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Abstract

A recent paper by Bouajjani, Muscholl and Touili shows that the class of lan-
guages accepted by partially ordered word automata (or equivalently accepted by
Yo-formulae) is closed under semi-commutation and it suggested the following open
question: can we extend this result to tree languages? This problem can be addressed
by proving 1) that the class of tree regular languages accepted by Y5 formulae is
strictly included in the class of languages accepted by partially ordered automata,
and 2) that Bouajjani and the others results can’t be extended to tree.
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We assume the reader is familiar with the basic notions on terms and tree
automata. For general reference see [6].

1 Introduction

A word automaton is partially ordered if its set of states can be partially or-
dered by a relation < such that if (p,a,q) is a transition, then p < g. Word
languages accepted by partially ordered automata accepts several characteri-
sations.

Proposition 1 The following propositions are equivalent:
i) L is accepted by a partially ordered word-automaton.
ii) L is definable by a ¥y formula.

iii) The ordered syntactic monoid of L satisfies z¥yx® < x* for every x and y
generated by the same set of letters.
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The notion of 5 formula will be presented in the next section. For more infor-
mation on a logical approach of word regular languages see the survey [12,17].
We will not study point ii) of the above proposition which is only given for
the reader’s information. Indeed, this notion cannot be easily extended to tree
languages and is out of the scope of this paper. See [13] for more details and
notice that efficient testing algorithms for this class of languages comes from
the monoid’s characterisation.

A semi-commutation relation Rg on words generated by a subset S C ¥ x X
(where X is the alphabet), is the subset of ¥* x ¥* such that (u,v) € Ry if
and only if there exist two words x and y and two letters a and b such that
u = zaby, v = xbay and (a,b) € S. The reflexive-transitive closure of Rg is
denoted by R%. The following result is proved in [3] (an efficient and extended
automata based approach is developed in [5]).

Theorem 2 For every language L accepted by a partially ordered automaton
and every semi-commutation relation Rg, the set {v | Ju € L, (u,v) € R5} is
accepted by a computable partially ordered automaton.

This result is suitable for algorithmic issues related to regular-model-checking
or HMSC verification [3]. Partially ordered word automata were also inten-
sively studied in the context of regular languages theory [14,1]. In the conclu-
sion of [3], authors wonder whether Theorem 2 can be extended to tree data
structures. But, in this paper, we negatively answer this question.

In this paper F denotes a finite set of symbols with arity. For the simplicity
of notation, if ag,...,a, are symbols of arity 1 and if # is a symbol of arity
0, the term ag(. .. (a,(#))...) is denoted by ay...a,(#). For every subset K
of terms, K¢ denotes the set of terms that are not in K. Throughout this
paper, we need the following results that can be easily proved using classical
automata constructions.

Lemma 3 The class of languages accepted by partially ordered automata is
closed under union and intersection. The class of languages accepted by de-
terministic partially ordered automata is closed under union, intersection and
complement.

This paper is organised as follows: in Section 2 is dedicated to prove that the
class of tree regular languages accepted by 35 formulae is strictly included in
the class of languages accepted by partially ordered automata. In Section 3 it
is proved that there exists a tree language accepted by a > formula whose
closure under a semi-commutation relation is not regular.



2 Partially ordered Tree Automata and Y, formulae

For a general approach on WSKS logic see [6, Section 3.3] or [17, Chapter 7].
This section is dedicated to prove that the class of tree languages accepted by
Y, formulae is strictly included in the class of languages accepted by partially
ordered tree automata.

We recall in Section 2.1 some basic logical definitions and notions. In Sec-
tion 2.2 we point out a language accepted by a partially ordered automaton but
not by any >, formula. Section 2.3 is dedicated to prove that every language
accepted by a Y, formula is also accepted by a partially ordered automaton.

2.1 Logic on Terms

The Atomic formulae on F are defined as follows:

e (p1 = p2), (p1 <i p2) and Ry(p1), where p; and p, are elements of N* U X,
f € F,and i € N, are atomic formulae.
e If ©; and @, are atomic formulae, then =1, (1 V 2) are atomic formulae.

In the above definition, if p;, p; and p are required to belong to X', we obtain
the subclass of atomic formulae called Constant-free atomic formulae. If the
set of variables occurring a formula ¢ is included in {x1,...,z,}, then we
also write it p(z1,...,x,). For each term ¢, we inductively define a valuation
function v; that maps each formula to 0 or 1:

o v((p1 = p2)) = 1iff p; and p, are positions of ¢ and if p; = p,.

o v ((p1 <; p2)) = 1iff p1.i and p, are positions of ¢ and if p;.i is a prefix of
D2.

o v (R¢(p)) = 1, iff p is a position of ¢ and ¢(p) = f.

[ ] Vt(ﬁgp) — ]_ — Vt(@)-

o v ((pV p2)) = max(vi (1), vi(p2))-

Classically, we say that ¢ satisfies ¢, denoted ¢ |= ¢, if 1,(¢) = 1. A formula of
the form Jxq ... 32, Yy1 .. . Yy p(z1,. .., Tn, Y1, - - -, Yk), Where ¢ is a constant-
free atomic formula is called a 5 formula. A ¥, formula with no 3 quantifiers
is called a II; formula, and a X, formula with no V quantifiers is called a >
formula. A term t satisfies a Y5 formula iff there exist positions py, ..., p, of
t such that for all positions pj,...,p, of t, t = ©(p1,-. . Pn, Dy, Pk)- In
this case we say that ¢ is accepted by ¢. We denote by L(y) the set of terms
accepted by ¢, which is always regular [15].



2.2 Partially Ordered Automata and 5 formulae do not have the same Fx-
pressivity

If we restrict the alphabet to unary or constant symbols, the class of languages
accepted by >» formulae is exactly the class of languages accepted by partially
ordered automata [16,1]. Moreover, it is also known that in the word case, the
class of languages accepted by X; formulae, accepts shuffle ideals [16], that is
languages which are a finite union of languages of the form A*a; A* ... A*a, A*
where A is the alphabet and the a;’s are letters. It is known [9] that a (finite or
infinite) union of shuffle ideal is a shuffle ideal too. Moreover, shuffle ideals are
also exactly the class of word languages L satisfying the following property: if
u and v are words and if uv is in L, then for every letter a, the word wav is
also in L. For a combinatorial approach of shuffle ideals, the reader is referred
to [10] and for a regular approach to [8]. Now we can prove the following
proposition.

Proposition 4 There exists a language accepted by a deterministic partially
ordered tree automaton but not by any s formula.

PROOF. Let F = {f,a,b,#}, f is of arity 2, a and b are both of arity 1 and #
is of arity 0. We consider the partially ordered automaton A whose states are
do, ¢1 (with go < ¢1), whose transitions are # — qo, a(q0) — 4o, b(q) — qo,
a(q) — q1, f(q1,q1) — q1, and whose final state is {q; }.

Now we will prove that there is no 3, formula accepting L(.A). Indeed assume
that there exists a s formula ¢ = 3xy ... Jx,Vyr ... Vyr ©(T1, ., Tpy Y1, - - Yk)
accepting L(A).

(1) Firstly, let u € a{a,b}*. We first define a sequence of terms (¢});>; by
t = f(u(#),u(#)) and ty,, = f(t}, t}). Each ¢} is in L(A). Let ¢ be an
integer such that ¢ > log,n. Since ¢, = ¢, there exist positions py,...,p,
of t, such that t§ = Vy; ... Vyre'(y1,...,yx) where ¢'(y1,...,yx) denotes
o(p1, -+ Pus Y1, - - -, Yi)- Now, since t% admits 2° > n positions of length ¢,
there exists a position p of ¢} of length ¢ which is not a prefix of any p;’s.

Now let

K, ={ve{a,b}" | t})[v(#)], E Yy .. Yy (Y1, ue) }s

where t}[v(#)], denotes the term obtained by replacing in ¢, the subterm
at position p by v(#). We claim that if vv, ¢ K, then viavy, ¢ K and
vibvy ¢ K. Assuming that t}[viva(#)], = ¢ (P, ..., pk), let p! = p) if
p.1" (where 7 is the length of v;) is not a prefix of p, and let p! = pl.1
otherwise. By a direct induction, one has

Vs lvrva (#)]p (Spl(plll’ e 7p;€/)) = Vit vizva (#)]p (@/(plla e 7p;€>)’



with z = a or © = b, proving the claim. It follows that {a,b}* \ K, is a
shuffle ideal.

(2) Secondly, let H = {a,b}* \ Uucafap} Ku- The set H is a shuffle ideal.
Moreover, by construction of K,, for every u in a{a,b}*, v € K,. Fur-
thermore, since ¢ accepts L(A), for every u, K, C a{a,b}*. It follows that
H = {a,b}* \ a{a,b}* = b{a,b}* U {c}, which is not a shuffle ideal. This is

a contradiction which very much completes the proof. 0

2.8 Yo Formulae are less Expressive than Partially Ordered Automata

In this section we prove that the class of languages accepted by X5 formulae
is included in the class of languages accepted by partially ordered automata.
First of all, by using a construction translating a formula into a tree regular
language. This construction (and its correctness) is, for instance, presented
in [17, Chapter 7]. Next by giving some technical lemmas in order to prove
the motioned result.

For every positive integer ¢, the set of terms t over F x {0,1}¢ (arities are
the same as in F) such that for every i € {1,...,¢} there exists a unique
position p, denoted 7, or 7' if there is no ambiguity on ¢, such that t(p) €
F x {0,1}711{0,1}" is denoted by K,. Informally it means that if the i-th
components of symbols at position p; and py are equal to 1, then p; = py. Let
7; (1 <i < /) be the function from F x {0,1}* into F x {0,1}*~! such that
mi((f,u)) = (f,v) where v is deduced from u by deleting the i-th component.
The projection 7; is naturally extended to terms ¢ in the following way: m; (%)
and ¢ have the same set of positions and for every position p, m;(t)(p) =

Wi(t(p>>-

We inductively defined the languages for any formula whose set of variables is
{z1,...,2¢}, by

Ko(Ry(x:)) = {t € K¢ | u € {0,1}4(E") = (f,u)}, for every f € F,
Ko(z; = ;) = {t € Ko | T =T},

Ko(z; <, x;) ={t € Ko | T <, T},

Ke(=p) = Ko \ Ke(0), Ke(p1 V 02) = Ke(1) U Ke(02),

Ke(Fzip) = mi(Ke()),

Ko(Vrip) = Ko(—Fzimp),

It is known [15] that if ¢ has no free variable, then KCy(¢) is exactly the language
accepted by ¢.

For technical issues, the languages H,((f,u)), with (f,u) € F x {0,1}¢, of



terms ¢ over F x {0, 1}* such that there exists at least a position p of ¢ such
that ¢(p) = (f, u) are introduced.

Lemma 5 The language K, and the languages Hy((f,u)) are accepted by de-
terministic partially ordered automata.

PROOF. If v and v are two elements of {0,1}¢, we denote by u M v (resp.
u U v) the element w of {0,1} defined by w(i) = 1 iff u(i) = 1 and v(i) = 1
(resp. either u(i) = 1 or v(i) = 1). We consider the automaton A, whose set
of states is {q, | u € {0,1}*}, whose set of final states is reduced to {q;} and
whose set of transitions is defined by the following:

e For every A € F of arity 0 and for every u € {0,1}, (4,u) — ¢, is a
transition of Ay,

e For every f € F of arity r > 1, and for every ug,uy,...,u, € {0,1},
if w; Mu; = 0° for all i # j, then (f,u0)(Guys---sQu.) — QuobusL..Li, 1S @
transition of Ay,

e there is no other transition.

One can easily check that for every term ¢ accepted by A, and each 1 <7 </,
there exists a unique position p, such that ¢(p) € F x {0,1}711{0, 1} It
follows that A, accepts K,. Moreover, A, is partially ordered by the relation
Gu < @ iff (i) =1 = u(i) = 1.

The construction of H,((f,u)) is easy and left to the reader. O

Lemma 6 If p(xy,...,2,) is a constant free atomic formula and 0 < k < ¢
then the languages Ky(3xy ... 3xrp) and K,V ... Vorp) are accepted by a
deterministic partially ordered automata.

PROOF. The lemma is proved by an induction on ¢. Assuming firstly that
o(xy1,...,x0) is a constant free atomic formula such that K,(Jzy ... 3zry)
and Cy(Vzy ... Vapy) are respectively accepted by the deterministic partially
ordered automata A5 and Ay, one has

Ki(Vay .. Neg—e) = Ko(=3zy ... Frpg—p) = Ko(—3xy ... xkp) = L(A3)NCo_y.

Since the class of languages accepted by deterministic partially ordered au-
tomata is closed under intersection and complement, &C;(Vz; . .. Vi) is ac-
cepted by a deterministic partially ordered automaton. The same argument
holds for KCy(Jzy . .. Jzp—g).

Secondly, if ¢ (xy,...,2,) and pa(z1,...,x,) are constant free atomic formu-
lae, then Ky(3z;...3xk(p1 V w2)) = Ke(Fxq ... Fzper) U Ke(Fzy ... FJzgen).
Since the class of languages accepted by deterministic partially ordered au-



tomata is closed under union, if Cp(3z ...z (¢1) and Kp(Fzy ... Fxk(p2) are
accepted by deterministic partially ordered automata, then KCp(3x; ... Jxk(p1V
7)) is accepted by a deterministic partially ordered automaton too. Since
the class of languages accepted by deterministic partially ordered automata
is closed under intersection, a similar construction may be done in order to
prove that KCo(Vxy...Var(p1 V ¢2)) is accepted by a deterministic partially
ordered automaton.

It remains to prove that Ky(3x; ...3xrp) and Kp(Vay ... Vagp) are accepted
by deterministic partially ordered automata for ¢ € {R¢(x;),x; = zj,2; <,
x| 1<i</{,1<j </} We only give the proof for R¢(x;).

1) Let H = Ky(3x1 ... JapRy(2;)). If i < k, then

H={tc K|, tlp) = (fu)} =K n U Hewl(f,0)).

ue{0,1}¢k

Then, using Lemma 3 and 5, H is accepted by a deterministic partially
ordered automaton. Now if ¢ > k, then
H ={t € Ky | Tp, t(p) = (f,u) and u(i — k) = 1}
=Kep N U Ho i ((f, u)).

ue{0,1}-F, u(i—k)=1

Similarly, H is accepted by a deterministic partially ordered automaton.
2) Let S = Ky(3zy ...z~ Rys(x;)). If i < k, then
S={te Ky |3, tlp) # (f,u)} =K N U Hi_x((g,u)).

ue{0,1}7F, g#f

Moreover, if i > k, then

H={te Key|3p, tip) # (f,u) and u(i — k) = 1}
= ICg_k N U Hg_k((g, u))
ue{0,1}¢-k, u(i—k)=1,9#f

As for 1), It follows that S is accepted by a deterministic partially or-
dered automaton. Consequently Ky(Vzy ... VapRy(x;)) also is accepted by a
deterministic partially ordered automaton.

From Lemma 6 one can deduced the main result of this section.

Proposition 7 If a language is accepted by a Yo formula, then it is accepted
by a partially ordered automaton.



PROOF. First of all, notice that if A = (F x {0,1}7,Q, A, Q) is partially
ordered automaton accepting a language of IC;, then for all 1 <i < j, m;(L(.A))
is accepted by the partially ordered automaton (Fx{0,1}1, Q, A’, Q) where

A =A{m((f,u)a, - a) = | (fu)a, . q) = qge A}

Let 3z ... 32, Vy1 ... Yy, p(x1,...,Zn, 41, - - -, Yx) accepting a language L. By
Lemma 6 one knows that /C;(Vy; ... Vyr ©(x1, ..., %0, 41, .., yx)) is accepted
by a deterministic partially ordered automaton. Using the above remark, it
follows that L = 7y ... 7, (Ko(Vys . .. Yyr (1, -+, Tny Y1, - - -, Yk))) is accepted
by a partially ordered automaton. O

3 Counterexample

The set of functional symbols of arity k. is denoted by Fj. The semi-commutation
relation Ry generated by a finite subset S of Up>1Fi X Fi is defined by:
(s,t) € R if and only if s and ¢ have the same set of positions and if there
exist positions p and p.i of s, such that (s(p),s(p.i)) € S, s(p) = t(p.i),
s(p.i) = t(p) and if for every other position p’ of s, s(p’) = t(p’).

Let A be the bottom-up tree automaton whose set of states is {qa, ¢, qr},
whose set of transitions is {A — qa, B — ¢, [(q4,94) — qa,9(qB,q8) —

48, f(qa,qB) — ¢} and whose unique final state is ¢;. Let S = {(f, 9), (9, f) }
Finally let K be the set of terms

K = {t | 3s accepted by A s.t. (s,t) € Rg}.

Proposition 8 The automaton A is partially ordered and L(A) is accepted
by a Yo formula. Moreover the tree language K is not reqular.

PROOF. (sketch) Ome can easily check that A is partially ordered by the
relation < defined by: g4 < ¢4, g8 < ¢B, ¢4 < g5 and ¢p < gy.

One can also easily check that L(.A) is accepted by the 3, formula:

3aVy [Re(z) A ((z <1y) V (r <2 9)) A ((x <1y = (Rp(y) V Ra(y))))
A <2y = (Ry(y) vV R(Y))))],

where the symbols A and = are classically defined by (1 Aps) uf —(—p1V2))

and (o1 = ¢2) f (1 V @2).



We claim that K is the set of terms ¢ such that t(¢) € {f, g}, all leaves of ¢
are labelled by A, all leaves of t, are labelled by B and

e if t(¢) = f, then the number of g occurring in t; is equal to the number of
J occurring in t5 and

e if {(¢) = g, then the number of g occurring in ¢; is equal to the number of
[ occurring in ?, minus 1.

The proof of this claim is straightforward by an induction on the number of ¢
occurring in ;.

One can prove that K is not regular using the classical and scholarly pumping
techniques. Intuitively, we are not able to count in the context of regular
languages. The details are left to the reader. O

4 Conclusion

The result exposed in this paper is not surprising: several works [4,7,2| show
that tree transformations are difficult to analyse. Notice that the language K
defined above is neither regular nor accepted by standard extended classes
of tree automata, like automata with constraints between brothers. One can
now use the approach developed in [11] and wonder whether there exists a
partially ordered tree automaton accepting a tree language whose image by the
reflexive-transitive closure of a semi-commutation relation is regular but not
accepted by a partially ordered automaton. A question remains unanswered:
does a fine logical characterisation of tree languages accepted by partially
ordered automata exists? Moreover, as far as we know, the question on whether
a regular tree language given by its minimal automaton can be accepted by a
partially ordered tree automata is still open and, in that event, how to compute
such an automaton. Notice that this question requires strong arguments to be
solved in the word automaton cases [1,13]

The author wishes to express his thanks to the anonymous referee for drawing
author attention to logical aspects that greatly improve the paper. The author
would like to acknowledge Eugéne Pamba Capo-Chichi for valuable comments.
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