The draw-
back of these methods is the centralized paradigm and the need
for nodes identification. More distributed approaches include
[4], [5], [9], [13], [25]. In [29] a deterministic distributed

algorithm for the reconfiguration of modular robots to straight
chain configuration.
Claytronics, is the name of a project led by Carnegie Mellon
University and Intel corporation. Many works have already
been done within the Claytronics project. In [6], [8], the
authors propose a metamodel for the reconfiguration of catoms
starting from an initial configuration to achieve a desired
configuration using creation and destruction primitives. The
authors use these two functions to simplify the movement of
each catom. Another scalable algorithm can be found in [19].
In [2], a scalable protocol for Catoms self-reconfiguration is
proposed, written with the MELD language [1], [20] and using
the creation and destruction primitives. In all these works, the
authors assume that all Catoms know the correct positions
composing the target shape at the beginning of the algorithm
and each node is aware of its current position. The first self-
reconfiguration without predefined positions of the target shape
appears in [15], [16], [18]. However, these solutions are not
parallelized. In [17] a another solution that guarantees the
connectivity of the network through the execution time of the
algorithm, this solution is not optimal.

III. CONTRIBUTIONS

We introduce a state model where each node can see
the state of its physical neighbors to achieve the self-
reconfiguration for distributed MEMS microrobots, using the
states the nodes collaborate and help each other. Contrary to
existing works, in our algorithm each node has no information
on the correct positions (predefined positions) of the target
shape, and movement of microrobots is fully implemented.
We propose an efficient, distributed and parallelized algorithm
for nodes self-reconfiguration where each node can commu-
nicate only with its physical neighbors. We study the case
of a self-reconfiguration from a chain of microrobots to a
square. The performance of the self-organization algorithm is
evaluated according to the number of movements, the amount
of memory used and the time taken. In this paper the MEMS
network is organized initially as a chain. By choosing a straight
chain as the initial shape, we aim to study the performance
of our approach in extreme case. Indeed, the chain form
represents the worst physical topology for many distributed
algorithms in terms of fault tolerance, propagation procedures
and convergence. First, the number of direct contacts between
microrobots is minimal and secondly the average distance
between two robots (in term of number of hops) is of (n+1)/3
where n is the number of microrobots.
To assess the distributed algorithm performance, we present
the simulation results and we compare to former results.

The rest of the paper is organized as follows: Section 4
discusses the model and some definitions. Section 5 discusses
the proposed algorithm, analyzes the number of sent messages
and the number of movements, it discusses memory space
required and shows the generalization of the algorithm. Section
6 details the simulation results. Finally, section 7 summarizes
our conclusions and illustrates our suggestions for future work.

IV. MODEL, DEFINITIONS AND TOOLS

R

M0

P1

P2

P3

P4

P5

P6

EW

NE

SE

NW

SW

wt

y

x

O

V
M(x(t), y(t))

Figure 1. Node modeling, in
each movement the node trav-
els the same distance

Figure 2. Two catoms.

 D2

 D1
A

B

A

A

Figure 3. Traveled distance in
one movement = 2R, the node
A travels 2R in one movement

A

B

C

D

t0
t

t

1

2

A

A

Figure 4. Message transmission, there
will be message exchange if the node needs
to know the state of a non-neighbor node

Within Claytronics, a Catom (figure 2) that we call in
this paper a node is modeled as a sphere which can have at
most six neighbors without overlapping (See figure 3). Within
Claytronics, each node is able to sense the direction of its
physical neighbors (east (E), west (W), north-east (NE), south-
east (SE), south-west (SW) and north-west (NW)). The starting
physical topology is a chain of n nodes linked together. A
chain corresponds to a connected set of nodes where all nodes
have two neighbors excepting the two extremities representing
only one neighbor. We will take the example of nodes that have
neighbors in NW and SE directions and we will show after
how to generalize. A node A is in neighbor’s list of node B
if A touch physically B (figure 3). Communications are only
possible through contact, which means that only neighbors can
have a direct communication. Therefore, if the node didn’t
have neighbor at the previous or the current round of the
algorithm it cannot join the other nodes of the network, so
it is lost. Because it does not know where is the group or at
least one node connected to the group. Thus, the algorithms
of self-reconfiguration have to make sure that no node will be
lost.

Consider the connected undirected graph G = (V, E) mod-
eling the network, where v ∈ V , is a node that belongs to the
network and, e ∈ E a bidirectional edge of communication
between two physical neighbors. For each node v ∈ V , we
denote the set of neighbors of v as N(v). Each node v ∈ V
knows the set of its neighbors in G, denoted N(v).
We define the following terminology:
Non−Snap−Connectivity : there is a non-snap-connectivity
if the graph that models the network is connected only at the
end of the algorithm.
We call the highest number of movements the highest number
of movements was performed by a node belongs to the
network.

To calculate the highest number of movements we define the
following:
Consider the figure 1 which represents a microrobot. We say
that a microrobot has done a single movement if the distance
between its former position and its new position is exactly
twice the radius D1 = 2R. For example, if the node is
in a position at a distance D2 (see the figure 3) from the
former position it has done two movements. We have 360◦

can be divided to six equal angles each one has 60◦, since the
perimeter at an angle a is Pa = π Ra/180 and P = 2πR
we find P1 = P2 = P3 = P4 = P5 = P6, this means that
the node can have without overlapping at most six neighbors
and in each movement the node travels Ra (with a = 60◦)
from m0 to m. In this paper, we assume that the change
of message (consultation) between two physical neighbors is
carried without complexity (0 message), while the distance
between two physical neighbors is zero and in the tools of
simulation the node can see directly the state of its physical
neighbor. If a node to decide needs to know the state of
node which is not its physical neighbor message exchange
is required, for example in the figure 4:

• At t0: the node A needs to know the state of B to move to
the new position, this movement is done without message
exchange.

• At t2: if A is in the new position and it needs to know
the state of D to move then D sends a message to C
informing its state to C that forwards the message to A.
So, in this case there is a message exchange and A must
wait two rounds to decide.

• But if at t0 or at t1 a message has been sent from D
to C, so A at t2 can have the state of D with a simple
consultation of C’s state.

It is important to minimize the number of movements regard-
ing the energy and time of execution, the space of memory
used, therefore the number of states per node.

Theorem 4.1: 1 Let y be an odd\even square number (y
is an integer that is the square of an integer), then the next
odd\even square number is y + 4

√
y + 4

Theorem 4.2: Let y be a square number (y is an integer
that is the square of an integer), then if y is odd\even the next
even\odd square number is y + 2

√
y + 1

V. PROPOSED PROTOCOL

A. Parallel Algorithm with Unsafe Connectivity (PAUC)

In this section we present our protocol that ensures the
property of non-snap-connectivity.

To form the matrix of our square with
√
N ×

√
N nodes,

we begin (according to Theorem 4.4 and Theorem 4.5) with an
incremental process with a correct square (for example 1x1).
Then, we add each time a new sub-layer contains 3T+2 nodes,
with T ×T is the last square. After, we add another sub-layer
with T+2 nodes taking positions at the W direction relative to
nodes of the last shape. If N is even, at the last layer we add
2T +1 nodes, with T ×T is the last square, figures 5 and 6

1The character "\" means respectively (resp.) in lemmas and theorems

TxT

sub-layer1sub-layer2layer =| | +| | 4T+4=

Figure 5. Represents how
many nodes added to reach the
next square when n is odd

TxT

|layer|=2T+1

Figure 6. Represents how many nodes
added in the last layer to reach the last
square when n is even

show an example. The choice of the middle node depends on
the optimality of parallelism. To apply an optimal parallelism
the middle node mi which is also the initiator of the algorithm
should be found with the followings :
Let N be the network size, n =

⌊√
N
⌋ ⌊√

N
⌋

and dif =

N − n then:
• If n is odd and dif < 2

√
n then the middle node will be

mi = (n+ 1)/2, as the case in figure 8.
• If n is odd and dif ≥ 2

√
n then the middle node will be

mi = ((n+ 1)/2) +
√
n− 2

• If n is even and dif < 2
√
n then the middle node will

be mi = n/2− ((
√
n/2)− 1), as the case in figure 7.

• If n is even and dif ≥ 2
√
n then the middle node will

be mi = (n/2− ((
√
n/2)− 1)) +

√
n− 2.

The middle node mi can be found by knowing the network
size, an end node of the chain initializes a counter and
broadcasts it, each node receives this message increments the
counter until its arrives to the concerned node mi, that will
have the satisfied predicate medChain(v).

1

2

3

4

1 2

3 4

Figure 7. Represents an ex-
ample of initiator finding when
n is even, in this example the
initiator is the node 2

1

5

6

7

2

9

4

3

8

548

231

6 79

Figure 8. Represents an example of ini-
tiator finding when n odd, in this example
the initiator is the node 5

Variables and Predicates
• initiatorv(): node v that initializes the algorithm.
• statev(X): v takes the state X ∈
{well, bad, int, nper, sint, rint,mnper, top, bottom}, v
cannot take the states well and bad in the same time.

• moveAroundstatev(u, Px): move around neighbor u that
has the state state in such a way u becomes v’s neighbor
in the direction x relative to v.

• moveTov(PNx
): move to the old position of the former

neighbor at direction x relative to v.

B. Description and analysis

The algorithm PAUC (presented here after) runs in rounds,

Predicates checked only in the first round
1) initiatorv() ≡ medChain(v).
2) statev(bad) ≡ connectedv() ∧ ¬initiatorv().
3) statev(well) ≡ initiatorv().
4) statev(nper) ≡ initiatorv().

Predicates checked in each round
5) thisRound≡ GetCurrentRound().
6) hasNnwv(thisRound) ≡ (Nnw(v) = u) ∧ stateu(bad).
7) NnwlastRoundv(LastRound) ≡ hasNnwv(thisRound− 1).
8) hasNsev(thisRound) ≡ (Nse(v) = u) ∧ stateu(bad).
9) NselastRoundv(LastRound) ≡ hasNsev(thisRound− 1).

10) statev(top) ≡ (Nse(v) = u, initiatoru()) ∨ (Nse(v) = u, stateu(top)).
11) statev(bottom) ≡ (Nnw(v) = u, initiatoru()) ∨ (Nnw(v) = u, stateu(top)).
12) statev(sint) ≡ (Ne(v) = u, initiatoru()).
13) statev(nper) ≡ (Nse(v) = u, stateu(sint)).
14) statev(rint) ≡ (Ne(v) = u, stateu(well)) ∧ (Nne(v) = u,¬stateu(well),¬stateu(int)).
15) statev(mnper) ≡ (Ne(v) = u, stateu(nper)) ∧ (¬statev(nper)) ∧ (statev(int) ∨ statev(well)).
16) statev(nper) ≡ (Ne(v) = u, stateu(mnper)) ∧ (¬statev(mnper)) ∧ (Nse(v)).
17) statev(int) ≡ ((Ne(v) = u, stateu(well))∧ (Nnw(v)))∨ ((Nse(v) = u, stateu(well))∧ (Nw(v)))∨ ((Nse(v) =

u, stateu(rint))) ∨ ((Nne(v) = u, stateu(well)) ∧ (Nnw(v))) ∨ ((Nne(v) = u, stateu(well)) ∧ (Nw(v))).
18) statev(int) ≡ ((Ne(v) = u, stateu(well)) ∧ (Nnw(v))) ∨ ((Nse(v) = u, stateu(well)) ∧ (Nw(v))) ∨ (Ne(v) =

u1, Nse(v) = u2, stateu1(int), stateu2(int)) ∨ ((Nne(v) = u, stateu(well)) ∧ (Nnw(v))) ∨ ((Nne(v) =
u, stateu(well)) ∧ (Nw(v))).

19) statev(well) ≡ ((Ne(v) = u, stateu(int)) ∧ (Nnw(v))) ∨ ((Ne(v) = u, stateu(int)) ∧ (Nse(v))).
20) statev(well) ≡ (Nw(v) = u, stateu(well))).
21) statev(well) ≡ statev(bad) ∧ (¬Nse(v)) ∧ (Nw) ∧ (Nnw(v) = u, stateu(well)).
22) statev(well) ≡ statev(bad)∧ (¬Nse(v))∧ (Nw)∧ (Nnw(v) = u, stateu(well))∧ ((Ne(v) = u1, stateu1(well))).
23) moveTov(PNnw

) ≡ statev(top) ∧ statev(bad) ∧NnwlastRoundv(LastRound) ∧ ¬hasNnwv
(thisRound).

24) moveTov(PNse) ≡ statev(bottom) ∧ statev(top) ∧ statev(bad) ∧ NselastRoundv(LastRound) ∧
¬hasNsev (thisRound).

25) moveAroundintv(u, Pse) ≡ (¬Nw(v) ∧ statev(top) ∧ ¬Nnw(v)) ∧ (¬statev(well)) ∧ (¬statev(int)) ∧
statev(bad) ∧ (Nsw(v) = u, stateu(int), stateu(top)) ∧ (¬stateu(nper)) ∧ (((Nse(v) = u1,¬Ne(u1) =
u) ∧Nnw(v)) ∨ (Nse(v) = u1, Ne(u1) = u)).

26) moveAroundwellv(u, Pse) ≡ (¬Nw(v) ∧ statev(top) ∧ ¬Nnw(v)) ∧ statev(top) ∧ (¬statev(well)) ∧
(¬statev(int)) ∧ statev(bad) ∧ (Nsw(v) = u, stateu(well), stateu(top)).

27) moveAroundintv(u, Pe) ≡ (¬Nw(v)∧ statev(top)∧¬Nnw(v)∧¬Ne(v))∧ (¬statev(well))∧ (¬statev(int))∧
statev(bad) ∧ (Nse(v) = u, stateu(int), stateu(top)) ∧ (¬stateu(nper)).

28) moveAroundwellv(u, Pe) ≡ (¬Nw(v)∧statev(top)∧¬Nnw(v)∧¬Ne(v))∧ (¬statev(well))∧ (¬statev(int))∧
statev(bad) ∧ (Nse(v) = u, stateu(well), stateu(top)).

29) moveAroundwellv(u, Pne) ≡ (¬Nw(v)∧statev(top)∧¬Nsw(v)∧¬Nse(v))∧(¬statev(well))∧(¬statev(int))∧
statev(bad) ∧ (Ne(v) = u, stateu(well), stateu(top)) ∧ (¬stateu(nper)).

30) moveAroundintv(u, Pne) ≡ (¬Nw(v)∧statev(top)∧¬Nsw(v)∧¬Nse(v))∧(¬statev(well))∧(¬statev(int))∧
statev(bad) ∧ (Ne(v) = u, stateu(int), stateu(top)) ∧ (¬stateu(nper)).

31) moveAroundwellv(u, Pne) ≡ (¬Ne(v) ∧ statev(bottom) ∧ ¬Nsw(v)) ∧ (¬statev(well)) ∧ (¬statev(int)) ∧
statev(bad) ∧ (Nnw(v) = u, stateu(well), stateu(bottom)).

32) moveAroundwellv(u, Pse) ≡ (¬Nw(v) ∧ statev(bottom) ∧ ¬Nsw(v)) ∧ (¬statev(well)) ∧ (¬statev(int)) ∧
statev(bad) ∧ (Ne(v) = u, stateu(well), stateu(bottom), (¬stateu(nper)).

33) moveAroundwellv(u, Pe) ≡ (¬Nw(v) ∧ statev(bottom) ∧ ¬Nsw(v)) ∧ (¬statev(well)) ∧ (¬statev(int)) ∧
statev(bad) ∧ (Nne(v) = u, stateu(well), (¬stateu(nper)).

34) moveAroundintv(u, Pne) ≡ (¬Nw(v) ∧ statev(bottom) ∧ ¬Nsw(v)) ∧ (¬statev(well)) ∧ (¬statev(int)) ∧
statev(bad) ∧ (Nnw(v) = u, stateu(int), stateu(bottom)) ∧ (Nne(v) ∨Nse(v)).

35) moveAroundintv(u, Pe) ≡ (¬Nw(v) ∧ statev(bottom) ∧ ¬Nsw(v)) ∧ (¬statev(well)) ∧ (¬statev(int)) ∧
statev(bad) ∧ (Nne(v) = u, stateu(int), stateu(bottom), (¬stateu(nper)).

36) moveAroundwellv(u, Pe) ≡ (¬Nw(v) ∧ statev(bottom) ∧ ¬Nsw(v)) ∧ (¬statev(well)) ∧ (¬statev(int)) ∧
statev(bad) ∧ statev(bottom) ∧ (Nne(v) = u, stateu(well), stateu(mnper), (¬stateu(nper)).

PAUC

in each round satisfied predicates are chosen to run. The
distributed algorithm seeks the desired form by using an
incrementally process. In a completed increment, the nodes
that build it belong already to the form; these nodes will
help neighbor nodes and future neighbor nodes to get correct
positions. In others words, nodes in a completed increment act
as a landmark.
The middle node (mi) of the chain declares itself as an initiator
with the predicate (1). Initially, all nodes are initialized with
the state bad except the initiator (2), the initiator takes the
states well and nper with (3) and (4). Nodes that are above
the initiator take the state top with predicate (10), the other
nodes that are under the initiator take the state bottom (11).
Nodes having the state well or int are nodes already in the
target shape and cannot move, they became steady.
To make an optimal parallelism and correct square, the number
of nodes having the state top (10) to be in the same line as
the initiator(in the E direction relative to the initiator) must
be equal to the number of nodes having state bottom (11) to
be in the same line as the initiator if N is odd. If N is even,
another node is added to the nodes having state top. The state
nper is used to achieve this purpose. That is, the node having
the state nper does not permit to some nodes to move around
it. The initiator takes the state nper (4), by taking this state
the initiator and each node has this state does not allow to
neighbor nodes having the state bottom to move around it
in order to join the line of the initiator (to became in the
E direction relative to the initiator). This is done with guard
(¬statev(nper)). The state mnper is an intermediate state
used to propagate the state nper to the other concerned nodes,
that will keep the parallelism optimal. The state sint (12) is
another intermediate state used as a reference to the first node
that can get the state nper, the state sint is an indispensable
because the second node that should take the state nper (13)
is not a neighbor node of the initiator which is the first node
that takes the state nper. The node that has a neighbor in
the E direction having the state nper takes the state mnper
(15). The node that has the initiator as neighbor node in the E
direction takes the state sint (12). The other (next) nodes that
will take the state nper are nodes having in the E direction a
neighbor that has the state mnper (16). Therefore, the node
having the state nper does not allow neighbor nodes having
the state bottom to join the line of the initiator, as these nodes
are checking the predicates (30), (32), (35) and (36).
The state int is an intermediate state used to add a non-
complete layer to the square shape. Thus, the nodes that
have neighbors having the state well take the state int with
predicate (17). The first node that changes its state to int is the
one in the line of the initiator. After, the state int is propagated
to nodes that have neighbors having the well state. Notice that,
nodes take the state int if they have at least one neighbor
having the state well, but when making a new layer there is
one node that will not have a neighbor having the state well
and it should take the state int, the state rint (14) is used to
deal with this case. Notice that, nodes with the state well and
nodes with state int together do not composites a square, it

well be a square if all nodes having the state int have in the
W direction a neighbor node, this neighbor node has the state
well. Therefore, the wave of state changing to well begins
with predicates (19), (20), (21) and (22).
With the predicate (23) the nodes having the states top and
bad descend towards the center of the chain. As well as, nodes
having the state bottom and bad mount towards the center of
the chain with the predicates (24). Therefore, with predicate
(23), the node that has the state top and bad takes the position
of its former neighbor in the NW direction. With predicate (23)
the node having the state bottom and bad takes the position of
its former neighbor in the SE direction (24). With predicates
(6), (7), (8) and (9), the node cheeks if it had a neighbor in
the SE or NW direction in the previous round.
With predicate (25)/(26), the node v that has the states top
and bad moves around a node u having the states top and
int/well, node u becomes a neighbor in SE direction relative
to v. With predicate (27)/(28) the node v that has the states
top and bad moves around a node u having the states top and
int/well, node u becomes a neighbor in E direction relative to
v. With predicate (29)/(30), the node v that has the states top
and bad moves around a node u having the states bottom and
well/int, node u becomes a neighbor in NE direction relative
to v. With predicate (31)/(32), the node v that has the states
bottom and bad moves around a node u having the states
bottom and well/int, node u becomes a neighbor in NE/SE
direction relative to v. With predicate (33)/(34) the node v that
has the states bottom and bad moves around a node u having
the states bottom and well/int, node u becomes a neighbor
in E/NE direction relative to v. And with (35)/(36), the node
v that has the states bottom and bad moves around a node
u having the states bottom and int/well, node u becomes a
neighbor in E direction relative to v.

Theorem 5.1: If N is the network size, n =
⌊√

N
⌋ ⌊√

N
⌋

and η =
⌈√

N
⌉ ⌈√

N
⌉

, then:
• if n is odd and n = N then the highest number of

movements will be ((n+
√
n− 2)/2).

• if n is odd and n < N then the highest number of
movements will be (η/2− 1).

• if n is even and n = N then the highest number of
movements will be (n/2− 1).

• if n is even and n < N then the highest number of
movements will be ((η +

√
η − 2)/2).

Example: Figure 9 shows an example with explanation.
• At t0: with predicate (2) each node takes the state b

(bad), with (10) nodes (node 1) which are above the
initiator (node 2) take the state t (top), with (11) nodes
(nodes 3 and 4) located under the initiator take the state B
(bottom), with (3) the initiator takes the state w (well),
and with (4) it takes the state n (nper).

• To arrive at the next step t1: node 1 moves around node 2
using the predicate (28), and node 3 moves around node
2 using (31). The node 1 takes the state s with (12). Node
1 cannot do another motion around node 2 since node 2
has the state n.

b

b

b

b

t

B

B

w n

b b

b

b

t

B

B

nwb b

b b

t

B B

wb b

b b

t

B B

nw

i

i

ii

n 1

2

3

4

12

3

4

2

3
4

1

3 4

21

t0t1t2t3

si

ss

Figure 9. Represents an example of execution of PAUC with four nodes

• To arrive at the next step t2: node 4 moves take the
position of its former neighbor (node 3) using the
predicate (23). Node 1 and node 3 take the state i with
predicates (17) ans (18).

• At t3: the target shape is obtained. Node 4 takes the state
i with (17).

C. The seven states minimum

In this section we prove that seven states are necessary and
sufficient to obtain the algorithm convergence. Obviously, with
a single state, nodes have no way to distinguish whether they
are in a good position or not and therefore if the node should
move or not. Let us suppose a variant of PAUC with two
states bad and well, with these two states, we can say that the
node that has well state is a steady node and is belonging to
the target shape, and the node with bad state moves around
nodes having well state, thereby with these two states, nodes
collaborate between them to make a next layer and change the
state from bad to well. Suppose a set S of nodes having the
well state are correctly in the target shape. Depends on some
conditions C the set B of nodes with bad state will change
their state to well in order to make a new layer, however as
we have only two states the other nodes that are B’s neighbors
have likewise these C conditions and they will change their
states to well and became steady, although they are not even
at the layer being built. So, PAUC is executed and the target
shape is lost.
Two additional states are required, the state top and bottom,
these two states are indispensable to avoid deadlock in PAUC.
Indeed, in PAUC there is the predicate (23) executed by nodes
to descend to the middle of the chain, and the predicate (24)
executed to rise to the middle of the chain, if we remove
the states top and bottom from the predicates of movement
the nodes will remain in their position by running (23)/(24)
after (24)/(23), or (29)/(33) and (33)/(29) cyclically. Therefore,
PAUC will not get finished. A variant of PAUC with four states
bad and well and top and bottom is impossible, the reasons
are the same used to prove the impossibility with the two states
well and bad.

The solution is to add an intermediate state int to separate
neighboring nodes having the state bad and nodes having well
state. By adding this state, the node that has int state can
change the C conditions that will be C’. Such a way, B’s
neighbors cannot change their state to well with C’, because
they are not forming a new correct layer.

Let us suppose a variant of PAUC with six states bad, well,
top, bottom, and int, ¬int. With six states the deadlock is

avoided, and the conditions to change the state to well are
managed. However, the nodes having the state int are making
a new layer adjacent to the current correct square

√
Z ∗
√
Z,

the number of node having int added is 3
√
Z +2. Therefore,

as
√
Z ∗
√
Z + 3

√
Z + 2 is not a square root (from Theorem

4.4 and Theorem 4.5), the shape is not a square. To become
a square we have to add γ =

√
Z +2 nodes, these nodes will

be at the direction W relative to nodes having the state int.
These γ nodes can get the state well because the shape is a
square or an intermediate square.

With six states bad, well, top, bottom, int, and ¬int, the
parallelism will not be optimal and the energy consumption
will not be well balanced between nodes. To make an optimal
parallelism and to make well balanced consumption of energy,
PAUC makes two rectangles in parallel where the union gives
a square. Also, to propagate the state nperm to the concerned
nodes of the middle, we have to use another state mnper, the
states ¬nper and ¬mnper are used to check if the neighbor
node has the state nper and mnper respectively. The state
sint is another intermediate state used as a reference to the
second node that can get the state nper, the state sint is an
indispensable state because the second node that should take
the state nper is not a neighbor node of the initiator which
is the first node that takes the state nper. The first node that
changes its state to int is the one that has a neighbor having
the state nper. After, the state int is propagated to nodes that
have neighbors having the well state. Notice that, nodes take
the state int if have at least one neighbor having the state
well, but when making a new layer there is one node that
will not have a neighbor having the state well and it should
take the state int, therefore the state rint is used to help these
nodes to take the state well.

D. Complexity of sent messages

PAUC needs only the messages of middle node finding
(O(N/2)). The most interesting action for message exchange
in the algorithm is the one activated by state changing predi-
cates, from bad to int and from int and bad states to well, it
is obvious that if a node changes its state before it is sure of
the well state of other nodes that have moved before it in the
current layer, the procedure will completely go in the opposite
direction of the desired objective and the self-reconfiguration
desired, the predicates (15), (16), (17), (18), (19), (20), (21),
and (22) ensure without exchanging of message that the node
changes its state only if all nodes that have moved before have
changed their states to int or well, therefore the first node
that begins the construction of the new layer does not need to
wait for the message of the first node that began the previous
layer. Since the node that is currently checking the predicates
(15), (16), (17), (18), (19), (20), (21), and (22) can have this
information by consulting (message) the state of its neighbors.
In other words, the message was being sent before the node
needs to know the state of its sender, when the node needs to
know it, it will find the message at its physical neighbor. So
we do not need to transmit information from the node blocked

necessarily in a good position with the well or int state to
other nodes which are forming the new layer which explains
that throughout the algorithm in any case we do not need to
transmit information between two non-neighboring nodes of
the new layer. This efficiency is explained by the fact that
synchronization in state changing is not required for nodes
that are in the same layer. As consequence, PAUC needs only
the messages of middle node finding.

E. Generalization of the algorithm

Presented algorithm PAUC is specific to a chain case where
nodes form initially a straight line oriented toward SE-NW
directions. In this section we describe how the algorithm
can be generalized to any kind of initial chain with any
directionWe start by explaining how the two end nodes are
selected whatever are the directions of the straight chain. The
node that has only one neighbor situated either in SW, SE
or E direction is the first end node. The second end node
has only one neighbor situated either in NW, NE or W. For
the other nodes, every node in the chain can deduce the
orientation of the chain by analyzing the orientation of its
two neighbors, they use the orientation of their two neighbors
to determine the orientation of the formed chain. Generally,
every node after the detection of the chain orientation, noted
D-D, runs a variant of the PAUC algorithm depending of
the orientation D ∈ {W,NW,NE}. The variant of PAUC
algorithm, PAUCD, represents an adaptation of the the orig-
inal PAUC algorithm (corresponding to PAUCNW) to the
two other possible orientations with changing the directions
in predicates. For instance, if the initial chain is oriented NE-
SW, the algorithm PAUCNE is called, and the square form
is realized using moves of type moveAroundbadv(u, Pw),
moveAroundwellv(u, Pw) and moveAroundwellv(u, Pnw).
The usage of these three predicates is described in figure 10
that presents an example with nodes having the state bottom
moving around nodes having the state well or int.

Root

v

Root Root

moveAroundwell (u, P) nwv
moveAroundwell (u, P)

v w
moveAroundwell (u, P)

v w

u u

v v

Figure 10. Moves adaptation in the case of NE-SW chain. Dark nodes are
nodes having the state well or int

VI. SIMULATION

We have done the simulation with the Dynamic Physical
Rendering Simulator (DPRSsim) [31]. In our simulations the
radius of the node is 1 mm. We simulated with a laptop
with processor Intel(R) Core(Tm) i5, 2.53 GHz with 4 Go
of memory. We note in the figures of simulation, PAUC1
for the values odd of n with t(η) = η/2 − 1 and p(n) =
((n +

√
n − 2)/2). And PAUC2 for the values even of n,

with v(n) = (n/2− 1) and s(η) = ((η +
√
η − 2)/2)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000

T
ic

ks

Nodes

[15]
[17]

PAUC

Figure 11. Execution time

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

N
um

be
r

of
 m

ov
em

en
ts

Nodes

[17]
[15]
t(n)

p(n)
PAUC1

v(n)
s(n)

PAUC1
PAUC2
PAUC2

Figure 12. Highest number of movements

The simulation results come to agree our theoretical results.
The figure 11 represents the execution time in ticks by the
number of nodes; this figure compares the execution time of
the algorithm proposed in this paper to those given in [15] and
[17]. Figure 12 presents the highest number of movements
found in this paper compared to the one in [15]. The effects of
parallelism appear well in the curve representing the execution
time of PAUC, [15] and [17], as in PAUC movements of
microrobots are in parallel which optimizes the time of the
algorithm and PAUC makes two rectangles in the same time
that their union gives the target shape. An interesting thing
to notice here is that optimizing the execution time of the
algorithm will have a direct effect on messages therefore a gain
on communication, and if the algorithm is fast then the critical
information arrives early at the concerned node. Also, if the
task is a heavy parallel computation, therefore if the algorithm
is faster, the parallel computing will be fast and light on the
nodes because the tasks are well distributed. In figure 11 we
see that whenever the network size increases the difference
increases dramatically. We remark in figure 12 that the number
of movements in PAUC is much lower, which will increases
the probability of lifetime of nodes, therefore the probability
that the node continues its task (its movements), this is also
improving the energy consumption. However, PAUC needs

seven states per node and the algorithm in [15] needs three
states per node, and the algorithm in [17] needs ten states.

VII. CONCLUSION

In this paper, we presented a new method to complete the
self-reconfiguration where the nodes do not know the fixed
positions of the target shape but only the aimed shape; nodes
collaborate and help each other by analyzing the characteristics
of the target shape. Compared to the literature works this
algorithm is scalable because each node needs only seven
state to achieve the self-reconfiguration. Nodes in our paper
can perform the algorithm regardless the place where they are
because the algorithm is independent of the map, that what we
call portability. The proposed algorithm is characterized by a
constant memory needs and message exchange is limited to
neighboring consultations. Consequently, system reconfigura-
tion is fast. we have shown the self-reconfiguration parallelized
possibility without predefined positions of the target shape.
The proposed algorithm optimizes the execution time and the
number of movements, each node needs seven states to help
and collaborate with neighbors, its execution time and highest
number of movements are much better than those in literature
works. However, some open problems remain; we will study
the fault tolerance on self-reconfiguration in microrobots net-
works. The study of the effect of self-reconfiguration on the
permutation routing where the objective will be to optimize
the path of a node to go to the correct position where it finds
its correct data.

VIII. ACKNOWLEDGMENTS

This work is supported by the Labex ACTION program
(contract ANR-11-LABX-01-01), ANR/RGC (contracts ANR-
12-IS02-0004-01 and 3-ZG1F) and ANR (contract ANR-2011-
BS03-005). The authors wish to express their appreciation to
the four anonymous reviewers for their constructive comments.

REFERENCES

[1] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and P. Pillai,
Meld: A Declarative Approach to Programming Ensembles,In Proceedings
of the IEEE Int. Con. on Intelligent Robots and Systems, October, 2007.

[2] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, Padmanabhan Pillai, and
Jason D. Campbell, A Language for Large Ensembles of Independently
Executing Nodes, In Proc. of the Int. Con. on Logic Programming, 2009.

[3] J. Bourgeois and S.C. Goldstein. Distributed Intelligent MEMS: Pro-
gresses and perspectives, In the 3-rd Int. Conf. ICT Innovations, Ohrid,
Macedonia, September, 2011.

[4] H. Bojinov, A. Casal, T. Hogg, Emergent structures in modular self-
reconfigurable robots, Proceedings of the IEEE Int. Con. on Robotics and
Automation, vol. 2, pp. 1734-1741, Los Alamitos, 2000.

[5] Z. J. Butler, K. Kotay, D. Rus, K. Tomita, Generic decentralized con-
trol for lattice-based self-reconfigurable robots, International Journal of
Robotics Research 23(9):919-937, 2004

[6] D. Dewey, S. S. Srinivasa, M. P. Ashley-Rollman, M. D. Rosa, P. Pillai, T.
C. Mowry, J. D. Campbell, and S. C. Goldstein, Generalizing Metamod-
ules to Simplify Planning in Modular Robotic Systems, In Proceedings
of IEEE/RSJ 2008 International Conference on Intelligent Robots and
Systems, September, 2008

[7] T. Ebefors, J.U. Mattsson, E. K. lvesten, and G. Stemme, A walking
a silicon microrobot, in The 10th Int. Conf. on Solid-State Sensors and
Actuators (Transducers ’99), pages 1202-1205, Sendai, Japan, June 1999.

[8] S. Funiak, P. Pillai, M. P. Ashley-Rollman, J. D. Campbell, and S.
C. Goldstein, Distributed Localization of Modular Robot Ensembles, In
Proceedings of Robotics: Science and Systems, June, 2008.

[9] C. Jones, M. J. Mataric, From local to global behavior in intelligent
self-assembly.In: Proceedings of the 2003 IEEE International Conference
on Robotics and Automation,vol. 1, pp. 721-726, Los Alamitos, 2003.

[10] S. Jeon, C. Ji, Randomized Distributed Configuration Management
of Wireless Networks: Multi-layer Markov Random Fields and Near-
Optimality CoRR abs/0809.1916, 2008.

[11] S. Hollar, A. Flynn, C. Bellew, and K.S.J. Pister, Solar powered 10mg
silicon robot, In MEMS, Kyoto, Japan, January 2003.

[12] M. E. Karagozler, A. Thaker, S. C. Goldstein, D. S. Ricketts, Elec-
trostatic Actuation and Control of Micro Robots Using a Post-Processed
High-Voltage SOI CMOS Chip,IEEE International Symposium on Circuits
and Systems (ISCAS), May 2011.

[13] K. Katoy, D. Rus, M. Vona, and C. McGray, The Self-reconfiguring
Robotic Molecule, in Proceedings of the 1998 IEEE International Confer-
ence on Robotics and Automation, Leuven, 1998.

[14] F. Kribi, P. Minet, A. Laouiti, Redeploying mobile wireless sensor
networks with virtual forces, IFIP Wireless Days, Paris, France,2009.

[15] H. Lakhlef, H. Mabed, J. Bourgeois, Distributed and Efficient Algo-
rithm for Self-reconfiguration of MEMS Microrobots, in the 28th ACM
Symposium On Applied Computing, Coimbra, Portugal, March 2013.

[16] H. Lakhlef, H. Mabed, J. Bourgeois, Dynamicity to Save Energy in
Microrobots Reconfiguration, in 10th IEEE International Conference on
Ubiquitous Intelligence and Computing (UIC-2013), Italy, December 2013.

[17] H. Lakhlef, H. Mabed, J. Bourgeois, Parallel Self-reconfiguration for
MEMS Microrobot, in the 7-th IEEE Region 8 International conference
on Computer as a Tool, Zagreb, Croatia, July 2013.

[18] H. Lakhlef, H. Mabed, J. Bourgeois, Distributed and Dynamic Map-
less Self-reconfiguration for Microrobot Networks, 12th IEEE International
Symposium on Network Computing and Applications (NCA 2013), P. 55-
60, Cambridge, MA, United States, 2013.

[19] R. Ravichandran, G. Gordon, and S. C. Goldstein: A Scalable Dis-
tributed Algorithm for Shape Transformation in Multi-Robot Systems, In
Proceedings of the IEEE Int. Con. on Intelligent Robots and Systems,
October, 2007.

[20] M. D. Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and P. Pillai,
Programming Modular Robots with Locally Distributed Predicates, In
Proceedings of the IEEE Int. Con. on Robotics and Automation, 2008.

[21] D. Rus, M. Vona, Crystalline robots: Self-reconfiguration with com-
pressible unit modules,Autonomous Robots 10(1), 107-124, 2001.

[22] E. Sahin. robotics: from sources of inspiration to domains of application,
Swarm Robotics, SAB 2004 International Workshop (Revised Selected
Papers) E. Sahin and W. M. Spear (Eds.), Lecture Notes in Computer
Science 3342, Springer, 2005.

[23] R. Soua, L. Saidane, P. Minet, Sensors deployment enhancement by a
mobile robot in wireless sensor networks, IEEE ICN 2010, Les Menuires,
France, April 2010.

[24] K.Stoy, R.Nagpal, Self-reconfiguration using Directed Growth, 7th
International Symposium on Distributed Autonomous Robotic Systems
(DARs), France, June23-25, 2004.

[25] W. Shen, P. Will and A. Galstyan, Hormone-inspired self-organization
and distributed control of robotic swarms. Autonomous Robots 17(1), 93-
105, 2004.

[26] B. Warneke, M. Last, B. Leibowitz, and K.S.J Pister,K.S.J., 2001,
Smart Dust: Communicating with a Cubic-Millimeter Computer,Computer
Magazine, pp. 44-51, 2001.

[27] P. White, V. Zykov, J. C. Bongard, H. Lipson, Three dimensional
stochastic reconfiguration of modular robots In: Proceedings of Robotics
Science and Systems, pp. 161-168. MIT Press, Cambridge , 2005

[28] F. Zambonelli, M.P. Gleizes, M. Mamei, R. Tolksdorf,Spray Computers:
Explorations in Self-Organization, Journal of Pervasive and Mobile
Computing, Elsevier, Vol. 1, p. 1-20, 2005.

[29] S. Wong and J. Walter, Deterministic Distributed Algorithm for Self-
Reconfiguration of Modular Robots from Arbitrary to Straight Chain Con-
figurations, IEEE International Conference on Robotics and Automation,
Germany, May 2013

[30] http://today.duke.edu/2008/06/microrobots.html
[31] http://www.pittsburgh.intel-research.net/dprweb
[32] http://smartblocks.univ-fcomte.fr/

