
June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Handling Non Left-Linear Rules When Completing Tree Automata∗

YOHAN BOICHUT

LIFO Bat. 3IA Université d’Orléans Rue Léonard de Vinci B.P. 6759 F-45067 ORLEANS

ROMEO COURBIS

INRIA-CASSIS LIFC, Université de Franche-Comté, 16 route de Gray, 25000 Besançon,
FRANCE

PIERRE-CYRILLE HEAM

LSV, CNRS-INRIA, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson,
94230 Cachan, FRANCE

OLGA KOUCHNARENKO

INRIA-CASSIS LIFC, Université de Franche-Comté, 16 route de Gray, 25000 Besançon,
FRANCE

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

This paper addresses the following general problem of tree regular model-checking: decide
whether R∗(L) ∩ Lp = ∅ where R∗ is the reflexive and transitive closure of a successor
relation induced by a term rewriting system R, and L and Lp are both regular tree
languages. We develop an automatic approximation-based technique to handle this –
undecidable in general – problem in the case when term rewriting system rules are non
left-linear.

Keywords: Rewriting techniques; tree automata; left-linearity; security.

1. Introduction

Automatic verification of software systems is one of the most challenging research
problems in computer aided verification. In this context, regular model-checking
has been proposed as a general framework for analysing and verifying infinite state
systems. In this framework, systems are modelled using regular representations: the
systems configurations are modelled by finite words or trees (of unbounded size) and
the dynamic behaviour of systems is modelled either by a transducer or a (term)
rewriting system (TRS for short). Afterwards, a system reachability-based analysis

∗This work was granted by the French ANR project RAVAJ.

1

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

2 Boichut, Courbis, Héam and Kouchnarenko

is reduced to the regular languages closure computation under (term) rewriting
systems: given a regular language L, a relation R induced by a (term) rewriting
system and a regular set LP of bad configurations, the problem is to decide whether
R∗(L)∩Lp = ∅ where R∗ is the reflexive and transitive closure of R. Since R∗(L) is
in general neither regular nor decidable, several approaches handle restricted cases
of this problem.

In this paper we address this problem for tree regular languages by automat-
ically computing over- and under-approximations of R∗(L). Computing an over-
approximation Kover of R∗(L) may be useful for the verification if Kover ∩ Lp = ∅,
proving that R∗(L)∩Lp = ∅. Dually, under-approximation may be suitable to prove
that R∗(L)∩Lp 6= ∅ (see Fig.1). This approach is relevant if the computed approx-
imations are not too coarse. Another important point is that in general, there are
some restrictions on the rewriting systems in order to ensure the soundness of the
above approach. This paper follows and adapts an expert-human guided approx-
imation technique introduced in [17] for left-linear term-rewriting systems. More
precisely, the paper 1) extends this approach to term rewriting systems with non-
left-linear rules, 2) illustrates its advantages on examples, and 3) points out the
application domains.

Notice that a preliminary version of the present paper has been published [7].
The results in [7] are obtained for left-quadratic TRSs. To make it short, the present
paper extends the model in [7] and generalises the underpinning constructions to
deal with all non left-linear term rewriting systems. In addition, more examples are
given to illustrate the definitions.

= ∅?
Lp

R∗(L)

L

Kover

= ∅?

1

Figure 1. Is the intersection between Kover and Lp empty?

Related Work Given a term rewriting system R and two ground terms s
and t, deciding whether s →∗R t is a central question in automatic proof theory.
This problem is shown decidable for term rewriting systems which are terminat-
ing but it is undecidable in general. Several syntactic classes of term rewriting
systems have been pointed out to have a decidable accessibility problem, for in-

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

Handling Non-left Linear Rules When Completing Tree Automata 3

stance by providing an algorithm to compute R∗(L) when L is a regular tree lan-
guage [15, 13, 19, 22, 25, 26, 23]. In [17], the authors focus on a general completion
based human-guided technique. This technique has been successfully used (not au-
tomatically) to prove the security of cryptographic protocols [18] and recently Java
Bytecode programs [4]. This framework was extended in [24] to languages accepted
by AC-tree automata. We quote several works for tree regular model checking pro-
posed in [9, 1, 8, 20].

Layout of the paper The paper is organised as follows. Section 2 introduces
notations and the basic completion approach. Next, Section 3 presents the main
theoretical contributions of the paper, while Section 4 describes a family of examples
and gives related security issues. Finally, Section 5 concludes.

2. Preliminaries

2.1. Terms and TRSs

Comprehensive surveys can be found in [16, 2] for term rewriting systems, and
in [12, 19] for tree automata and tree language theory.

Let F be a finite set of symbols, associated with an arity function ar : F → N,
and let X be a countable set of variables. T (F ,X) denotes the set of terms, and
T (F) denotes the set of ground terms (terms without variables). The set of variables
of a term t is denoted by Var(t). A substitution is a function σ from X into T (F ,X),
which can be extended uniquely to an endomorphism of T (F ,X). A position p for a
term t is a word over N. The empty sequence ε denotes the top-most position. The
set Pos(t) of positions of a term t is inductively defined by: Pos(t) = {ε} if t ∈ X
and Pos(f(t1, . . . , tn)) = {ε}∪{i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}. If p ∈ Pos(t), then
t|p denotes the subterm of t at position p and t[s]p denotes the term obtained by
replacement of the subterm t|p at position p by the term s. We also denote by t(p) the
symbol occurring in t at position p. Given a term t ∈ T (F ,X), we denote PosA(t)
(⊆ Pos(t)) the set of positions of t such that PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}.
Thus PosF (t) is the set of functional positions of t.

A term rewriting system (TRS) R is a set of rewrite rules l → r, where l, r ∈
T (F ,X) and l 6∈ X . A rewrite rule l→ r is h-left-linear (resp. h-right-linear) if each
variable of l (resp. r) occurs at most h times within l (resp. r). A TRS R is h-left-
linear (resp. h-right-linear) if every rewrite rule l → r of R is h-left-linear (resp.
h-right-linear). For above linearity definitions, if h = 1, the prefix “h-” is omitted. A
TRS R is linear if it is right-linear and left-linear. The TRS R induces a rewriting
relation→R on terms whose reflexive transitive closure is written→∗R. The set ofR-
descendants of a set of ground terms E isR∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s→∗R t}.
For every positive integer k, any ground terms s and t, we inductively define s→k

R t

by: s →0
R t if and only if s = t, and s →k+1

R t if and only if there exists a term s1

such that s1 →k
R t and s→R s1.

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

4 Boichut, Courbis, Héam and Kouchnarenko

2.2. Tree Automata Completion

Note that R∗(E) is possibly infinite: R may not terminate and/or E may be in-
finite. The set R∗(E) is generally not computable [19]. However, it is possible to
over-approximate it [17] using tree automata, i.e. a finite representation of infinite
(regular) sets of terms. We next define tree automata.

Let Q be a finite set of symbols, of arity 0, called states such that Q ∩ F = ∅.
T (F ∪Q) is called the set of configurations A transition is a rewrite rule c → q,
where c ∈ T (F ∪Q) is a configuration and q ∈ Q. A normalised transition is a
transition c → q where c = f(q1, . . . , qn), f ∈ F , ar(f) = n, and q1, . . . , qn ∈ Q.
A bottom-up non-deterministic finite tree automaton (tree automaton for short)
is a quadruple A = 〈F ,Q,Qf ,∆〉, Qf ⊆ Q and ∆ is a finite set of normalised
transitions. The rewriting relation on T (F ∪Q) induced by the transition set ∆ of
A is denoted →∆. When ∆ is clear from the context, →∆ is also written →A. The
tree language recognised by A in a state q is L(A, q) = {t ∈ T (F) | t →?

A q}. The
language recognised by A is L(A) =

⋃
q∈Qf L(A, q). A tree language is regular if

and only if it is recognised by a tree automaton. We denote by C[q1, . . . , qn] a term
of T (F∪{q1, . . . , qn}).

Let us now recall how tree automata and TRSs can be used for term reachability
analysis. Given a tree automaton A and a TRS R, the tree automata completion
algorithm proposed in [17] computes a tree automaton AkR such that L(AkR) =
R∗(L(A)) when it is possible (for the classes of TRSs where an exact computation
is possible, see [17]), and such that L(AkR) ⊇ R∗(L(A)) otherwise.

The tree automata completion works as follows. FromA = A0
R completion builds

a sequence A0
R,A1

R . . .AkR of automata such that if s ∈ L(AiR) and s →R t then
t ∈ L(Ai+1

R). If there is a fix-point automaton AkR such that R∗(L(AkR)) = L(AkR),
then L(AkR) = R∗(L(A0

R)) (or L(AkR) ⊇ R∗(L(A)) if R is in no class of [17]). To
build Ai+1

R from AiR, a completion step is achieved. It consists of finding critical
pairs between →R and →AiR . To define the notion of critical pair, the substitution
definition is extended to terms in T (F ∪Q). For a substitution σ : X 7→ Q and a
rule l→ r ∈ R such that Var(r) ⊆ Var(l), if there exists q ∈ Q satisfying lσ →∗AiR q
then lσ →∗AiR q and lσ →R rσ is a critical pair. Note that since R and AiR is finite,
there is only a finite number of critical pairs. Thus, for every critical pair detected
between R and AiR such that rσ 6→∗AiR q, the tree automaton Ai+1

R is constructed by

adding a new transition rσ → q to AiR. Consequently, Ai+1
R recognises rσ in q, i.e.

rσ →Ai+1
R

q. However, the transition rσ → q is not necessarily normalised. Then,
we use abstraction functions whose goal is to define a set of normalised transitions
Norm such that rσ →∗Norm q. Thus, instead of adding the transition rσ → q which
is not normalised, the set of transitions Norm is added to ∆, i.e., the transition set
of the current automaton AiR.

We give below a very general definition of abstraction functions which allow to
each functional position of rσ a state of Q. The role of an abstraction function
remains to define equivalence classes of terms where one class corresponds to one

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

Handling Non-left Linear Rules When Completing Tree Automata 5

state of Q. An abstraction function γ is a function γ : ((R × (X → Q) × Q) 7→
N∗) 7→ Q such that γ(l → r, σ, q)(ε) = q. Thus, given an abstraction function
γ, the normalisation of a transition rσ → q is defined as follows. Let γ be an
abstraction function, ∆ be a transition set, l → r ∈ R with Var(r) ⊆ Var(l) and
σ : X → Q such that lσ →∗∆ q. The γ−normalisation of the transition rσ → q,
written Normγ(l→ r, σ, q), is defined by:

Normγ(l→ r, σ, q) = {r(p)(βp.1, . . . , βp.n)→ β |
p ∈ PosF (r),

β =
{
q if p = ε

γ(l→ r, σ, q)(p) otherwise,

βp.i =
{
σ(r(p.i)) if r(p.i) ∈ X
γ(l→ r, σ, q)(p.i) otherwise.

Example 1. Let A = 〈F ,Q,Qf ,∆〉 be the tree automaton such that F =
{a, b, c, d, e, f, ω} with ar(s) = 1 with s ∈ {a, b, c, d, e, f} and ar(ω) = 0, Q =
{qb, qf , qω}, Qf = {qf} and ∆ = {ω → qω, b(qω) → qb, a(qb) → qf}. Thus, L(A) =
{a(b(ω))}. Given the TRS R = {a(x)→ c(d(x)), b(x)→ e(f(x))}, two critical pairs
are computed: a(qb) →∗A qf , a(qb) →R c(d(qb)) and b(qω) →∗A b(qω) →R e(f(qω)).
Let γ be the abstraction function such that γ(a(x)→ c(d(x)), {x→ qb}, qf)(ε) = qf ,
γ(a(x) → c(d(x)), {x → qb}, qf)(1) = qf , γ(b(x) → e(f(x)), {x → qω}, qb)(ε) = qb
and γ(b(x) → e(f(x)), {x → qω}, qb)(1) = qb. So, Normγ(a(x) → c(d(x)), {x →
qb}, qf) = {d(qb) → qf , c(qf) → qf} and Normγ(b(x) → e(f(x)), {x → qω}, qb) =
{f(qω)→ qb, e(qb)→ qb}.

Now we formally define what a completion step is. Let A = 〈F ,Q,Qf ,∆〉 be
a tree automaton, γ an abstraction function and R a left-linear TRS. We define a
tree automaton CRγ (A) = 〈F ,Q′,Q′f ,∆′〉 with:

• ∆′ = ∆ ∪⋃l→r∈R, σ:X 7→Q, lσ→∗Aq,rσ 6→∗Aq
Normγ(l→ r, σ, q),

• Q′ = {q | c→ q ∈ ∆′} and
• Q′f = Qf .

Example 2. Given A, R and γ of Example 1, performing one completion step
on A gives the automaton CRγ (A) such that CRγ (A) = 〈F ,Q,Qf ,∆′〉 where ∆′ =
∆∪Normγ(a(x)→ c(d(x)), {x→ qb}, qf)∪Normγ(b(x)→ e(f(x)), {x→ qω}, qb) =
{ω → qω, b(qω) → qb, a(qb) → qf , d(qb) → qf , c(qf) → qf , f(qω) → qb, e(qb) → qb}.
Notice that CRγ (A) is R-close, and in fact an over-approximation of R∗(L(A)) is
computed. Indeed, the tree automaton CRγ (A) recognises the term a(e(e(f(ω)))) when

R∗(L(A)) = {a(b(ω)), a(e(f(ω))), c(d(b(ω))), c(d(e(f(ω))))}.
Proposition 3 (Theorem 1 in [17]) Let A be a tree automaton and R be a TRS
such that A is deterministic or R is left-linear, and for every l→ r ∈ R, Var(r) ⊆
Var(l). For any abstraction function γ, one has:

L(A) ∪R(L(A)) ⊆ L(CRγ (A))).

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

6 Boichut, Courbis, Héam and Kouchnarenko

In addition, an abstraction function can be defined in such a way that only
terms, actually reachable, will be computed. This class of abstraction functions is
called (A,R)−exact abstraction functions in [3].

Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton and R be a TRS. Let Im(γ) = {q |
∀l → r ∈ R, ∀p ∈ PosF (r) s.t. γ(l → r, σ, q)(p) = q}. An abstraction function γ is
(A,R)−exact if γ is injective and Im(γ) ∩Q = ∅.

By adapting the proof of Theorem 2 in [17] to the new class of abstractions, we
show that with such abstraction functions, only reachable terms are computed.

Theorem 4 (Theorem 2 in [17]) Let A be a tree automaton and R be a TRS
such that A is deterministic or R is right-linear. Let α be an (A,R)−exact abstrac-
tion function. One has: CRα (A) ⊆ R∗(L(A)).

We now give the general result in [17] saying that, if there exists a fix-point
automaton, then its language contains all the terms actually reachable by rewriting,
at least.

Theorem 5 (Theorem 1 in [17]) Let A, R be respectively a tree automaton, a
TRS. For any abstraction function γ, if there exists N ∈ N and N ≥ 0 such that
(CRγ)(N)(A) = (CRγ)(N+1)(A), then R∗(L(A)) ⊆ L((CRγ)(N)(A)).

f
qf

Aq1 A q2

Figure 2. A run of A on f(A, A).

The above method does not work for
all TRSs. For instance, consider a
constant A and the tree automaton
A = ({q1, q2, qf}, {A → q1, A →
q2, f(q1, q2)→ qf}, {qf}) (Fig. 2) and the
TRS R = {f(x, x) → g(x)}. There is no
substitution σ such that lσ →∗A q, for a
q in {q1, q2, qf}. Thus, following the pro-
cedure, there is no transition to add. But
f(A,A) ∈ L(A). Thus g(A) ∈ R(L(A)).
Since g(A) /∈ L(A), the procedure stops
(in fact does not begin) before providing
an over-approximation of R∗(L(A)).

3. Contributions

This section extends an approximation-based technique introduced in [17] for left-
linear term-rewriting systems, to TRSs with non left-linear rules. If the term-
rewriting system is not left-linear, it is possible to apply Proposition 3 by deter-
minizing the envolved automaton. However, since the determinisation is exponential
and since it has to be done at each completion step (which doesn’t preserve the de-
terminism), the procedure is too expensive to be used in practice. In this framework,

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

Handling Non-left Linear Rules When Completing Tree Automata 7

our contribution provides a well-suited (parametrised) model and underpinning the-
oretical tools that avoid these exponential steps when the term rewriting system
is h-left-linear, with a small h. The small values of h can be justified by the fact
that most of TRS’s modelling concrete verification problems are 2-left-linear. In-
deed, non-left linear variables frequently occur to encode comparisons between two
elements of the specified system and, in most cases only two elements are compared.

Definition 6. Let A = (Q,∆,Qf) be a finite bottom-up tree automaton. The au-
tomaton A(h) = (Q(h),∆(h),Q(h)

f), for h ≥ 1, is defined by:

• Q(h) = {{q} | q ∈ Q} ∪ {Q ⊆ Q | CardQ ≤ h} (states of Q(h) are denoted
with an (h) exponent),

• Q(h)
f = {{q} | q ∈ Qf},

• ∆(h) = {f(q(h)
1 , . . . , q

(h)
n) → q(h) | ∀q ∈ q(h), ∃q1, . . . , qn ∈ Q, ∀1 ≤ i ≤

n, qi ∈ q(h)
i and f(q1, . . . , qn)→ q ∈ ∆}.

f
{qf}

A{q1, q2} A {q2, q1}

Figure 3. A run of A(2) on f(A, A).

To illustrate the definition above, let’s
consider the automaton A whose final
state is qf and whose transitions are
A → q1, A → q2 and f(q1, q2) → qf .
The states ofA(2) are all pairs of states
and singletons over {q1, q2, qf}, and
the transitions are A → {q1}, A →
{q2}, A → {q1, q2}, f({q1}, {q2}) →
{qf}, f({q1, qi}, {q2, qj}) → {qf} for
all i, j’s in {1, 2, f} (Fig. 3). When
considering only the accessible states,
among all the transitions above we just
have transitions f({q1, qi}, {q2, qj})→
{qf} for all i, j’s in {1, 2}.

Proposition 7. One has L(A) = L(A(h)).

Proof. By definition of A(h), if f(q1, . . . , qn) → q ∈ ∆, then f({q1}, . . . , {qn}) →
{q} ∈ ∆(h). Consequently, for every term t such that t→∗A q, one also has t→∗

A(h)

{q}. Since for every qf ∈ Qf , {qf} ∈ Q(h)
f , L(A) ⊆ L(A(h)).

It remains to prove that L(A(h)) ⊆ L(A). We will prove by induction on k that
for every k ≥ 1, for every term t, every state q(h) of A(h), if t→k

A(h) q
(h), then for

all q ∈ q(h), t→k
A q.

• If t →A(h) q(h), then, by definition of ∆(h), t is a constant and for all
q ∈ q(h), there exists a transition t→ q in A.

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

8 Boichut, Courbis, Héam and Kouchnarenko

• Assume now that the claim is true for a fixed positive integer k. Let t be
a term and q(h) ∈ A(h) such that t →k+1

A(h) q
(h). Consequently, there exists

f ∈ Fn such that t →k

A(h) f(q(h)
1 , , q

(h)
n) →A(h) q

(h). It follows that

t = f(t1, . . . , tk) and for all 1 ≤ i ≤ k, ti →k

A(h) q
(h)
i . Using the induction

hypothesis, ti →k
A qi, for all qi ∈ q

(h)
i . Consequently, for all q ∈ q(h),

f(q1, . . . , qn)→ q ∈ ∆, proving the induction.

So, L(A(h)) ⊆ L(A).

Lemma 8. Let k ≥ 1. If C[q1, . . . , qn] →k
A q and if q(h)

1 , . . . q
(h)
n are states of A(h)

satisfying qi ∈ q(h)
i for all 1 ≤ i ≤ n, then C[q(h)

1 , . . . , q
(h)
n]→k

A(h) {q}.

Proof. We prove by induction on k that for every k ≥ 1, if C[q1, . . . , qn] →k
A q

and if q(h)
1 , . . . q

(h)
n are states of A(h) satisfying qi ∈ q

(h)
i for all 1 ≤ i ≤ n, then

C[q(h)
1 , . . . , q

(h)
n]→k

A(h) {q}.
• If k = 1, then C[q1, . . . , qn]→ q is a transition of A. Therefore, by definition
of ∆(h), C[q(h)

1 , . . . , q
(h)
n]→ {q} is a transition of A(h).

• Assume now that the proposition is true for all j ≤ k and that
C[q1, . . . , qn] →k+1

A q. There exist q′1, . . . , q′` states of A and f ∈ F` such
that C[q1, . . . , qn] →k

A f(q′1, . . . , q
′
`) →A q. Consequently, C[q1, . . . , qn] is

of the form C[q1, . . . , qn] = f(t1, . . . , t`) where the ti’s are terms over
F∪{q1, . . . , qn}. Moreover, for all i, there exists ki ≤ k such that ti →ki

A {q′i}
and

∑
i ki = k. Therefore, by induction hypothesis, t(h)

i →ki

A(h) {q′i} where
t
(h)
i is the term obtained from ti by substituting qi by q

(h)
i . Now, since

f(q′1, . . . , q
′
`) → q is a transition of A, f({q′1}, . . . , {q′`}) → {q} is a transi-

tion of A(h).
It follows that C[q(h)

1 , . . . , q
(h)
n]→k+1

A(h) {q}, proving the lemma.

Lemma 9. If there are q1, q2, . . . , qj states of A, with j ≤ h such that t→∗A qi for
every 1 ≤ i ≤ j, then t→∗

A(h) {qi | 1 ≤ i ≤ j}.

Proof. If t→∗A qi for every 1 ≤ i ≤ j, then there exist functions πi’s from positions
of t into Q such that πi(ε) = qi and for every position p of t, if t|p ∈ Fn, then
t(p)(πi(p.1), . . . , πi(p.n))→ πi(p) is a transition of A.

Therefore, by definition of ∆(h), t(p)({πi(p.1) | 1 ≤ i ≤ j}, . . . , {πi(p.n) | 1 ≤
i ≤ j})→ {πi(p) | 1 ≤ i ≤ j} is in ∆(h). It follows that t→∗

A(h) {qi | 1 ≤ i ≤ j}.

Proposition 10. If each variable occurs at most h times in left-hand sides of rules
of R, then R(L(A)) ∪ L(A) ⊆ L(CRγ (A(h))).

Proof. Since L(A) = L(A(h)) and since L(A(h)) ⊆ L(CRγ (A(h))), L(A) ⊆
L(CRγ (A(h))). It remains to show that R(L(A)) ⊆ L(CRγ (A(h))).

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

Handling Non-left Linear Rules When Completing Tree Automata 9

Let t ∈ R(L(A)). By definition there exists a rule l → r ∈ R, a position p of t
and a substitution µ from X into T (F) such that

t = t[rµ]p and t[lµ]p ∈ L(A) (1)

It follows there exist states q, qf of A such that qf is final, and

lµ→∗A q and t[q]p →∗A qf . (2)

Consequently, by Definition 6, one has

lµ→∗
A(h) {q} and t[{q}]p →∗A(h) {qf}. (3)

If rµ →∗
A(h) {q}, then (3) implies that t[rµ]p →∗A(h) {qf}. In this case, since t =

t[rµ]p and since {qf} is by construction a final state of A(h), t is in L(A(h)), which
is a subset of L(Cγ(A(h))).

Now we may assume that rµ 6→∗
A(h) {q}. Let Pl be the set of variable positions

of l; i.e. Pl = {p | l(p) ∈ X)}. Set Pl = {p1, . . . , p`}. Since lµ →∗A q, by (2) there
exist states q1, . . . , q` of A such that

µ(l(pi))→∗A qi and l[q1]p1 . . . [q`]p` →∗A q. (4)

We define the substitution σ from variables occurring in l into 2Q by: σ(xi) = {qi |
l(pi) = xi}. Since l is h-left-linear, for each xi, σ(xi) contains at most h states.
We claim that lσ →∗

A(h) q. Indeed by (4) and by Lemma 9 for each xi occurring
in l, µ(xi) →∗A(h) σ(xi). It follows that lµ →∗

A(h) lσ. By (4) and using Lemma 8,
lσ →∗

A(h) {q}, proving the claim. By construction of CRγ (A(h)), rσ →∗
CRγ (A(h))

{q}.
Moreover, by definition of σ, rµ→∗

A(h) rσ. It follows that

t = t[rµ]p →∗A(h) t[rσ]p →∗Cγ(A(h))
t[{q}]p →∗A(h) {qf},

which completes the proof.

Proposition 11. If R is right-linear and if α is (A,R)-exact, then L(Cα(A(h))) ⊆
R∗(L(A)).

Proof. This is a direct consequence of Theorem 4 and Proposition 7.

Notice that if A is a non-deterministic n-state automaton, any determinitic
automaton recognising L(A) may have O(2n) states. Furthermore, considering h has
a constant, A(h) has O(nh) states and O(nhk) transitions, where k is the maximal
arity symbol of F . For 2-left-linear term-rewriting systems, A(h) has significantly
less states that a deterministic automaton accepting L(A).

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

10 Boichut, Courbis, Héam and Kouchnarenko

4. Example and Application Domains

4.1. Example

We have tested our approach on the following family of examples. We first con-
sider a family of tree automata (An) defined as follows: the set of states of An
is {q1, . . . , q2n+2, qf}, the set of final state is {qf}, and the set of transitions is
{ω → q1, ω → q2, a(q1) → q1, a(q2) → q2, b(q1) → q1, b(q2) → q2, a(q1) →
q3, a(q2)→ q4, a(qi)→ qi+2, b(qi)→ qi+2, f(q2n+1, q2n+2)→ qf}, for i ≥ 3. The au-
tomaton An accepts the set of terms of the form f(t1, t2) where t1 and t2 are terms
over {a, b, ω} such that t1|1n−1 and t2|1n−1 exist and are in {a}.{a, b}∗. Roughly
speaking, when using word automata, a(b(ω)) denotes ab, and each pair (t1, t2) can
be viewed as words of L = {a, b}n−1.{a}.{a, b}∗ satisfying the condition above. We
second consider the term rewriting system R containing the single rule f(x, x)→ x,
and we want to prove that bn−1a(ω) ∈ R∗(L(An)). Using finitely many times The-
orem 4 directly on An may not prove the results. However, to prove the results, one
can determinise An before using Theorem 4. But, the minimal automaton of L(An)
has 2n states at least [21], [Exercise 3.20, p. 73]. Then, the completion should be
applied to this automaton. Consequently, this automatic proof requires an exponen-
tial time step. Using our approach, one can compute A(h) and apply Proposition 11,
that provides the proof requiring a polynomial time step.

4.2. Left-linearity and Security Issues

4.2.1. Security Protocol Analysis

The TRSs used in the security protocol verification context are often non left-linear.
Indeed, there is a lot of protocols that cannot be modeled by left-linear TRSs. Un-
fortunately, to be sound, the approximation-based analysis described in [18] requires
the use of left-linear TRSs. Nevertheless, this method can still be applied to some
non left-linear TRSs, which satisfy some weaker conditions. In [17] the authors pro-
pose new linearity conditions. However, these new conditions are not well-adapted
to be automatically checked.

In our previous work [5] we explain how to define a criterion on R and A
to make the procedure automatically work for industrial protocols analysis. This
criterion ensures the soundness of the method described in [18, 17]. However, to
handle protocols the approach in [5] is based on a kind of constant typing. In [6]
we go further and propose a procedure supporting a fully automatic analysis and
handling – without typing – algebraic properties like XOR.
Let us first remark that the criterion defined in [17] does not allow managing the
XOR non left-linear rule. Second, in [5] we have restricted XOR operations to typed
terms to deal with the XOR non left-linear rule. However, some protocols are known
to be flawed by type confusing attacks [14, 10, 11]. Notice that our approach in [6]
can be applied to any kinds of TRSs. Moreover, it can cope with exponentiation
algebraic properties and this way analyse Diffie-Hellman based protocols.

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

Handling Non-left Linear Rules When Completing Tree Automata 11

4.2.2. Backward Analysis of Java Bytecode

A recent work [4], dedicated to the static analysis of Java bytecode programs using
term-rewriting systems, provides an automatic procedure to translate a Java byte-
code into a term rewriting system modeling the code execution on the Java Virtual
Machine. In this context, generated TRSs are left-linear but non right-linear. For
example the rewriting rule:

xInvokeSpecialCC(pprotected, valtrue, cc, ca, cam, ic)→
xInvokeSpecialCC(subclass(ic, cc), valtrue, cc, ca, cam, ic)

where ca, cam, ic and cc are variables, is a 2-right-linear rule. This rule is a part
of a Java bytecode instruction translation, corresponding to the invocation of the
method. In order to compute approximation refinements as in [3] or to manage
backward analyses that are – in general and in practice – more efficient that forward
analyses – term rewriting systems have to be turned left-right, i.e. left- and right-
hand sides of rules have to be permuted. By this permutation 2-right-linear TRSs
become 2-left-linear ones.

5. Conclusion

Regular approximation techniques have been successfully used in the context of
security protocol analysis. In order to apply them to other applications, this pa-
per proposed an extension of the completion procedure for handling non left-linear
rules. Our contributions allow analysing some reachability problems using polyno-
mial steps computing A(h), rather than automata determinisation steps that are
exponential, even in practical cases. Notice that the approach presented only for
quadratic rules can be extended to more complex TRSs. We intend to optimise
this technique: polynomial is better than exponential but may also lead to huge
automata in few steps. We have been implementing the techniques in an efficient
rewriting tool like TOMa in order to investigate complex systems backward analy-
ses.

Bibliography

[1] P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular tree model checking.
In E. Brinksma and K. G. Larsen, editors, Computer Aided Verification, volume 2404
of Lecture Notes in Computer Science, pages 555–568. Springer-Verlag, July 27–31
2002.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[3] Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Finer is better: Abstrac-
tion refinement for rewriting approximations. In RTA’08, 19th int. conf. on Rewriting
Techniques and Applications, LNCS, 2008.

ahttp://tom.loria.fr

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

12 Boichut, Courbis, Héam and Kouchnarenko

[4] Y. Boichut, Th. Genet, Th. P. Jensen, and L. Le Roux. Rewriting approximations
for fast prototyping of static analyzers. In Franz Baader, editor, Term Rewriting and
Applications, 18th International Conference, RTA 2007, Paris, France, June 26-28,
2007, Proceedings, volume 4533 of LNCS, pages 48–62. Springer, 2007.

[5] Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Automatic Verification of Security
Protocols Using Approximations. Technical Report RR-5727, INRIA, 2005.

[6] Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Handling algebraic properties in
automatic analysis of security protocols. In Kamel Barkaoui, Ana Cavalcanti, and
Antonio Cerone, editors, ICTAC’06, volume 4281 of LNCS, pages 153–167. Springer,
2006.

[7] Y. Boichut and P.-C. Héam. A theorerical limit for safety verification techniques with
regular fix-point computations. Information Processing Letters, 108(1):1–2, Septem-
ber 2008.

[8] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract regular tree
model checking. In Infinity’05, volume 149 of Electronic Notes in Theoretical Com-
puter Science, pages 37–48, 2006.

[9] A. Bouajjani and T. Touili. Extrapolating tree transformations. In Ed Brinksma and
Kim Guldstrand Larsen, editors, Computer Aided Verification, volume 2404 of Lecture
Notes in Computer Science, pages 539–554. Springer-Verlag, July 27–31 2002.

[10] L. Bozga, Y. Lakhnech, and M. Perin. Pattern-based abstraction for verifying secrecy
in protocols. In 9th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems,TACAS 2003, Proceedings, volume 2619 of LNCS.
Springer-Verlag, 2003.

[11] I. Cibrario, L. Durante, R. Sisto, and A. Valenzano. Automatic detection of attacks on
cryptographic protocols: A case study. In Christopher Kruegel Klaus Julisch, editor,
Intrusion and Malware Detection and Vulnerability Assessment: Second International
Conference, volume 3548 of LNCS, Vienna, 2005.

[12] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. Tree Automata Techniques and Applications, 2002.

[13] J.-L. Coquidé, M. Dauchet, R. Gilleron, and Vágvölgyi S. Bottom-up tree pushdown
automata and rewrite systems. In Ronald V. Book, editor, Rewriting Techniques
and Applications, 4th International Conference, RTA-91, LNCS 488, pages 287–298,
Como, Italy, April 10–12, 1991. Springer-Verlag.

[14] V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security, 14:1–43, 2006.

[15] M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In LICS:
IEEE Symposium on Logic in Computer Science, 1990.

[16] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science, vol-
ume B, chapter 6: Rewrite Systems, pages 244–320. Elsevier Science Publishers B. V,
1990.

[17] G. Feuillade, Th. Genet, and V. VietTriemTong. Reachability analysis over term
rewriting systems. Journal of Automated Reasonning, 33 (3-4), 2004.

[18] Th. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In pro-
ceedings of CADE, volume 1831 of LNCS, pages 271–290. Springer-Verlag, 2000.

[19] R. Gilleron and S. Tison. Regular tree languages and rewrite systems. Fundamenta
Informatica, 24(1/2):157–174, 1995.

[20] P. Habermehl, R. Iosif, A. Rogalewicz, and T. Vojnar. Abstract regular tree model
checking of complex dynamic data structures. In SAS’06, 13th International Static
Analysis Symposium, volume 4134 of LNCS, pages 52–70, 2006.

[21] J. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

June 4, 2009 11:38 WSPC/INSTRUCTION FILE ijfcsRP

Handling Non-left Linear Rules When Completing Tree Automata 13

Computation. Addison-Wesley, 1979.
[22] F. Jacquemard. Decidable approximations of term rewriting systems. In proceedings

of RTA, volume 1103, pages 362–376. Springer Verlag, 1996.
[23] T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting sys-

tems. In RTA ’99: Proceedings of the 10th International Conference on Rewriting
Techniques and Applications, pages 256–270, London, UK, 1999. Springer-Verlag.

[24] H. Ohsaki and T. Takai. ACTAS: A system design for associative and commutative
tree automata theory. Electr. Notes Theor. Comput. Sci, 124(1):97–111, 2005.

[25] P. Réty and J. Vuotto. Regular sets of descendants by leftmost strategy. Electr. Notes
Theor. Comput. Sci, 70(6), 2002.

[26] K. Salomaa. Deterministic tree pushdown automata and monadic tree rewriting sys-
tems. JCSS: Journal of Computer and System Sciences, 37, 1988.

