
Controlling Test Case Explosion in Test Generation
from B Formal Models

Bruno Legeard1, Fabien Peureux1, and Mark Utting2

1 Laboratoire d’Informatique de l’Université de Franche-Comté - CNRS - INRIA
16, route de Gray - 25030 Besançon, France

Email: {legeard,peureux}@lifc.univ-fcomte.fr
BZ-TT Web Page: http://lifc.univ-fcomte.fr/˜bztt
2 Department of Computer Science - The University of Waikato

Private Bag 3105 - Hamilton, New-Zealand
Email: marku@cs.waikato.ac.nz

Abstract. BZ-TESTING-TOOLS(BZ-TT) is a tool-set for automated test case gen-
eration from B and Z specifications. BZ-TT uses boundary and cause-effect test-
ing on the basis of the formal model. It has been used and validated on several
industrial applications in the domain of critical software, particularly smart card
and transport systems. This paper presents the test coverage criteria supported by
BZ-TT. On the one hand, these correspond to various classical structural cover-
age criteria, but specialised to the case of B abstract machines. The paper gives
algorithms for these in Prolog. On the other hand, BZ-TT introduces new cover-
age criteria for complex data structures, based on boundary analysis: this paper
defines weak and strong state-boundary coverage, input-boundary coverage and
output-boundary coverage. Finally, the paper describes how BZ-TT presents a
unified view of these criteria to the validation engineer, and allows him or her
to control the test case explosion on a coarse basis (choosing from a range of
coverage criteria) as well as a fine basis (selecting options for each state or input
variable).
Keywords: model-based testing, boundary values, set constraint solving, B no-
tation.

1 Introduction

Test adequacy criteria [1] play an increasingly important role in code-based software
testing practice. A wide range of criteria, based mainly on control flow or data flow,
helps to select test suites or to measure their quality.

In contrast, specification-based (or black-box) testing is more typically guided by
testing strategies, such as category-partitioning, syntax-testing, cause-effect or bound-
ary testing [2]. Currently, the industrial practice for black-box testing is for a validation
engineer to manually design test cases on the basis of the technical requirements doc-
umentation. The draw-backs of this approach are well-known: there are no clear rules
that determine when sufficient testing has been done. The quality of black-box testing
depends essentially on the know-how of the validation engineer, with poor rationale and
reproducibility.

2 Bruno Legeard, Fabien Peureux, Mark Utting

The need to offer better methods and tools for specification-based testing has given
rise to a large amount of research on generating tests from formal specifications. Formal
methods of specification, and particularly model-oriented notations such Z and B [3],
allow a high-level abstract formalization of the expected behavior of the system under
test. These notations are well-suited for test generation because the expressiveness of
set-oriented logic constructs and the definition of an explicit model help both test case
generation and oracle synthesis. Thus, these formal notations are the basis of various
proposals to more or less automatically generate tests from the formal model, see for
example [4–8].

A new method for automated test generation from B abstract machines or Z spec-
ifications was presented in [9]. This method, called BZ-TESTING-TOOLS, uses cause-
effect analysis and boundary computation to produce test cases as sequences of oper-
ation invocations. This computation is based on customized constraint logic program-
ming techniques [10] both for extracting boundary values and for sequencing operation
invocations. This test generation method is embedded in the BZ-TESTING-TOOLS envi-
ronment [11], which has been exercised on several industrial applications in the domain
of smart card software (a GSM 11-11 application [12, 13], the Java Card transaction
mechanism [14]) and for transport applications (a Metro/RER ticket validation algo-
rithm and an automobile windscreen-wiper controller). In all these applications, a B
abstract machine was built specifically for automatic test generation, by an independent
validation team. There was no formal specification for the whole system, just informal
requirements, for example the GSM 11-11 standard [15]. Writing a specific specifica-
tion for testing has been shown to be cost-effective [13], and has the advantage that
it can be tailored towards the desired test objectives. The formal model is proved us-
ing Atelier B [16] and validated using constraint animation with the BZ-TT tool-set
before test case generation. The connection with specific test beds is done by translat-
ing abstract generated test cases and oracles into executable test scripts [14], enabling
automated test execution and verdict assignment.

This article focuses on control-flow and data-oriented coverage criteria for B ab-
stract machines and how one can use it to control the test generation process in the
BZ-TT environment. Indeed, reducing and controlling the test case explosion problem
is a key issue for model-based test generation. The proposal of the BZ-TT method and
tools for dealing with this dreaded problem is on the one hand to allow a systematic
minimal test generation achieving strong coverage results, but reducing the number of
tests as much as possible, preferably to a linear number. On the other hand, the idea is to
allow the test engineer to focus on specific areas of the specification, using a hierarchy
of options to expand the test coverage of that area, using well-defined and understand-
able coverage criteria, while still controlling test case explosion.

Section 2 introduces a structural analysis framework for B machines. Section 3 ap-
plies the classical control-flow graph criteria from imperative programs to these abstract
models, obtaining a family of cause-effect coverage criteria. Section 4 introduces a fam-
ily of boundary-oriented coverage criteria which choose tests from the boundaries of
a given state space. Section 5 gives an overview of the BZ-TT environment and the
default test generation process, then Section 6 describes the hierarchy of options that
allow a test engineer to control the test case explosion, measure coverage, and focus

Controlling Test Case Explosion 3

attention on specific areas. Section 7 demonstrates the approach on the classic triangle
example [2] and describes results from large industry case studies. Section 8 describes
related work and Section 9 presents conclusions and future work.

2 Control-Flow Analysis for B Abstract Machines

Our goal is to generate tests from an abstract formal model of some implementation that
is developed independently. The formal model is typically written for the purposes of
testing, to satisfy specific test objectives, test certain points of control and observations
of data.

The BZ-TT environment supports B abstract machines [3] and several other formal
specification notations [17]. The BZ-TT tool-set requires some restrictions on the input
specification. Firstly, it must specify a single machine. For B, this means that only one
abstract machine is allowed, without layering. Secondly, operations must have explicit
preconditions. In B, operations usually have explicit preconditions, but the BZ-TT ap-
proach requires the entire precondition to appear at the beginning of the operation, and
also requires this precondition to be strong enough to ensure that the operation is feasi-
ble. Thirdly, all data structures must be finite, which means that the given sets are either
enumerated or of a known finite cardinality. Fourthly, the B control structure must be
deterministic (but note that individual effects may still be non-deterministic, if they use
the ANY operator or non-deterministic assignment). This assumption makes it easier
to compare the coverage results with the traditional code coverage criteria, where the
control structure is also deterministic. During industrial trials, these restrictions have
not been a problem.

The translation scheme from B generalised substitutions to before-after predicates
is precisely defined in the B-Book [3]. As a running example, the B operation shown in
Figure 1 is used, which contains a variety of B constructs (Ci are atomic predicates and
Subj are elementary substitutions).

The body of each operation is translated into a before-after predicate. Basically, it
consists of unfolding predicates along branches, and introducing primed variables to
denote the after values, using the prd rules from [3, Chap. 6]. Each choice operator is
translated into a predicate choice operator [], which is semantically equivalent to dis-
junction. The reason for using a separate choice operator rather than using disjunction
everywhere is that it enables the control structure of the B specification to be analysed
independently of any disjunctions within conditions. This is quite different to the usual
approaches based on DNF partitioning [4] and produces fewer alternatives.

The parallel substitution is translated using the following rule:

prdx ,y(S∥T) = prdx (S) ∧ prdy(T)

Note that this prd rule means that the state variables are partitioned along the two
branches of each parallel operator, so that each leaf of the tree is associated with a
disjoint subset of the state variables. The elementary substitution (x := E) at the leaves
becomes the before-after predicate x ′ = E , and prdx (skip) is x ′ = x .

4 Bruno Legeard, Fabien Peureux, Mark Utting

Op =̂
PRE

Pre1 ∨ Pre2
THEN

IF C10 ∧ C11 ∧ C12
THEN Sub1
ELSE Sub2 ∥

SELECT C2 ∧ C3 ∧ C4 THEN Sub3
WHEN C5 THEN Sub4 ∥ Sub5
END

END ∥
IF C6 ∨ C7
THEN Sub6
END

END;

Fig. 1. Example of an Operation in B

The example in Fig 1 gives the following predicate:

(C10 ∧ C11 ∧ C12 ∧ prd(Sub1)
[] (¬ C10 ∨ ¬ C11 ∨ ¬ C12) ∧ prd(Sub2) ∧

(C2 ∧ C3 ∧ C4 ∧ prd(Sub3)
[] C5 ∧ prd(Sub4) ∧ prd(Sub5)

) ∧
((C6 ∨ C7) ∧ prd(Sub6)
[] ¬ (C6 ∨ C7) ∧ prd(skip)
)

Pre

(not(c10) or not(c11) or not(c12))
& prd(sub2) c5 & prd(sub4) & prd(sub5)

c2 & c3 & c4 & prd(sub3)
& prd(skip)

(c6 or c7) & prd(sub6)

not(c6) & not(c7)

c10 & c11 & c12 & prd(sub1)

Fig. 2. Control-Flow Graph of the Before-After Predicate Resulting from Figure 1

This can be viewed as a specific kind of control-flow graph (see Fig 2) where the arcs
out of a node are alternative choices, each arc contains a decision predicate conjoined
with a substitution in predicate form, and each path through the graph is the conjunction
of its arcs. Note that it is a very restricted form of control flow graph:

Controlling Test Case Explosion 5

– Since B abstract machines have no loops, the control-flow graph has no loops.
– Since the conjunction operator is commutative, the parallel subgraphs can be eval-

uated in either order (note that conjunction represents parallelism, not sequencing –
B abstract machines do not allow sequencing). For example, the C6/C7 subgraph
could be traversed first rather than last.

– Our assumption that the control flow structure is deterministic means that each
choice statement has mutually exclusive branches. Thus, when one branch of a B
choice statement is true, the others are false.

After translating the operation to a predicate, the [] operators (but not the ∨ opera-
tors) are propagated up to the top level, using the following distributive laws.

A ∧ (B [] C) ; A ∧ B [] A ∧ C
(A [] B) ∧ C ; A ∧ C [] B ∧ C

These transformations result in a postcondition E1 [] . . . [] En , where each Ei is
a before-after predicate that does not contain [] operators. This form of postcondition
is called Effect Disjunctive Normal Form (EDNF), because each disjunct corresponds
to one effect (or behavior) of the operation, which is one path through the control-flow
graph. The set of all the EDNF predicates corresponds to the set of all control paths
through the original B operation. Fig 3 shows the six effect predicates that result from
Figure 1.

E1 : C10 ∧ C11 ∧ C12 ∧ prd(Sub1) ∧ (C6 ∨ C7) ∧ prd(Sub6),
E2 : C10 ∧ C11 ∧ C12 ∧ prd(Sub1) ∧ ¬ C6 ∧ ¬ C7 ∧ prd(skip),
E3 : (¬ C10 ∨ ¬ C11 ∨ ¬ C12) ∧ prd(Sub2)

∧ C2 ∧ C3 ∧ C4 ∧ prd(Sub3)
∧ (C6 ∨ C7) ∧ prd(Sub6),

E4 : (¬ C10 ∨ ¬ C11 ∨ ¬ C12) ∧ prd(Sub2)
∧ C2 ∧ C3 ∧ C4 ∧ prd(Sub3)
∧ ¬ C6 ∧ ¬ C7 ∧ prd(skip),

E5 : (¬ C10 ∨ ¬ C11 ∨ ¬ C12) ∧ prd(Sub2)
∧ C5 ∧ prd(Sub4) ∧ prd(Sub5)
∧ (C6 ∨ C7) ∧ prd(Sub6),

E6 : (¬ C10 ∨ ¬ C11 ∨ ¬ C12) ∧ prd(Sub2)
∧ C5 ∧ prd(Sub4) ∧ prd(Sub5)
∧ ¬ C6 ∧ ¬ C7 ∧ prd(skip),

Fig. 3. Effect Predicates from the Example in Fig 1

Some of these effect predicates may not be satisfiable. For example, if C2 and ¬ C6
were contradictory, then effect E4 would be unsatisfiable, which would mean it was
not a possible behavior of the original operation. To avoid generating tests from such
effects, an effect predicate, Ei , is deleted if Inv ∧ Pre ∧ Ei is unsatisfiable (where Pre

6 Bruno Legeard, Fabien Peureux, Mark Utting

is the precondition of the operation and Inv is the invariant and context information of
the formal model). This satisfiability checking is decidable because all data structures -
i.e. given sets - are finite.

Note that some effect predicates may be satisfiable, but still not reachable, because
the states that satisfy Inv ∧ Pre ∧ Ei are not reachable by any sequence of opera-
tions. This can happen when the invariant is not the strongest possible invariant. Non-
reachability of effects cannot be checked locally, since it is a global property of the
system. This is one example of how test case generation can expose problems in the
specification, even before the tests are run.

The computation of the effect predicates from the formal model is similar to slicing
techniques, particularly to conditioned slicing [18] and to dynamic specification-based
slicing [19]. One difference is that the formal model has to deal with parallelism.

3 Control Flow Coverage Criteria

Control flow coverage criteria [1] are widely used in structural or code-based software
testing practice. A wide range of different criteria, based mainly on the structure of
the control flow graph of programs [1, 20], help to select test suites or to measure their
quality. The next two subsections apply several classical notions of coverage criteria to
the above specification model - first for control-flow paths, then for the more detailed
case where a decision contains multiple conditions.

3.1 Path Coverage

Many of the traditional code-based coverage criteria are focused on ensuring good cov-
erage of loop constructs. There are no loops in B abstract machines, so criteria like
linear code sequence and jump (LCSAJ) and the test effectiveness ratio TERi hierar-
chy (for i > 2) are not relevant. The most relevant coverage criteria are:

Statement Coverage (SC): the test set must execute every reachable statement.
Decision Coverage (DC): each decision is made true by some tests, and false by

other tests. Decisions are the branch criteria which modify the flow of control in if-then-
else and selection statements etc.

Path Coverage (PC): every satisfiable path through the control-flow graph is exe-
cuted.

As noted in the testing literature [2, 1], for code-based coverage

PC ⇒ DC ⇒ SC

In fact, with the restricted and deterministic control-flow graphs used in this paper,
statement coverage and decision coverage are equal, because every arc out of every
choice node contains a statement (either a simple substitution, or a skip statement). For
example, the IF C THEN S END construct in B is translated to

C ∧ prd(S) [] ¬ C ∧ prd(skip)

because the prd(skip) gives equalities like x ′ = x . It is still possible to achieve deci-
sion coverage, without covering every path, so path coverage is more demanding than

Controlling Test Case Explosion 7

decision and statement coverage. This means that the following relationship holds for
effect predicate coverage

PC ⇒ DC = SC

Path coverage is generally impossible to achieve in code-based testing, because the
presence of loops usually gives an infinite number of paths. However, here there is a
finite set of paths, exactly corresponding to the set of satisfiable effect predicates. This
means that if every effect predicate is tested, path coverage is obtained.

The use of EDNF in this paper is similar to the commonly-used disjunctive normal
form in previous work [4] but contains much fewer alternatives than usual, because only
the control flow choice operators generate alternatives. It can still be exponential in size
when there are P parallel operators, all containing N choices (giving NP effects).

(S1 [] . . . [] SN) ∧ . . . ∧ (S ′
1 [] . . . [] S ′

N)

In our industrial experience (six applications with over a hundred pages of B) this pat-
tern does not arise often in operations. More typically, there are deeply nested choice
constructs and the parallelism usually occurs at leaves or with a simple substitution as
one argument. Furthermore, when a large number of EDNF predicates are generated,
typically a lot are unsatisfiable, so they can be removed. For example, in an application
involving validation of bank card transactions, one operation generated 6095 EDNF
predicates, but only 649 were satisfiable. It is this set of satisfiable paths that give path
coverage.

The above criteria view each decision as an atomic choice, but in practice decisions
are complex predicates constructed with ∧, ∨ and ¬ operators, combining primitive
conditions. Exposing the internal structure of these decisions leads to an extended fam-
ily of coverage criteria. This issue of how to treat multiple conditions without exponen-
tial test case explosion is a key point for test generation, and is discussed in detail in the
next section.

3.2 Multiple Condition Coverage Criteria

Several structural coverage criteria for decisions with multiple conditions have been
defined in the testing literature (Figure 4). Brief informal definitions are given here, but
more details and formal definitions in Z are available elsewhere [20]. Note the termi-
nology: a decision contains one or more primitive conditions, combined by disjunction,
conjunction and negation operators.

Condition Coverage (CC): A test set achieves CC when each condition in the pro-
gram is tested with a true result, and also with a false result. For a decision con-
taining N conditions, two tests can be sufficient to achieve CC (one test with all
conditions true, one with them all false), but dependencies between the conditions
typically require several more tests.

Decision/Condition Coverage (D/CC): A test set achieves D/CC when it achieves
both decision coverage (DC) and CC.

8 Bruno Legeard, Fabien Peureux, Mark Utting

Full Predicate Coverage (FPC)

Modified Condition/Decision Coverage (MC/DC)

Multiple Condition Coverage (MCC)

Decision/Condition Coverage (D/CC)

Decision Coverage (DC) Condition Coverage (CC)

Statement Coverage (SC)

Fig. 4. The Hierarchy of Control-Flow Coverage Criteria for Multiple Conditions.
A −→ B means that criteria A is stronger than criteria B .

Full Predicate Coverage (FPC): A test set achieves FPC when each condition in the
program is forced to true and to false, in a scenario where that condition is directly
correlated with the outcome of the decision. A condition c is directly correlated
with its decision d when either d ⇔ c holds, or d ⇔ ¬ c holds [21]. For a decision
containing N conditions, a maximum of 2N tests are required to achieve FPC.

Modified Condition/Decision Coverage (MC/DC): This strengthens the directly cor-
related requirement of FPC by requiring the condition c to independently affect the
outcome of the decision d . A condition is shown to independently affect a deci-
sion’s outcome by varying just that condition while holding fixed all other possible
conditions [22]. Achieving MC/DC may require more tests than FPC, but the num-
ber of tests generated is generally linear in the number of conditions.

Multiple Condition Coverage (MCC): A test set achieves MCC if it exercises all pos-
sible combinations of condition outcomes in each decision. This requires up to 2N

tests for a decision with N conditions, so is practical only for simple decisions.

This section defines several rewrite rules, which split each effect predicate into sev-
eral effect predicates, to satisfy more demanding coverage criteria. Recall that branches
in each conditional statement are mutually exclusive. This means that only positive
cases need to be considered in the rewrite rules, because negative cases are satisfied
when another branch is chosen. The key issue is how disjunctions are handled within
decisions. A simplistic way of viewing this is to consider a single disjunction A ∨ B
nested somewhere inside a decision. There are four possible rewrite rules to transform
the disjunction into a set of tests:

1. A ∨ B ; {A ∨ B }: This generates just one test for the whole disjunct, resulting
in one test for the whole decision. This corresponds to decision coverage (because
the negated decision is tested in another effect predicate).

2. A ∨ B ; {A,B }: This ensures D/CC, because there is one test with A true, and
one test with B true, and another effect predicate with the negated decision will test
¬ A ∧ ¬ B . In fact, a single test, A ∧ B , would in theory be enough to ensure
D/CC, but A ∧ B is often not satisfiable, so two weaker tests are generated instead.

Controlling Test Case Explosion 9

3. A ∨ B ; {A ∧ ¬ B ,¬ A ∧ B }: This is similar to FPC, because the result of the
true disjunct is directly correlated with the result of the whole disjunction, since it
cannot be masked by the other disjunct becoming true.

4. A ∨ B ; {A ∧ ¬ B ,¬ A ∧ B ,A ∧ B }: This corresponds to MCC, because it
tries all combinations of A and B (the ¬ A ∧ ¬ B combination will be tested
in another effect predicate with the negated decision).

The next question is how these rewrite rules should be combined to act on the whole
decision, and on the whole effect predicate (which generally contains a series of deci-
sions). Using the usual distributive laws to propagate these tests up to the top level is
a bad solution, because it is exponential and is not necessary to satisfy the coverage
criteria. For example, an effect predicate that contained the following three decisions

(A ∨ B ∨ C)︸ ︷︷ ︸
decision1

∧ (D ∨ E ∨ F)︸ ︷︷ ︸
decision2

∧ (G ∨ H)︸ ︷︷ ︸
decision3

would generate 3*3*2=18 predicates. Instead, each test is propagated up independently,
which gives just 3+3+2=8 predicates. For example, when A is propagated up, other
decisions remain unchanged, giving:

A ∧ (D ∨ E ∨ F) ∧ (G ∨ H)

The Prolog algorithm shown in Figure 5 implements this strategy, using the second
rewrite rule above. It is invoked by calling dcc(Effect ,Test), and it returns a sequence
of tests (via backtracking) in the Test variable. For simplicity it is assumed that Effect
contains just disjunction and conjunction operators, with all negation operators appear-
ing at the leaves, and that the atomic conditions are just Prolog constants (atoms) — in
practice, conditions may be any primitive predicates such as equalities, memberships
etc. Note that \+ is the standard Prolog negation operator.

This code is executable using most Prolog systems, as written, so the reader may
wish to experiment with its behavior. It returns exactly one solution for each disjunct
in Effect . The set of generated tests satisfies the D/CC criteria, since each condition is
forced to be true, and another effect predicate with the negated decision will force each
condition to be false. For example,

?- dcc((a or b or c) & subs1 & (d or e or f) & subs2, Test).
Test = a & subs1 & (d or e or f) & subs2 ? ;
Test = b & subs1 & (d or e or f) & subs2 ? ;
Test = c & subs1 & (d or e or f) & subs2 ? ;
Test = (a or b or c) & subs1 & d & subs2 ? ;
Test = (a or b or c) & subs1 & e & subs2 ? ;
Test = (a or b or c) & subs1 & f & subs2 ? ;
No more solutions

The FPC criterion ensures that each condition is forced to be true at least once, and
false at least once. The total number of tests generated for a decision containing N
conditions is O(N). The Prolog algorithm for FPC is identical to the dcc code, except
that clauses 4 and 5 return an additional conjunction:

10 Bruno Legeard, Fabien Peureux, Mark Utting

:- op(800, xfy, [&]).
:- op(900, xfy, [or]).

dcc(P & Q, P2 & Q) :- containsOR(P), dcc(P,P2).
dcc(P & Q, P & Q2) :- containsOR(Q), dcc(Q,Q2).
dcc(P & Q, P & Q) :- \+ containsOR(P), \+ containsOR(Q).
dcc(P or _, P2) :- dcc(P,P2).
dcc(_ or Q, Q2) :- dcc(Q,Q2).
dcc(not(P), not(P)) :- atom(P).
dcc(P, P) :- atom(P).

% containsOR(Pred) is true iff Pred contains an ’or’.
containsOR(_ or _).
containsOR(P & _) :- containsOR(P),!.
containsOR(_ & Q) :- containsOR(Q),!.

Fig. 5. Prolog Algorithm to Generate Tests with D/CC Coverage

fpc(P or Q, P2 & not(Q)) :- fpc(P,P2).

fpc(P or Q, not(P) & Q2) :- fpc(Q,Q2).

This gives the same number of solutions as the dcc algorithm (O(N)), but the
solutions are more specific, to ensure that a is not masked by b or c, for exam-
ple. For each decision, this fpc algorithm generates the minimum number of tests
required to achieve the FPC criteria. However, since it treats each decision indepen-
dently (generating FPC tests from one decision at a time), it is sometimes possible to
optimize the complete set of tests by merging tests from different decisions. For exam-
ple, if (a or b or c) and (d or e or f) are separate decisions, then the set
{a ∧ d , b ∧ e, c ∧ f }, together with some negated tests, would achieve full predi-
cate coverage if these pairs were satisfiable. But the above algorithm generates at most
O(N) tests and places the minimal constraints on satisfiability that are possible, so it is
more useful in practice.

For MCC, a similar Prolog algorithm can be used, considering each decision inde-
pendently, but applying rewrite rule 4 to each disjunct. In the worst case, a decision
with N disjunct conditions gives 2N−1 predicates. However, this can still be practical
for operations with complex control structures but simple decisions, because each deci-
sion is treated independently. For example, if an effect predicate contains D decisions,
each containing N disjuncts, D ∗ (2N−1) predicates are generated. This is much less
than the complete DNF form, which would contain 2D∗(N−1) predicates.

Table 1 are the results of applying each algorithm to the 6 EDNF effect predicates
from Figure 1, plus several general cases to illustrate the complexity of the algorithms.
The DC column (decision coverage) is included to show that one test per decision is
sufficient to achieve decision coverage (and statement coverage), because of the all-
paths coverage property of the set of EDNF predicates (Section 3.1).

Controlling Test Case Explosion 11

Predicate DC D/CC FPC MCC
E1 1 2 2 3
E2 1 1 1 1
E3 1 5 5 10
E4 1 3 3 7
E5 1 5 5 10
E6 1 3 3 7

One decision with N disjuncts 1 N N 2N − 1

Random term with N conditions 1 N /2 N /2 (2N)/2

D decisions (conjoined),
1 D ∗ N D ∗N D ∗ (2N − 1)each with N disjuncts

Table 1. The number of tests generated by each kind of coverage criteria

4 A New Family of Data-Oriented Coverage Criteria: Boundary
Coverage

Structure-based coverage criteria have been thoroughly investigated in the testing liter-
ature for both control-flow and data-flow. However, data-oriented coverage criteria are
less mature, and are more difficult to define because of the wide variety of data types
and the huge state spaces.

This section develops a family of boundary testing coverage criteria. The underlying
assumption is that there is a large set of possible inputs for each effect predicate, and
that the behavior of the effect is relatively uniform within that set, so errors are more
likely to be detected by testing the boundaries of the input set than interior points. This
is the same assumption as the fault model of domain testing [23] [24, Chap. 6].

4.1 Minima, Maxima and Ordering Functions

Let x be a vector of variables whose values come from a state space S , and ord : S →
T be an ordering function which maps each value of S to some totally-ordered set T .

In most of the examples, T is the set of integers, but order functions that return
sequences of integers (ordered lexicographically), or real numbers are also useful. This
allows us to define the set of maximum values of S , with respect to the ordering func-
tion, and similarly for the set of minimum values.

Definition 1 Given a state space S , and an ordering function ord : S → T , where T
is totally-ordered, the set of maximums and minimums of S is defined as:

maxord(S) = { x : S | ¬ ∃ y : S • ord(y) > ord(x) }
minord(S) = { x : S | ¬ ∃ y : S • ord(y) < ord(x) }

Note that there is not always a unique maximum (or minimum) element. As an
extreme case, if the ordering function is the constant function which maps all elements

12 Bruno Legeard, Fabien Peureux, Mark Utting

of S to 0, then max (S) = S . This ordering function can be useful for small state spaces
where it is desirable to test every member.

A more typical example is S = P{2, 4, 8} ordered by set cardinality. This gives

min(P{2, 4, 8}) = { {} }
max (P{2, 4, 8}) = { {2, 4, 8} }

However, if the state space is restricted to S2 == { s : P{2, 4, 8} | #s ̸= 3 } then there
are three maxima (because they all evaluate to 2):

max (S2) = { {2, 4}, {4, 8}, {2, 8} }

An even more precise ordering for this S2 state space would be

ord == (λ s : S2 • ⟨#s,
∑

i∈s i⟩) (ordered lexicographically)

which considers the sum of the members. This gives a unique maxord(S2) = {{4, 8}}.
Typically, this minimization and maximization process is applied to effect predi-

cates (Section 2), which are rich state spaces defined over the cartesian product of some
variables, plus predicates to restrict the possible states. This means that the minimiza-
tion and maximization take into account the relationships between variables. This re-
sults in fewer solutions (and more precise/satisfiable solutions) than the simple cartesian
product of the minima and maxima of the individual variables, which is well-known to
produce many irrelevant tests [24, p161].

For example, given the state space Sxyz == { x , y , z : P(1 . . 4) | P }, where the
predicate P is

x ∪ y ∪ z ⊂ 1 . . 4 ∧
disjoint⟨x , y , z ⟩ ∧
#y ≤ 1 ∧ #z ≤ 1 ∧
(z = {} ⇒ y = {})

the ordering function (λ x , y , z : P(1 . . 4) • #x +#y +#z), gives:

min(Sxyz) = {({}, {}, {})}
max (Sxyz) = {x , y , z : P(1 . . 4) | P ∧ #x = 3 ∧ #y = 0 ∧ #z = 0} ∪

{x , y , z : P(1 . . 4) | P ∧ #x = 2 ∧ #y = 0 ∧ #z = 1} ∪
{x , y , z : P(1 . . 4) | P ∧ #x = 1 ∧ #y = 1 ∧ #z = 1}

The three sets that make up max contain respectively 4, 12 and 24 specific solutions.
This can be reduced by using a more precise ordering function, such as ordering by
the sum of the contents of each set, as well as the cardinality. An even more precise
approach would be to rank the variables (x then y then z), which would give a unique
maximum {({2, 3, 4}, {}, {})}.

The above ordering functions were all based on the type of the variables. Our ex-
perience on industry examples has shown that simple and reasonably effective ordering
functions can be chosen for each B data type (sets, relations, functions, sequences and
integers). But more sophisticated ordering functions could take the structure or seman-
tics of the predicate into account.

Controlling Test Case Explosion 13

4.2 Boundary Coverage Criteria
This section takes an abstract view of tests. A test t is simply a value within the state
space, t ∈ S . Now the concepts of weak and strong boundary testing are defined.

Definition 2 A set of tests, T ⊆ S satisfies weak boundary coverage with respect to
an ordering function ord iff T includes at least one maximum of S and at least one
minimum of S . That is, iff: minord(S) ∩ T ̸= {} ∧ maxord(S) ∩ T ̸= {}
Definition 3 A set of tests, T ⊆ S , where S is non-empty, satisfies strong boundary
coverage with respect to an ordering function ord iff every boundary value of S is in
T . That is, iff: minord(S) ⊆ T ∧ maxord(S) ⊆ T

Note that strong boundary testing implies weak boundary testing.
The state space of an effect predicate E is defined by a complex predicate over all

the before and after state variables as well as the input and output parameters:

Pre(s, i) ∧ Inv(s) ∧ Inv(s ′) ∧ E (s, i , s ′, o)

where Pre is the precondition of the operation, s : S represents the before-state vari-
ables, s ′ : S represents the after-state variables, i : I is the set of input parameters,
o : O is the set of output parameters. Weak or strong boundary coverage can be applied
to any of these four sets of variables, or even to the union of several of them. However,
for a given effect predicate E , there are two subsets that are particularly interesting:

– The before-states that enable this effect predicate (that is, satisfy its precondition).
These are interesting because it is necessary to reach one of these states (by in-
voking a sequence of operations of the system under test) before one can test this
effect.

– The input parameters of the operation. These are interesting because for each effect
of an operation, the invocation is realized at extremum values of the input variables
domain.

Boundary coverage criteria are defined over these two sets of variables:

Definition 4 A test set T achieves weak (strong) before-state boundary coverage of an
operation Op, with effect predicates E1 . . .En iff it achieves weak (strong) boundary
coverage of the before-state BS of every effect predicate Ej , where

BS =
∪n

j=1{s, s ′ : S ; i : I ; o : O | Pre(s, i) ∧ Inv(s) ∧ Ej (s, i , s
′, o) • s}

Definition 5 A test set T achieves weak (strong) input boundary coverage of an oper-
ation Op, with effect predicates E1 . . .En iff it achieves weak (strong) boundary cover-
age of the input state IS of every effect predicate Ej , where

IS =
∪n

j=1{s, s ′ : S ; i : I ; o : O | Pre(s, i) ∧ Inv(s) ∧ Ej (s, i , s
′, o) • i}

Often, an effect predicate E works on a subset of the state variables, so maximizing
over all the state variables creates an unnecessarily large set of maxima. In this case,
a useful heuristic is to minimize and maximize only over the relevant variables of ef-
fect E , which are the variables that it explicitly manipulates (reads or writes). This is
done simply by hiding existentially all other variables. This is a strategy that has been
found to reduce the number of test cases without significantly reducing the quality of
tests [25].

14 Bruno Legeard, Fabien Peureux, Mark Utting

5 Overview of the BZ-TT test generation method

This section presents the overall test generation process followed by BZ-TT. More detail
is given elsewhere [9, 11]. After the formal model is written in B or Z, then translated to
BZP format (before-after predicates with the [] operator), there are three main phases:

1. Test-Objective Generation: generates test objectives (boundary goals) from the for-
mal model of each operation.

2. Test Construction: converts each test objective into a test case (a sequence of ab-
stract operation calls).

3. Test reification: transforms each test case into an executable test script, using a reifi-
cation relationship between abstract test cases and concrete test scripts.

This paper focuses mostly on the first phase. For the issues of sequencing (Phase 2)
see [26] or for reification (Phase 3) see [14].

Each test invocation is generated via the following steps:

1. Transformation of the postcondition of each operation into EDNF effect predicates,
as described in Section 2, discarding unsatisfiable effect predicates. The goal of this
is to achieve path coverage of the operation.

2. Transformation of each EDNF effect into one or several more detailed effect pred-
icates using a coverage criteria algorithm such as D/CC, FPC or MCC. This is an
optional step, which can be used when a particular kind of coverage is desired.

3. Calculation of one or more boundary goals from the before-state of each effect
predicate. This process is controlled by the choice of ordering function, plus the
choice between weak and strong before-state boundary coverage.

Each resulting boundary goal is a subset of the state space, represented by a set
of constraints. The test construction phase of BZ-TT then tries to find a sequence of
operations (the preamble) that reaches a boundary state, which is any state that satisfies
the boundary goal. Unreachable boundary goals are discarded at this stage [9]. At this
boundary state, one or more boundary values are chosen for the input variables of the
operation invocation (the body). This achieves weak or strong input boundary coverage.

Every test case includes oracle checks on the outputs of each operation invocation,
to check that the outputs agree with the expected state.

6 Controlling Test Case Explosion

The partial formal model of the system under test, developed specifically for testing
purposes, defines the high-level testing objectives. It determines the abstraction level,
which operations will be tested, which state variables are relevant, which inputs will be
tested and which outputs will be observed. Our experience has shown that this style of
focused model allows effective testing with fewer problems of test case explosion or
excessive test computation time than a general model of all the system functionality.
This point is also noted in [27].

The approximate number of tests generated is given by the following formula:

Tests = Ops × Effs × Control × Boundaries(V)× Boundaries(I)

Controlling Test Case Explosion 15

where Ops is the number of operations, Effs is the average number of effects per op-
eration, Control , Boundaries(V) and Boundaries(I) are as defined below (V stands
for the number of state variables and I stands for the average number of input variables
per operation). The formula is approximate, because the exact result depends upon how
many of the tests are satisfiable and reachable and how many duplicate boundary goals
are generated (duplicates are discarded). Also, a more accurate estimate can be obtained
by applying the formula to each operation separately (with more precise statistics about
that operation) and summing the results.

Note that the formal model determines Ops and Effs . The test engineer has control
over the other parameters during the generation process, with the default settings being
Control = 1,Boundaries(V) = 2,Boundaries(I) = 2. So the default number of
tests is four times the total number of effect predicates. Each of these controls can
be set for the whole specification, then overridden for each operation, for each effect
predicate, or even for each boundary goal.

1. The strategy for handling multiple conditions within decisions. Assume that an
effect predicate contains D decisions, each with C conditions, of which J are dis-
juncts. Then the engineer can choose between the following coverage criteria:
DC: Control = O(1) tests per satisfiable and reachable effect predicate.
D/CC: Control = O(D ∗ J) tests.
FPC: Control = O(D ∗ J) tests.
MCC: Control = O(D ∗ (2J − 1)) tests.

2. The ordering function. For each data type (or at a finer level, for each variable),
an ordering function can be chosen from a standard library [9]. For example, this
allows one to choose whether the members of an enumerated type should be viewed
as uniform (tests will be generated for each member) or ordered (tests will focus
on the first and last members only). Integer variables are usually ordered on their
value, which is a total ordering, and thus has a unique minimum and maximum.
Set variables are usually ordered on their cardinality, followed by the sum of their
contents.

3. Strong versus Weak boundary testing. That is, how many maximal and minimal
solutions to choose. Typically, with a given ordering function, many different test
vectors may evaluate to the same value. This means there are many maximal values
for that effect predicate. For a given vector of variables V , the engineer can choose
between:

– weak boundary coverage: just one maximal and one minimal test vector are
used as boundary goals (Boundaries(V) = 2). In other words, minimization
and maximization are done just once for each effect predicate.

– N-dimensional weak boundary coverage: this minimizes and maximizes one
time for each variable x , giving that variable a higher priority during mini-
mization and maximization. This is done by changing the ordering function
ord(V) to ⟨f (x)⟩ a ord(V), where f is the ordering function for the vari-
able x . The effect is to treat each dimension of the N-dimensional state space
separately, which results in a linear number of boundary points being found
(Boundaries(V) = 2 × V). For example, Figure 6 shows the effect of ap-
plying N-dimensional weak boundary coverage to a simple two-dimensional

16 Bruno Legeard, Fabien Peureux, Mark Utting

x

y

x

y

Fig. 6. Weak boundary coverage (with ordering function ⟨x + y⟩) compared with N-
dimensional weak boundary coverage.

geometric figure—a minimum and maximum are obtained along each of the X
and Y axes (using ordering functions ⟨x , x + y⟩ and ⟨y , x + y⟩, respectively),
rather than just a single maximum and minimum. (This example is a typical
domain testing problem, so the edge strategy discussed in Section 4.1 would
be an even better way of testing each segment of the boundary).

– strong boundary coverage: all maximal and all minimal test vectors are used as
boundary goals (Boundaries(V) is O(MV), where M is the average number
of maximums per data type, and V is the number of variables). This is useful
only when there are very few variables, or when strong ordering functions are
used on all variables, so that M is small.

7 Example and Experiments

This section shows how the various test generation options work on a small example,
and gives some general results about their application on large industrial case studies.

7.1 The Triangle Example

Figure 7 shows a B specification of the classic triangle example [2]. For test generation
purposes, MAXSIZE is set to 10. This machine has no state variables, so test generation
proceeds directly to analysis of the input variables. After transforming the operation to
EDNF, the following four effect predicates are obtained (DNF would have given 36
predicates):

E1 : (s1 + s2 ≤ s3 ∨ s2 + s3 ≤ s1 ∨ s1 + s3 ≤ s2) ∧ kind = invalid
E2 : (s1 + s2 > s3 ∧ s2 + s3 > s1 ∧ s1 + s3 > s2) ∧ (s1 = s2 ∧ s2 = s3)

∧ kind = equilateral
E3 : (s1 + s2 > s3 ∧ s2 + s3 > s1 ∧ s1 + s3 > s2) ∧ (s1 ̸= s2 ∨ s2 ̸= s3)

∧ (s1 = s2 ∨ s2 = s3 ∨ s3 = s1) ∧ kind = isosceles
E4 : (s1 + s2 > s3 ∧ s2 + s3 > s1 ∧ s1 + s3 > s2) ∧ (s1 ̸= s2 ∨ s2 ̸= s3)

∧ (s1 ̸= s2 ∧ s2 ̸= s3 ∧ s3 ̸= s1) ∧ kind = scalene

Controlling Test Case Explosion 17

MACHINE
TRIANGLE

SETS
KIND = {scalene, isosceles, equilateral , invalid}

CONSTANTS
MAXSIZE

PROPERTIES
MAXSIZE = 10

OPERATIONS
kind ←− classify(s1, s2, s3) =

PRE s1 : 1 . .MAXSIZE ∧
s2 : 1 . .MAXSIZE ∧
s3 : 1 . .MAXSIZE ∧

THEN
IF s1 + s2 ≤ s3 ∨ s2 + s3 ≤ s1 ∨ s1 + s3 ≤ s2
THEN kind := invalid
ELSE

IF s1 = s2 ∧ s2 = s3
THEN kind := equilateral
ELSE

IF s1 = s2 ∨ s2 = s3 ∨ s1 = s3
THEN kind := isosceles
ELSE kind := scalene
END

END
END

END
END

Fig. 7. The Triangle specification in B

Table 2 shows the number of tests that result from applying various test generation
control options to these four effects. Each column applies a different multiple-condition
coverage algorithm, and the three groups of rows show the effects of selecting weak and
strong boundary coverage, plus the intermediate option of N-dimensional boundaries.

Note that the FPC algorithm usually generates the same number of tests as D/CC,
but because it generates tests that are more specific, some of them are unsatisfiable,
which results in no tests for the scalene case (E4). This suggests that when a test gener-
ated by the FPC algorithm is inconsistent, one should fall back to using the correspond-
ing D/CC test instead, to maintain at least that level of coverage.

To allow comparison, the actual boundary values produced by several of the more
useful options are listed below:

DC Weak: Invalid: (1,1,2), (10,9,1);
Equilateral: (1,1,1), (10,10,10);

18 Bruno Legeard, Fabien Peureux, Mark Utting

Effecti DC D/CC FPC MCC
Number of E1(inv) 1 3 3 3
satisfiable effects E2(equ) 1 1 1 1

E3(iso) 1 2 2 2
E4(sca) 1 4 0 4
Total 4 10 6 10

Positive Tests E1(inv) 1,1 3,3 3,3 3,3
for 1 dimensional E2(equ) 1,1 1,1 1,1 1,1
weak boundary coverage E3(iso) 1,1 3,3 3,3 3,3

E4(sca) 1,1 1,1 0,0 1,1
Total 4,4 8,8 7,7 8,8

Positive Tests E1(inv) 2,3 3,6 3,6 3,6
for N dimensional E2(equ) 1,1 1,1 1,1 1,1
weak boundary coverage E3(iso) 2,2 3,3 3,3 3,3

E4(sca) 3,3 3,3 0,0 3,3
Total 8,9 10,13 7,10 10,13

Positive Tests E1(inv) 3,27 3,27 3,27 3,27
for 1 dimensional E2(equ) 1,1 1,1 1,1 1,1
strong boundary coverage E3(iso) 3,3 3,3 3,3 3,3

E4(sca) 6,6 6,6 0,0 6,6
Total 13,37 13,37 7,31 13,37

Table 2. Test Results for Triangle Classify Operation. Each i , j entry represents the
number of minimal (i) and maximal(j) tests.

Controlling Test Case Explosion 19

Isosceles: (1,2,2), (10,10,9);
Scalene: (2,3,4), (10,9,8).

DC N-dim: Invalid: (1,1,2), (1,2,1), (10,9,1), (9,10,1), (9,1,10);
Equilateral: (1,1,1), (10,10,10);
Isosceles: (1,2,2), (2,1,2), (10,10,9), (10,9,10);
Scalene: (2,3,4), (3,2,4), (3,4,2), (10,9,8), (9,10,8), (9,8,10).

D/CC Weak: Invalid: (1,1,2), (2,1,1), (1,2,1), (9,1,10), (10,9,1), (9,10,1);
Equilateral: (1,1,1), (10,10,10);
Isosceles: (1,2,2), (2,1,2), (2,2,1), (10,9,10), (10,10,9), (9,10,10);
Scalene: (2,3,4), (10,9,8).

7.2 Industrial Case Studies

The BZ-TT method and tool set has been developed since 1999 on the basis of several
industrial case-studies. These applications of the automated test generation process has
been carried out in partnership with two companies: SchlumbergerSema (two divisions:
Smart Card RD which provides smart card software, and e-City which develop urban
systems), and PSA Peugeot Citroën.

This section presents some coverage statistics from a Smart Card key management
application. The formal model is more than 50 pages of B, with 11 operations which
model the smart card commands. Table 3 gives statistics for two typical operations,
showing the number of feasible effect predicates for each condition coverage criteria,
and the resulting number of weak and strong boundary tests.

Operations DC D/CC MCC

CREATEFLA Feasible Effect Predicates 8 15 15
Weak/Strong Boundary Tests 8/220 16/876 16/876

VERIFYPIN Feasible Effect Predicates 22 307 470
Weak/Strong Boundary Tests 14/2466 141/107 6578/1013

Table 3. Example Statistics for Smart Card Industrial Case Study

This illustrates that strong boundary coverage often produces too many tests to be
practical. N-dimensional boundary coverage gives a number of tests in between weak
and strong coverage, so can be a useful compromise.

8 Related Work

The research on Model-Based Automated Test Generation Tools is currently very ac-
tive; see [28] for a review of different tools, both commercial and academic. These tools
use as input a formal model of the system under test and allow the validation engineer
to drive the test generation process.

20 Bruno Legeard, Fabien Peureux, Mark Utting

Formal description languages based on Labelled Transition Systems (LTS), Ex-
tended Finite State Machines (EFSM) or Abstract State Machines (ASM) have been
widely considered, see e.g. [29]. In these approaches, the test generator may support
a variety of existing transition-based strategies like state coverage, path coverage, con-
strained path coverage, all transition pairs, etc. The main limitation of these approaches
comes from the state explosion problem and the test case explosion problem [30]. Sev-
eral proposals address these limitations, for example on the basis of the formalization
of reachable properties guiding the test generation or by reducing the test suites using
individual requirements selection [31].

Set-oriented model-based formal notations, like VDM, Z or B have been extensively
studied for test generation purpose. Most approaches [4, 7, 6] use a partition analysis of
the operation to build a Finite State Automaton - FSA - corresponding to an abstraction
of the reachability graph denoted by the specification. Test cases are then generated
using the same kinds of coverage criteria as used by the LTS/EFSM/ASM approaches,
with the same limitations (test case explosion). Moreover, the transformation of the
formal model into an abstract FSA introduces several fundamental problems such as
the non-discovery problem and again the state explosion problem [29]. An other ap-
proach [32] introduces so-called Testgraph as test objective to drive the sequencing of
the operation invocations.

The BZ-TESTING-TOOLS approach proposes another way, which is also based on
the partition analysis of the operation, but avoids the a priori construction of the FSA.
The test generation is then conducted by Boundary Goal calculation, guiding the com-
putation of the preambles. Moreover, Constraint Logic Programming [10], used as a ba-
sis for animation purposes, allows reasoning on so-called constraint states, represented
by constraint stores, which denote sets of valued states. This reduces the combinatorial
explosion. The coverage criteria are then defined on the basis of a structural analysis
of the B or Z model. Such an approach has already been considered by Behnia and
Waeselynk [8] who study test criteria definition for B models. But they have a differ-
ent purpose, which is to test the B formal model itself for validation purposes, starting
from a B project multi-layered machine with refinement and implementation. Thus, they
have to consider in the structural analysis, implementation structures like WHILE and
sequencing. BZ-TT performs the analysis on abstract machines instead, where loops and
sequencing are not allowed, which simplifies the analysis, makes complete path cover-
age feasible, and allows a focus on more sophisticated coverage criteria for decisions
that contain multiple conditions.

Some other researchers have investigated specification-based coverage criteria in
state-oriented specifications, like full-predicate, transition-pair and specification-mutation
coverage [21, 33]. One way in which this paper extends that work, is by using full-
predicate coverage in multiple condition analysis.

The second strategy used by BZ-TT is boundary testing. This is widely used as
an informal heuristic during manual test design. A partially automated boundary test
generation system is described in [34]. They define a family of boundary heuristics (k-
bdy), where 1-bdy generates all combinations of maximum and minimum values of an
N-dimensional integer input space. This roughly corresponds to the mixed boundary
heuristic using all variables, for the special case of integer input domains (which are

Controlling Test Case Explosion 21

totally ordered). However, an important difference is that they blindly generate all the
boundary points, then discard those that are invalid (do not satisfy the precondition).
This can result in many useful tests being missed, and could even result in zero valid
test cases being generated. In contrast, in this paper the search for each boundary test
case considers the precondition, which means that only valid test inputs are generated,
thus obtaining much more precise coverage of the real (semantic) boundary points.
Hoffman et. al. [34] also define a family of perimeter strategies (k-per), where 1-per
holds one variable at a boundary value but allows the others to vary. This is similar in
philosophy to the strategy mentioned above of using a subset of the variables during
boundary analysis. However, this subset is chosen by considering the semantics of the
operation under test (which variables it modifies), whereas Hoffman just forces one
variable at a time to have a boundary value.

9 Conclusions and Future Work

This paper has made advances in five points related to model-based black-box testing.
Firstly, we have described ways of analyzing B abstract machines in terms of con-

trol flow analysis. This allows specifications to be transformed into EDNF form, which
is more practical than DNF analysis, and provides a connection to structure-based cov-
erage criteria. A similar process can be followed for Z specifications, but the coverage
results are less clear because Z specifications are less structured than B machines (where
every condition has an associated substitution statement).

Secondly, we have adapted the classical structure-based control-flow coverage cri-
teria to predicate-based specifications, particularly for multiple condition coverage cri-
teria. We have defined algorithms which satisfy each of these coverage criteria in a
practical fashion. They do not necessarily produce a minimal set of tests, because each
decision is treated independently to minimize the possibility of generating unsatisfiable
effect predicates (and thus losing coverage).

Thirdly, we have described a toolbox of techniques for reducing and controlling
test case explosion, which is a crucial issue for the scalability of test generation. The
classic DNF and FSA approach does not scale well. The techniques described in this
paper for improving scalability include: using EDNF rather than DNF, computing the
EDNF from each operation rather than the whole model, exploring the reachable states
on the fly (guided by boundary goals) rather than constructing the whole FSA, and
a systematic range of coverage controls which allow the test engineer to generate a
predictable number of tests.

Fourthly, we have introduced a family of data-oriented boundary coverage criteria,
parameterized by the ordering function. The calculation of boundaries uses the predi-
cates of the specification, which gives very precise boundaries.

Finally, we have synthesized these coverage criteria into a practical sequence of
control parameters that allows the test engineer to control test case explosion, with
clear coverage consequences. These control parameters are embedded in the BZ-TT
tool set and have been used in several industrial case studies. An academic version of
this environment will be released in 2004.

22 Bruno Legeard, Fabien Peureux, Mark Utting

These five points advance the state of the art in the area of model-based test gen-
eration from notations like B. Practical systems and techniques for model-based test
generation will be a major improvement of current testing practice by making test gen-
eration more systematic and reducing costs.

The approach we have described uses before-after predicates to specify operations,
with few restrictions on the structure of those predicates. Thus, it is general enough
to be applied to many other specification notations. We have not addressed other is-
sues of functional black-box testing such as reactive systems, concurrency and timing.
However, we are adapting this approach to work with reactive systems modelled using
statecharts.

Other future work will be to develop better reachability tests, better support the
MC/DC coverage criteria, and better integrate domain testing strategies, like the edge
strategy. On the tools side, more experience is needed to determine if the control pa-
rameters that we have proposed provide sufficient control over test case generation,
and whether they are rich enough to allow test engineers to exercise their validation
expertise.

Acknowledgments

We would like to thank Paul Strooper and Tim Miller from the University of Queens-
land and Alain Giorgetti from the University of Franche-Comté for useful feedbacks
on an earlier draft of this paper. Thanks to the anonymous referees for many helpful
comments.

References

1. H. Zhu, P.A.V. Hall, and J.H.R. May. Software Unit Test Coverage and Adequacy. ACM
Computing Surveys, 29(4):366–427, 1997.

2. G.J. Myers. The Art of Software Testing. Wiley-InterScience, 1979.
3. J-R. Abrial. The B-BOOK: Assigning Programs to Meanings. Cambridge University Press,

1996. ISBN 0 521 49619 5.
4. J. Dick and A. Faivre. Automating the generation and sequencing of test cases from model-

based specifications. In Proceedings of the International Conference on Formal Methods
Europe (FME’93), volume 670 of LNCS, pages 268–284. Springer Verlag, April 1993.

5. P. Stocks and D.A. Carrington. Test templates: a specification-based testing framework. In
Proceedings of the 15th International Conference on Software Engineering (ICSE’93), pages
405–414, Baltimore, Maryland, May 1993. IEEE Computer Society Press.

6. R. Hierons. Testing from a Z specification. The Journal of Software Testing, Verification and
Reliability, 7:19–33, 1997.

7. L. Van Aertryck, M. Benveniste, and D. Le Metayer. CASTING: a formally based soft-
ware test generation method. In 1st IEEE International Conference on Formal Engineering
Methods (ICFEM’97), pages 99–112, 1997.

8. S. Behnia and H. Waeselynck. Test criteria definition for B models. In Proceedings of
the World Congress on Formal Methods (FM’99), volume 1708 of LNCS, pages 509–529,
Toulouse, France, 1999. Springer Verlag.

Controlling Test Case Explosion 23

9. B. Legeard, F. Peureux, and M. Utting. Automated Boundary Testing from Z and B. In
Proceedings of the International Conference on Formal Methods Europe (FME’02), volume
2391 of LNCS, pages 21–40, Copenhagen, Denmark, July 2002. Springer Verlag.

10. F. Bouquet, B. Legeard, and F. Peureux. CLPS-B – A constraint solver for B. In Proceedings
of the ETAPS’02 International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’02), volume 2280 of LNCS, pages 188–204, Grenoble, France,
April 2002. Springer Verlag.

11. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux, N. Vacelet, and
M. Utting. BZ-TT: A tool-set for test generation from Z and B using constraint logic pro-
gramming. In Proceedings of the CONCUR’02 Workshop on Formal Approaches to Testing
of Software (FATES’02), pages 105–120, Brnö, Czech Republic, August 2002. INRIA Tech-
nical Report.

12. B. Legeard and F. Peureux. Generation of functional test sequences from B formal speci-
fications - Presentation and industrial case-study. In Proceedings of the 16th International
Conference on Automated Software Engineering (ASE’01), pages 377–381, San Diego, USA,
November 2001. IEEE Computer Society Press.

13. E. Bernard, B. Legeard, X. Luck, and F. Peureux. Generation of test sequences from for-
mal specifications: GSM 11.11 standard case-study. The Journal of Software Practice and
Experience, 34(10):915 – 948, 2004.

14. F. Bouquet and B. Legeard. Reification of executable test scripts in formal specification-
based test generation: the Java Card transaction mechanism case study. In Proceedings of
the International Conference on Formal Methods Europe (FME’03), volume 2805 of LNCS,
pages 778–795, Pisa, Italy, September 2003. Springer Verlag.

15. European Telecommunications Standards Institute, F-06921 Sophia Antipolis cedex -
France. GSM 11-11 V7.2.0 Technical Specifications, 1999.

16. Clearsy, Europarc de Pichaury 13856 Aix-en-Provence Cedex 3 - France. Atelier B Technical
Support version 3, May 2001. http://www.atelierb.societe.com.

17. The BZ-TT web site. http://lifc.univ-fcomte.fr/˜bztt, 2005.
18. R. Hierons, M. Harman, C. Fox, L. Ouarbya, and M. Daoudi. Conditioned slicing supports

partition testing. The Journal of Software Testing, Verification and Reliability, 12:23–28,
March 2002.

19. J. Chang and D. Richardson. Static and dynamic specification slicing. In Proceedings of the
4th Irvine Software Symposium, Irvine, CA, April 1994.

20. S.A. Vilkomir and J.P. Bowen. Formalization of software testing criteria using the Z notation.
In Proceedings of the 25th International Conference on Computer Software and Applications
(COMPSAC’01), Chicago, USA, October 2001. IEEE Computer Society Press.

21. A.J. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction procedure for test data gener-
ation. The Journal of Software Practice and Experience, 29(2):167–193, 1999.

22. RTCA Committee SC-167. Software considerations in airborne systems ans equipment cer-
tification, 7th draft to Do-178B/ED-12A, July 1992.

23. L.J. White and E.I. Cohen. A Domain Strategy for Computer Program Testing. The journal
IEEE Transactions on Software Engineering, 6:247–257, 1980.

24. B. Beizer. Black-Box Testing: Techniques for Functional Testing of Software and Systems.
John Wiley & Sons, New York, USA, 1995.

25. P.J. Schroeder and B. Korel. Black-Box Test Reduction Using Input-Output Analysis. In
Proceedings of the International Symposium on Software Testing and Analysis (ISSTA’00),
pages 173–177, Portland, USA, August 2000. ACM SIGSOFT.

26. S. Colin, B. Legeard, and F. Peureux. Preamble computation in automated test generation
using Constraint Logic Programming. In Proceedings of UK-Test Workshop, York, UK,
September 2003.

24 Bruno Legeard, Fabien Peureux, Mark Utting

27. E. Farchi, A. Hartman, and S.S. Pinter. Using a model-based test generator to test for standard
conformance. IBM Systems Journal, 41(1):89–110, 2002.

28. A. Hartman. AGEDIS - Model Based Test Generation Tools. http://www.agedis.
de/documents/ModelBasedTestGenerationTools_cs.pdf, 2002.

29. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating Finite State machines
from Abstract State Machines. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA’02), volume 27, pages 112–122, Rome, Italy, July 2002. ACM
SIGSOFT.

30. G. Friedman, A. Hartman, K. Nagin, and T. Shiran. Projected State machine Coverage for
Software Testing. In Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA’02), volume 27, pages 134–143, Rome, Italy, July 2002. ACM SIGSOFT.

31. B. Vaysburg, L.Tahat, and B. Korel. Dependence Analysis In Reduction of Requirement
Based Test Suites. In Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA’02), volume 27, pages 107–111, Rome, Italy, July 2002. ACM SIGSOFT.

32. D.A. Carrington, I. MacColl, J. McDonald, L. Murray, and P.A. Strooper. From Object-Z
specifications to classbench test suites. The Journal of Software Testing, Verification and
Reliability, 10(2):111–137, 2000.

33. A.J. Offutt, S. Liu, A. Abdurazik, and P. Ammann. Generating test data from state-based
specifications. The Journal of Software Testing, Verification and Reliability, 13(1):25–53,
2003.

34. D.M. Hoffman, P.A. Strooper, and L. White. Boundary values and automated component
testing. The Journal of Software Testing, Verification and Review, 9(1):3–26, 1999.

