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Abstract. This paper proposes an approach to evalu-
ate B formal specifications using Constraint Logic Pro-
gramming with sets. This approach is used to animate
and generate test sequences from B formal specifica-
tions. The solver, called CLPS–B, is described in terms
of constraint domains, consistency verification and con-
straint propagation. It is more powerful than most con-
straint systems, because it allows the domain of variable
to contain other variables, which increase the level of
abstraction. The constrained state propagates the non-
determinism of the B specifications and reduces the num-
ber of states in a reachability graph. We illustrate this
approach by comparing the constrained state graph ex-
ploration with the concrete one in a simple example:
Process scheduler. We also describe the automated test
generation method that uses the CLPS–B solver to bet-
ter control of combinational explosion.

Key words: B Notation – Constraint Logic Program-
ming – Set Constraints – Evaluation of specifications –
Animation.

1 Introduction

This article presents a constraint solver used to evaluate
B formal models. The B method, developed by Jean-
Raymond Abrial [Abr96], forms part of a formal speci-
fication model based on first order logic extended to set
constructors and relations. This method allows refine-
ment of the first abstract level of specification, called a B
abstract machine, into an implementation. It has already
been successfully used for industrial projects [BDM98].
In our proposal, we only consider B abstract machines
(no refinement or implementation level).

1.1 B abstract machine evaluation

A B abstract machine describes the system in terms
of an abstract machine defined by a data model (sets,
constants and state variables), invariant properties ex-
pressed on the variables, and operations. Operations are
described in terms of preconditions and substitutions us-
ing the language of generalized substitutions (which is
an extension of the language of guarded commands). It
extends earlier set-based specification notations such as
VDM [Jon90] and Z [Spi92]. More precisely, the data
of an abstract machine are specified in the data model
by means of a number of mathematical concepts such
as sets, relations, functions, sequences and trees. This
model, also called the static model, presents the various
data of the machine, which were used by the operations,
and the invariant properties that the state variables must
follow. The dynamics of an abstract machine is expressed
through its operations. The role of an operation, which
is executed by the computer, is to modify the state of
the abstract machine. Each operation must maintain the
state invariant.

The objective of the constrained evaluation of B ab-
stract machines, as proposed in this article, is to look
into the reachability graph of the system described by
the specification: it consists of being able to initialize
the machine, evaluate substitutions and check proper-
ties of the new computed state. This mechanism is used
as a basis to animate B abstract machines [BLP00] and
to generate functional test suites from a B abstract ma-
chine [LP01,LPU02a].

This approach using constraints manipulates a store
of constraints (called constrained states) instead of con-
crete states, classically handled in the animation of spec-
ifications [Dic90,WE92]. This evaluation process makes
it possible to maintain the non-determinism of the spec-
ifications, and reduces the number of generated states.
For example, non-determinism expressed by the B ex-
pression:

ANY xx WHERE xx ∈ Y THEN substitution

is maintained by the set constraint xx ∈ Y . Substitu-
tion is no longer calculated for a particular value, but for
a variable xx whose domain is Y . Fig. 1 presents the pro-
cessing carried out by the CLPS–B solver (Constraint
Logic Progamming with Set to B) from B specification.
The specification is rewritten by a translator into a con-
straint system. The initial constraint system is rewrit-
ten in canonical form (with ∈, ̸∈, ̸=) by a pre-processor.
The concrete structure of the solver is based on reduc-
tion and generation procedures. The constrained evalua-
tion of B specifications requires a hypothesis of finite do-
mains: given sets must be replaced by finite enumerated
sets. This makes it possible for the CLP-based evaluation
to perform much stronger reasoning about the specifica-
tions, and this is usually necessary for the animation
process to be tractable.
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Fig. 1. Evaluation of B specification with CLPS–B

The CLPS–B solver is more general than traditional
animation because one evaluation sequence captures the
properties of a set of concrete animation sequences. It
is less powerful than proof because it requires finite-
ness assumptions, but it is fully automatic. Thus, each
state managed by the evaluator is a store of constraints
which represents a set of concrete states of the B abstract
machine. The process scheduler example (Fig 2) shows
that for n processes, the number of constrained states in
the entire reachability graph is at most (n2 + 3n + 2)/2
against more than 3n concrete states. In general purpose
constraint approach, as used in CLPS–B solver, involves
a dramatic reduction that makes it possible to animate
much larger state spaces than would be possible other-
wise.

1.2 Example

As a running example, we use a simple scheduler that
manages a set of processes. Fig. 2 gives the B specifica-
tion with a set PID composed of six processes {p1, p2,
p3, p4, p5, p6}. The three state variables of the machine
are waiting, ready, active which respectively represent
the waiting, ready to be activated and active processes.
In the initial state, the three sets are empty.

Four operations are defined:

– NEW: to create a new process and add it to waiting .
– DEL: to kill a process and delete it from waiting .
– READY: to activate a process of waiting and put it in

active if this set is empty, add it to ready otherwise.
– SWAP: to disable the process of active and put it in

waiting , and activate a process from ready if there is
one (using a non-deterministic approach).

The evaluation of B expressions and the construc-
tion of the reachable states of the system constitute a
new problem area for set constraint resolution. The con-
strained states are built incrementally by substitutions
from the initial state. So, if we consider the state of the
process scheduler just after the creation of a process xx :

waiting = {xx} ∧ ready = {}∧
active = {} ∧ xx ∈ {p1, . . . p6}

MACHINE
SCHEDULER

SETS
PID = {p1, p2, p3, p4, p5, p6}

VARIABLES
active, ready,waiting

INVARIANT
active ⊆ PID ∧ ready ⊆ PID ∧
waiting ⊆ PID ∧ ready ∩ waiting = {} ∧
ready ∩ active = {} ∧ waiting ∩ active = {} ∧
active ∩ (ready ∪ waiting) = {} ∧
card(active) ≤ 1∧
(active = {}) ⇒ (ready = {})

INITIALIZATION
active := {}∥
ready := {}∥
waiting := {}

OPERATIONS
NEW (pp)

PRE
pp ∈ PID ∧
pp ̸∈ (active ∪ ready ∪ waiting)

THEN
waiting := (waiting ∪ {pp})

END;
it(pp)

PRE
pp ∈ waiting

THEN
waiting := waiting − {pp}

END;
READY (rr)

PRE
rr ∈ waiting

THEN
waiting := (waiting − {rr})∥
IF (active = {})THEN

active := {rr}
ELSE

ready := ready ∪ {rr}
END

END;
SWAP

PRE
active ̸= {}

THEN
waiting := waiting ∪ active∥
IF (ready = {})
THEN

active := {}
ELSE

ANY pp WHERE pp ∈ ready
THEN

active := {pp}∥
ready := ready − {pp}

END
END

END;

Fig. 2. B Specification of process scheduler

The evaluation of the operation new(yy) is computed
using the following rules:

1. the addition of the constraints resulting from the pre-
conditions:

yy ∈ {p1, ..., p6} ∧ yy ̸∈ waiting∧

yy ̸∈ active ∧ yy ̸∈ ready

2. the evaluation of substitutions:

waiting := waiting ∪ {yy}

3. the verification of the invariant properties on the new
state.
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The sets handled in the computation of substitutions
are explicit sets of known cardinality whose elements
are either constants or variables. In this context, the
approaches of set constraint resolution based on a re-
duction of set intervals as in CLPS [ALL94] or CON-
JUNTO [Ger97] do not provide a sufficiently effective
propagation of constraints. It is the same for the ap-
proaches using set constraints on regular sets [AW93,
Koz94] used to analyze programs. This led us to develop
a new solver, CLPS-B, based on an explicit representa-
tion of variable domains by the intersection of sets of
variables and constants.

The remainder of the paper is structured as follows:

– Section 2 characterizes the domain of constraints,
then sets out the consistency and reduction rules im-
plemented in the CLPS-B solver, and finally defines
the coverage of the operators in the treatment of the
B abstract notation,

– Section 3 discusses the use of CLPS–B to animate B
abstract machines,

– Section 4 illustrates the application of CLPS–B to
animate the process scheduler example,

– Sections 5 and 6 describe the automated test gene-
ration approach based on the CLPS–B solver,

– Section 7 presents conclusion and future work.

2 B and Constraint Resolution with CLPS–B

This section introduces the domain of the CLPS–B solver
and presents the part of the B notation that is covered.
We show the CLPS–B constraint resolution mechanism
and the inference rules.

2.1 Restriction on the B notation

As stated earlier, we are only interesting in the more
abstract level of the B notation, namely abstract ma-
chines. For simplicity, and to improve the efficiency of
the process, we impose two main restrictions on these B
abstract machines:

– firstly, we only consider single abstract machines, with-
out composition,

– secondly, the given sets must be equal to a finite enu-
merated set.

Nonetheless, these restrictions are not too strong in prac-
tice. We used the CLPS–B solver to animate and genera-
te tests on various industrial applications [BLP00,LP01,
LPV01,CGLP01,BJLP02], building each time a specific
B formal model with just one machine and enumerated
finite sets without any difficulties.

2.2 Computation Domain

The B notation is based on set theory, with four set de-
finitions:

1. Cartesian product: Set × Set
2. Power-set: P(Set)
3. Set comprehension: { Variable | Predicate}
4. Given set: let T be the set of all deferred sets.

The next definitions introduce the universe of computa-
tion of the CLPS–B variables.

Definition 1 (Set). Let V be the set of all the vari-
ables, C the set of all the constants, and O the set of
all the pairs over C ∪V (including nested pairs). The set
SVCO is defined as follows: SVCO = P(V ∪ C ∪ O)

Definition 2 (Computation domain). The compu-
tation domain of constraints processed in CLPS–B is
defined on the set SVCO ∪ T .

The example 1 shows the different kinds of compu-
tation domain with B notation. Each expression is ex-
plained and we say if it is supported by the CLPS–B
solver.

Example 1 (Definition of CLPS–B variables).
List of CLPS–B expressions:

– explicit set: X ∈ {1, 2, 3},
– type: X ∈ N, because (N ∈ T ),
– type: X ⊂ N, because (N ∈ T ),
– Cartesian product (pairs): X ∈ {1, 2, 3} × {4, 5, 6},
– Set of pairs: X ∈ {(1, 4), (1, 5) . . . (3, 5), (3, 6)},
– Set defined by comprehension (explicit domain): {X ∈
N | X ≤ 3 ∧X ≥ 0}.

List of non CLPS–B expressions:

– Set of sets: X ∈ {{1, 2, 3}, {4, 5, 6}},
– Infinite set: {X ∈ N | X ≥ 3}.

For each variable of the system, its domains, mana-
ged by the CLPS–B solver, is defined by constraints.

2.3 Substitution

The B notation describes actions in the operations by
substitution of the state variables. Here, only the defini-
tion of a simple substitution is given. The reader can find
all other substitution definitions in the B-Book [Abr96].

Definition 3 (Substitution). Let x be a variable, E
an expression and F a formula, [x := E ]F is the sub-
stitution of all free occurrences of x in F by E .

Example 2. The result of transformation by substitution
of the swap operation of the process scheduler is:

(active ̸= {}) ∧
(waiting’ := waiting ∪ active) ∧
(waiting’ ⊆ PID) ∧
(((ready = {}) ∧ (active = {})) ∨

(¬ (ready = {}) ∧ (@pp.(pp∈ready) ⇒
(active’ := {pp}) ∧ (active’ ⊆ PID) ∧
(ready’ := ready - {pp}) ∧
(ready’⊆ PID)))
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B Language CLPS–B
Operator Notation constraint

conjunction ∧ &

disjunction ∨ or
negation ¬ not

implication ⇒ =>

equivalence ⇔ <=>

universal quantification ∀ !

existential quantification ∃ #

comprehension set {|} {x , y, z}
extension set

extension set {x , y, z} {x , y, z}
empty set {} {}

set of relation ↔ <->

inverse of a relation −1 ~

domain of a relation dom dom
less than or equal ≤ <=

less than < <

greater than or equal ≥ >=

greater than > >

adder + +
subtracter − -
multiplier ∗ *
divisor / /

B language CLPS–B
Operator Notation Constraint

range of relation ran ran
composition of two relations ; ;

o circ
identity relation id id

domain restriction ▹ <|

range restriction ◃ |>

domain subtraction −▹ <<|

range subtraction −◃ |>>

range of a set under a relation [ ] [ ]
overriding relation by another ▹− <+

direct product of two relations ⊗ ><

parallel product of two relations ∥ ||

first projection prj1 prj1
second projection prj2 prj2

application of a function ( ) ()

functional abstraction λ .(|) ⋆
set of partial functions 7→ +->

set of total functions → -->

set of partial injections 7� >+>

set of total injections � >->

set of partial surjections 7→→ +->>

set of total surjections →→ -->>

set of partial bijections �→7� >+>>

set of total bijections �→ >->>

Table 1. List of operators in B notation and CLPS–B con-
straints. The symbol ⋆ means that the operator is not imple-
mented.

2.4 Coverage of the B Notation

The coverage of B set operators is high. More than 80%
of set operators are supported (Tables 1 and 2). The
main integer primitives are implemented using integer
finite domain propagation rules [Tsa93] in order to ex-
press properties of set cardinality and basic arithmetic
operation. There are two reasons of the limitation of the
operator coverage: the first concerns the finite tree struc-
tures and finite sequences that are not supported. They
represent about 15% of the operators. The second is due
to the set restriction allowing to use infinite sets T only
to type variables. Int the end of the paper, we only con-
sider the part of B operators covered by the CLPS–B
solver.

B language CLPS–B Constraint
Operator Notation SVCO T

membership ∈ ins ins
Cartesian product × x ⋆

set of subsets of a set P p partie ⋆
set of non-empty
subsets of a set P1 p1 partie ⋆

set of finite subsets of a set F f partie ⋆
set of finite non-empty

subsets of a set F1 f1 partie ⋆
inclusion of one set in another ⊆ sub sub

union of two sets ∪ union ⋆
intersection of two sets ∩ inter ⋆
difference of two sets − differ ⋆

non membership ̸∈ nin nin
equality = = =
inequality ̸= neq neq
set equality =S eqS eqS
set inequality ̸=S neqS neqS

cardinality of a set # card card

Table 2. In CLPS–B solver, the set operators are different
on explicit SVCO sets and T universe sets. Note that only the
operators on sets of sets are not implemented(⋆).

2.5 Translating B Expressions into Constraint System

In CLPS–B, all the set relations are rewritten into an
equivalent system with constraints ∈, =, ̸= and card()
(cardinality of set) as shown in Table 3 where A,B are
sets of SVCO, x and y are elements of V ∪ C ∪ O, and s
and r are relations. This translation uses rules or axioms
of logic and the semantics of B operators [Abr96].

Example 3. Set constraint transformation: {x1, x2} =S

{y1, y2} is rewritten into
x1 ∈ {y1, y2}∧x2 ∈ {y1, y2}∧y1 ∈ {x1, x2}∧y2 ∈ {x1, x2}
The domain of each variable is defined with the element
of the other set..

The constraints are rewritten into normal disjunc-
tive form and each disjunction is explored by a separate
prolog choice point.

Definition 4 (Domain of constraints). We call Ω
the Domain of constraints. It is the set of all the
constraints over SVCO ∪T . Also, the set constraints over
VCO is called ΩVCO and the set of constraints over T is
called ΩT .

Remark 1. we do not translate all the system at once,
but each predicate separately. So, the computation is
very fast, because we do not have to calculate the dis-
junctive normal form of the whole specification.

Theorem 1 (Validity). The set of constraints obtained
after rewriting is semantically equal to the system given
by the B specification.

Proof. All logic identities used (table 3) are the defi-
nitions given and proved in the B-Book [Abr96]. The
rewriting process always terminates because there is no
recursion in the definitions. The consistency of operator
definitions ensures the soundness of the method and the
termination property ensures its completeness.
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Terminology Operator Definition
membership x ∈ A CLPS–B primitive
not member x ̸∈ A {y | y ∈ A ∧ x ̸= y}

equality x = y CLPS–B primitive
not equality x ̸= y CLPS–B primitive

subset A ⊆ B A ∈ P(B)
set equal A =S B A ⊆ B ∧ B ⊆ A

set not equal A ̸=S B card(A) ̸=
card(B) ∨ ∃ x(x ∈
A∧x ̸∈ B)∨∃ x(x /∈
A ∧ x ∈ B)

cup A ∪ B {x | x ∈ A ∨ x ∈ B}
cap A ∩ B {x | x ∈ A ∧ x ∈ B}

set minus A \ B {x | x ∈ A ∧ x ̸∈ B}
cardinality card(A) CLPS–B primitive
identity id(A) {(x , x) | x ∈ A)}
reverse r−1 {(y, x) | (x , y) ∈ r}
domain dom(r) {x | ∃ y((x , y) ∈ r)}
range ran(r) {y | ∃ x((x , y) ∈ r)}

Terminology Expression Definition
restriction of:

domain A ▹ r {(x , y) | (x , y) ∈ r ∧ x ∈ A}
range s ◃ B {(x , y) | (x , y) ∈ s ∧ y ∈ B}

subtraction of:
domain A −▹ r {(x , y) | (x , y) ∈ r ∧ x ̸∈ A}
range s −◃ B {(x , y) | (x , y) ∈ s ∧ y ̸∈ B}

overriding s ▹− r {(x , y) | (x , y) ∈ s ∧ x ̸∈
dom(r) ∨ (x , y) ∈ r}

relation s ↔ r P(s × r)
set of partial:

function s 7→ r {f | f ∈ s ↔ r ∧ (f −1, f ) ⊆
id(r)}

injection s 7� r {f | f ∈ s 7→ r ∧ f −1 ∈ s 7→ r}
subjection s 7→→ r {f | f ∈ s 7→ r ∧ ran(f ) = r}
bijection s �→7� r s 7� r ∩ s 7→→ r

set of total:
function s → r {f | f ∈ s 7→ r ∧ dom(f ) = s}
injection s � r s 7� r ∩ s → r
subjection s →→ r s 7→→ r ∩ s → r
bijection s �→ r s � r ∩ s →→ r

Table 3. B set operators and their CLPS–B definitions

Example 4. Rewritten predicates of the process schedu-
ler invariant:
B Invariant CLPS–B Format

active ⊆ PID ∧ active ∈ P(PID) ∧
ready ⊆ PID ∧ ready ∈ P(PID) ∧
waiting ⊆ PID ∧ waiting ∈ P(PID) ∧
ready ∩ waiting = {} ∧ {x | x ∈ ready ∧ x ∈ waiting} = {}∧
active ∩ (ready∪ {x | x ∈ active ∧ x ∈ {z | z ∈ ready
waiting) = {}∧ ∨z ∈ waiting}} = {}∧
card(active) ≤ 1 ∧ card(active) ≤ 1 ∧
(active = {}) ⇒ card(active) = 0 ⇒ card(ready) = 0

(ready = {})

2.6 Constraint Management

The constraint system ΩVCO presents some characteris-
tics of the Constraint Satisfaction Problem (CSP). In the
CSP, each variable is associated with a domain defined
in the set C of constants. A domain Dx of a variable x
is a finite set of possible values which can be assigned
to x . Formally, a CSP is denoted by a triplet (V ,D ,C )
where:

– V is a finite set of variables {V1, . . . ,Vn},
– D is a set of domains, Dx for each x ∈ V ,
– C is a finite set of constraints on V .

Unlike ordinary CSP, the variables of ΩVCO can have
several domains Dx

i containing elements of C∪V∪O and

defined by the constraints x ∈ Dx
i . The resulting domain

of x is given by the intersection of the domain Dx =∩
i D

x
i . The major difference to CSP is that each Dx

i

may contain variables as well as values, whereas in CSP
each Dx

i only contains values. Note that
∩

i D
x
i cannot

always be deterministically computed when the domains
Dx

i contain variables. This problem is called V-CSP by
analogy with CSP. In the case of all the V-CSP domains
contain no variable, it is reduced to a CSP.

Definition 5 (V-domain). AV-domainDx =
∩

i D
x
i

of a variable x is a finite set of the possible elements
(variables or constants) which can be assigned to x .
Thus, Dx is included in C ∪ V ∪ O.

Initially, a V-domain Dx is defined by the constraint
x ∈ Dx

i . Then, it is modified by the propagation rules.
The V-Domain number, nx , is the number of subdomains
Dx

i . It increases when new constraints x ∈ Dx
i are added,

and may decrease when simplification rules are applied.

Definition 6 (V-label). A V-label is a pair < x , v >
that represents the assignment of the variable x .

The V-label < x , v > is meaningful if v is in a V-
domain of x . Note that v can be either a constant or a
variable. The concept of V-CSP can also be introduced
and used to resolve the constraints on SVCO by:

Definition 7 (V-CSP). AV-CSP is defined by a triplet
(V ,D ,C ) where:

– V is a finite set of variables {V1, . . . ,Vn},
– D is a set of V-domains, {D1, . . . ,Dn},
– C is a finite set of constraints of the form Vi ̸= Vj ,
where Vi ,Vj ∈ V .

Remark 2. In CSP, D can be seen as a function which
links a variable of V with a domain. In V-CSP, it is a re-
lation because each variable x can have several domains
Dx

i . Moreover, in contrast to CSP, the variables V of a
V-CSP can appear in the domains.

2.7 Consistency and Satisfiability

Finally, the definitions of satisfiability and consistency of
the constraint system ΩVCO have to be extended from
CSP to V-CSP by using the V-label procedure instead
of the labelling procedure traditionally used with CSP.

Definition 8 (Satisfiability). A V-CSP, noted (V =
{V1, . . . ,Vn},D ,C ) is satisfiable if and only if there
is a subset B ⊆ D , called the V-base of V-CSP, and a
set of V-label L = (< V1,B1 >, . . . , < Vn ,Bn >) with
Bi ∈ B ∧Bi ⊆ Di such that all the constraints of C can
be rewritten with:

1. Bi ∈ {B1, . . . ,Bi , . . . ,Bk} with Bi ∈ B ∧ B1 ∈ B ∧
. . . ∧ Bk ∈ B

2. Bi ̸= Bj with i ̸= j ∧ Bi ∈ B ∧ Bj ∈ B.
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Remark 3. constraints like (1) are trivially satisfied. Bi

can be a value or a variable with a domain used during
the labelling procedure. To simplify in the following, we
note the set of sets B as a set.

Example 5. Given the constraint systems on variables:

– x1 ∈ {y1, y2} ∧ x2 ∈ {y1, y2} ∧ x3 ∈ {y1, y2} ∧ y1 ̸=
y2 ∧ x1 ̸= x2 ∧ x1 ̸= x3 ∧ x2 ̸= x3
It is not satisfiable because there is no V-base or
a V-label to make constraints like (1) or (2). If we
take B = {y1, y2} and L = (< x1, y1 >,< x2, y2 >,
< x3, y1 >), we obtain y1 ̸= y1 (it is due to the
constraint x1 ̸= x3).

– x1 ∈ {y1, y2} ∧ x2 ∈ {y1, y2} ∧ y1 ̸= y2 ∧ x1 ̸= x2
It is satisfiable. Because all the results lead to B =
{y1, y2} and L = (< x1, y1 >,< x2, y2 >), the result-
ing system is only defined by constraints like (1) and
(2): y1 ∈ {y1, y2} ∧ y2 ∈ {y1, y2} ∧ y1 ̸= y2.

Definition 9 (Consistency). A V-CSP, noted (V =
{V1, . . . ,Vn},D ,C ) is consistent if and only if the two
following conditions are verified:

1. ∀ i((Vi ,DVi ) ∈ D ⇒ ∃ j (Vj ∈ DVi ∧(Vj ̸= Vi) ̸∈ C ))
2. ∀ i(Vi ̸= Vi) ̸∈ C

In other words, the domain DV of a variable V is
consistent if and only if there is an element e in this
domain and e ̸= V is not a constraint of the specifica-
tion. Arc-consistency is also performed in the constraint
graph where the nodes represent variables and the edges
represent the constraints ̸= (Example 7).

Example 6. An inconsistent constraint system:
x1 ∈ {y1, y2} ∧ y1 ̸= y2 ∧ x1 ̸= y1 ∧ x1 ̸= y2

Theorem 2. A satisfiable constraint system on SVCO is
consistent.

Proof. by negation,
Let S be an inconsistent V-CSP ({V1, . . . ,Vn},D ,C ),
B = {B1, . . . ,Bm} a V-Base and {< V1,Bj1 >, . . . , <
Vn ,Bjn >} the V-label with j1, . . . , jn ∈ {1, . . . ,m}. Two
cases are possible according to definition 9:

1. S inconsistent with the point 1 of definition 9, we
have ∃ i((Vi ,DVi ) ∈ D ∧∀ j (Vj ̸∈ DVi ∨ (Vj ̸= Vi) ∈
C )). We replace the V variables by their range (value
or variable) in the V-label, we obtain ∃ i((Bji ,DVi ) ∈
D ∧ ∀ k(Bjk ̸∈ DVi ∨ (Bjk ̸= Bji ) ∈ C )). If it is true
for all k , it is true for k = i and we have (Bji ̸∈
DVi ∨ (Bji ̸= Bji ) ∈ C ). The first disjunctive is not
satisfiable by definition 8: Bji is an element of domain
DVi . It is the same for the second because an element
can not be different to itself. So S is non satisfiable.

2. S inconsistent with the point 2 of definition 9, we
have ∃ i(Vi ̸= Vi) ∈ C ⇒ ∃ i(Bji ̸= Bji ) ∈ C . It is
the negation of the point 2 of definition 8. So S is
non satisfiable.

Thus, in both cases, S inconsistent ⇒ S non satisfiable.
⊓⊔

Remark 4. The reciprocal is not true: for example, the
following constraint system is consistent but not satisfi-
able:

x1 ∈ {y1, y2} ∧ x2 ∈ {y1, y2} ∧ x3 ∈ {y1, y2} ∧ y1 ̸=
y2 ∧ x1 ̸= x2 ∧ x1 ̸= x3 ∧ x2 ̸= x3

The inconsistency of a system can also be detected by
the constraints x ∈ {} and x ̸= x . These concepts define
the formal framework to resolve the ΩVCO system.

The correctness of the reduction procedure is ensured
by two points: deleted values in the domains are inconsis-
tent values (see rule P1 below), and deleted constraints
are trivially satisfied (see rules P2 and P3 below).

The reduction procedure does not ensure the assign-
ment of the variables to an element of the domain, and
is thus not complete. The completion can also be per-
formed by a generation procedure, which is a variation
of the forward − checking algorithm [Nad89].

2.8 Inference Rules

The notion of consistency establishes the conditions which
the elements of a domain must satisfy. If the consistency
is not verified, the domain is reduced, i.e. elements are
deleted in order to make it consistent. In the following,
the element ei belongs to V ∪ C ∪ O and τ belongs to
T . The notation Ω∪{C1,C2, . . . ,Cn} describes the con-
junction of the current constraint system Ω and the con-
straints C1,C2, . . . ,Cn . Ω is divided into two subsets
ΩVCO and ΩT which respectively correspond to the con-
straints on the elements of V ∪ C ∪ O and T .
Rule P1 ensures the consistency on ΩVCO:

P1 :
Ω ∪ {e ∈ {e1, . . . , ei−1, ei , ei+1, . . . , en}, e ̸= ei}
Ω ∪ {e ∈ {e1, . . . , ei−1, ei+1, . . . , en}, e ̸= ei}

The following two rules are simplification rules:

P2 :
Ω ∪ {ei ∈ {e1, . . . , ei , . . . , en}}

Ω

P3 :
Ω ∪ {e ∈ {e1, . . . , en}, e ∈ {e1, . . . , en , . . . , en+m}}

Ω ∪ {e ∈ {e1, . . . , en}}

When a domain is reduced to one single variable, unifi-
cation is carried out:

P4 :
Ω ∪ {ei ∈ {ej}}
Ω ∪ {ei = ej}

Two additional inference rules describe cases where the
constraint system ΩVCO is inconsistent:

P5 :
Ω ∪ {e ∈ {}}

fail
P6 :

Ω ∪ {e ̸= e}
fail
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The following inference rule describes the case where the
constraint system ΩT is inconsistent:

T1 :
Ω ∪ {e ∈ τ, e ̸∈ τ}

fail

Rule T2 infers a new constraint onΩVCO from the system
ΩT :

T2 :
Ω ∪ {ei ∈ τ, ej ̸∈ τ}

Ω ∪ {ei ∈ τ, ej ̸∈ τ, ei ̸= ej}

These inference rules are used until a fixed point is ob-
tained, i.e. until no rules can be applied.

One of the problems of the B expression evaluation
lies in the verification of the invariant properties. States
computed by operations are represented by a set of con-
straints. The verification of the invariant is computed on
this constraint system by a subsumtion test. Let E be
the constraint system representing the B machine state
and φI the invariant. The invariant properties are veri-
fied if and only if:

E ⇒ φI THEN E ⊇ φI (1)

In order to ensure the efficiency of the inclusion test(1),
four additional inference rules, which generate new con-
straints, are now defined:

– on T (where τ is a set of T )

T3 :
Ω ∪ {e ∈ {e1, . . . , en}, e1 ∈ τ, . . . , en ∈ τ}

Ω ∪ {e ∈ {e1, . . . , en}, e1 ∈ τ, . . . , en ∈ τ, e ∈ τ}

T4 :
Ω ∪ {e ∈ {e1, . . . , en}, e1 ̸∈ τ, . . . , en ̸∈ τ}

Ω ∪ {e ∈ {e1, . . . , en}, e1 ̸∈ τ, . . . , en ̸∈ τ, e ̸∈ τ}
– on SVCO (where set is a SVCO set)
P7 :

Ω ∪ {e ∈ {e1, . . . , en}, e1 ∈ set , . . . , en ∈ set}
Ω ∪ {e ∈ {e1, . . . , en}, e1 ∈ set , . . . , en ∈ set , e ∈ set}

P8 :
Ω ∪ {e ∈ {e1, . . . , en}, e1 ̸= k , . . . , en ̸= k}

Ω ∪ {e ∈ {e1, . . . , en}, e1 ̸= k , . . . , en ̸= k , e ̸= k}
Justification. These rules are used to transmit the com-
mon properties of an explicit set ens to an element x with
x ∈ ens. For example, if the type of all the elements of
ens is T , then a variable which belongs to ens is also of
type T .

Example 7. Given the following system:

x0 ∈ {x1, x2, x3} ∧ x0 ∈ {x1, x2, x4}∧

x5 ∈ {x3, x4} ∧ x0 ̸= x5

When the constraint x3 ̸= x5 is added to the system, the
rules infer the following reductions (the modified con-
straints have an underline):

– x0 ∈ {x1, x2, x3} ∧ x0 ∈ {x1, x2, x4} ∧ x5 ∈ {x3, x4} ∧
x0 ̸= x5 ∧ x3 ̸= x5

P1=⇒ x0 ∈ {x1, x2, x3} ∧ x0 ∈ {x1, x2, x4} ∧ x5 ∈ {x4} ∧ x0 ̸=
x5 ∧ x3 ̸= x5, domain of x5 is reduced.

P4=⇒ x0 ∈ {x1, x2, x3}∧x0 ∈ {x1, x2, x4}∧x0 ̸= x4∧x3 ̸= x4,
x5 is unified to the unique variable x4 of its domains.
x5 disappear of the constraint system because all x5
occurrences are replaced by x4.

P1=⇒ x0 ∈ {x1, x2, x3} ∧ x0 ∈ {x1, x2} ∧ x0 ̸= x4 ∧ x3 ̸= x4,
domain of x0 is reduced.

P3=⇒ x0 ∈ {x1, x2} ∧ x0 ̸= x4 ∧ x3 ̸= x4, remove the largest
domain of x0

The reduced system is consistent and satisfiable, and
offers two solutions:

1. x0 is unified to the variable x1:
L = (< x0, x1 >,< x5, x4 >)
B = {x1, x2, x3, x4}
C = (x1 ̸= x4 ∧ x3 ̸= x4)

2. x0 is unified to the variable x2:
L = (< x0, x2 >,< x5, x4 >)
B = {x1, x2, x3, x4}
C = (x2 ̸= x4 ∧ x3 ̸= x4)

3 Animation of B machines with CLPS–B

This part describes the constrained evaluation process
of specification called animation. It consists in resolving
set logical B formulas with CLPS–B solver. This process
manages the evolution of the constrained state when op-
erations are executed (the first is called from the initial
state of the B machine).

Definition 10 (Constrained state). A constrained
state is a pair (V ,CV ) where V is a set of state variables
of the specification, and CV is a set of constraints based
on the state variables of the specification.

The constrained evaluation models the evolution of
the B machine state. It changes one constrained state to
another by executing operations.

Definition 11 (Constrained evaluation). Given a
constrained state (V ,CV ) and φ constraints of the spec-
ification. The constrained evaluation is a relation cal-
led EVAL, which associates a constrained state to the
next constrained state:

EVAL : (V ,CV ) 7→ (V ′,CV ∧ φ)

where V ′ represents state variables V after substitution
calculation φ.

More accurately, three procedures, based on the cal-
culus of logical set B formula, have been defined to per-
form this evaluation. These procedures can establish pre-
conditions, compute substitutions and verify the invari-
ant properties. The CLPS–B solver ensures the reduction
and propagation of constraints given by the B specifica-
tions.
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3.1 Activating an Operation

From the initial state, any operation can be activated.
An activation consists in verifying the preconditions of
the operation, computing substitutions and verifying the
invariant properties for the different computed states.
CLPS–B evaluates each substitution, with eventual choi-
ce points, which give one or more new generated states.
If the preconditions are not verified then the operation
is not activated and no state is generated. This process
is shown in Section 4.1.

3.1.1 Precondition Processing

The operation preconditions are defined by a constraint
set based on specification variables and local operation
variables. Given the constrained state of the specifica-
tion θ = (V ,CV ) and φpre precondition constraints, the
processing of preconditions adds the constraints φpre to
CV . The result is a system of constraints reduced by the
CLPS–B solver, where Red i represents the i th rewritten
constraints: ∪

i

Red i(CV ∪ φpre)

Finally, the processing of preconditions changes the
constrained state θ to the constrained states θprei =
(V ,Red i(CV ∪ φpre)).

The operation is activated from θprei if the constraint
system Red i(CV ∪ φpre) is satisfiable. To ensure satisfi-
ability, a solution can be generated. Only the satisfiable
states θprei are retained to activate operations. These are
called activation states.

3.1.2 Substitution Computation

φsub are the constraints induced by the substitutions.
φsub incrementally builds a constraint model over the
state variables. Thus, each state variable is always re-
presented by a CLPS–B variable introduced by the last
constrained substitution.

Substitution is computed by reduction of the con-
straint system CV ∪φsub . As in the precondition process-
ing of φsub , the reduction can introduce choice points.
Thus, substitution computation φsub can change the con-
strained state θ = (V ,CV ) to the constrained states
θsubi = (V ′,Red i(CV ∪ φsub)) such as ∀X ′ ∈ V ′, (X ′ ∈
V ∨ (X ′ = exp ∧ X ∈ V )). A solution can be generated
to verify satisfiability of each resulting state. Only the
satisfiable states θsubi are retained.

3.1.3 Invariant Verification

The goal of this stage is to validate the constrained state
θ = (V ,CV ) given by the invariant φI (V ). The verifica-
tion is performed by an inclusion test in the constraint
graph.

The procedure PNP gives a disjunction of the sys-
tem of constraints given by φI . It is called

∨
i φ

i
I . The

invariant is verified if:

∃ i .(CV ⇒ φi
I (V )))⇔ ∃ i .(φi

I (V ) ⊆ CV ))

Assuming the inclusion test φi
I (V ) ⊆ CV (that means

all the constraints of CV subsume the constraints of the
invariant) does not allow isomorphism of the sub-graph,
the variables of the constrained state V verify the in-
variant. In this case, there is no advantage in using the
constrained state instead of the concrete state. Efficiency
of constrained evaluation is based on the minimization
of the number of enumerated constrained states.

3.1.4 Synthesis

An operation can produce a model from a pair (φi
pre , φ

i
sub)

where φi
pre are the precondition constraints and φi

sub are
the substitution constraints. Evaluation of the operation
(φpre , φsub) changes the system from a constrained state
θi = (V ,CV ) to a constrained state θi+1 = (V ′,CV ∪
φpre ∪ φsub). Initially, state θprei = (V ,CV ∪ φpre) is
computed with the preconditions. In the second stage,
the state θi+1 = (V ′,CV ∪ φpre ∪ φsub) is computed by
adding the substitution constraints. In the last stage, the
verification of the invariant φI (V

′) is performed with the
state θi+1.

3.2 Complexity

In CLPS–B, the constraint satisfaction is based on the
following facts:

– an element can possess several domains,
– a domain can possess variables,
– adding a constraint can generate new constraints ∈ ,
̸∈ , ̸=.

3.2.1 The SVCO Constraints:

Adding a new constraint (∈ or ̸=) implies, by propa-
gation, the creation of other constraints (∈ and ̸=). In
the worst case, propagation generates n.(n-1)/2 new
constraints of difference, if all the variables are different
from each other. This complexity is theoretical and, in
practice, the number of the system variables are linear.

Property 1 (Number of membership constraints)
Given a V-CSP composed of n variables, d is the size
of the largest domain and nd is the highest number of
variable domains. The maximum number of membership
constraints inferred is n2 × nd × d.

Proof (Outline of proof). The membership constraints
are inferred by propagation given by the P1 and P7 rules.

P7 adds an element e to the common domain of the
other elements. This rule does not create a new domain
in the system.
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P1 substitutes a new domain exp′ to exp with the re-
lation: exp′ ⊂ exp ∧ (#exp′ = #exp − 1). Thus, for each
domain, d new membership constraints can be gener-
ated.

For a variable in the worst case, the number of in-
ferred membership constraints is equal to the number of
maximum domain ∗ size of domain, i.e. (n ∗ nd) ∗ d .
Finally, the number of inferred membership constraints
for all variables is limited by n2 × nd × d . ⊓⊔

3.2.2 The T constraints:

Given a number of set variables nv and a number of
elements ne , the worst case is ne × nv membership con-
straints and no membership constraint is generated by
propagation.

4 Application to the Process Scheduler

The B abstract machine example is the process scheduler
introduced in Section 1.2.

The first part presents the constrained evaluation
of the sequence of operations: NEW(PP1), NEW(PP2),
READY(RR1), where PP1, PP2 and RR1 are the input
variables of the operations.

The second part deals with comparison between con-
crete and constrained reachability graphs of the process
scheduler example.

4.1 Constrained Evaluation

This part shows the evolution of the constrained state
in a CLPS–B operation evaluation process. This evolu-
tion is described in Table 4, whereas Fig. 3 presents the
interface of animation during this short example. Only
CLPS–B reduced constraints are added to the store.

In order to evaluate the first and the second opera-
tions, the computation is deterministic and does not use
any new variables. The last operation, defined by the
formula waiting(3) = {PP1,PP2} \ {RR1}, is determi-
nistic because RR1 ∈ {PP1,PP2}. The result waiting(3)
is a set of a single element: waiting(3) = {PP3} with the
constraints PP3 ∈ {PP1,PP2} ∧ PP3 ̸= RR1.

Finally, the variables of the specification (waiting ,
ready and active) are represented by their latter valu-
ations, respectively waiting(3), ready and active ′. The
constraints describe a set of properties linked to vari-
ables.

The verification by entailment of the invariant pro-
perties is detailed for the constrained state obtained af-
ter the READY (RR1) operation:

Fig. 3. IHM of the Animation tool for the PID example and the
sequence operations INIT,NEW,NEW,READY. À list of the op-
erations, Á message about validation of precondition and post-
condition of the activated operation,Â message about verification
of the invariant, Ã state variables, Ä sets of abstract machine, Å
constraints store, Æ and Ç input and output parameters of the
activated operation

1. active ⊆ PID becomes {RR1} ⊆ PID . This con-
straint is written as RR1 ∈ PID which entails RR1 ∈
{PP1,PP2}, PP1 ∈ PID and PP2 ∈ PID (rule T3).

2. ready ⊆ PID becomes {} ⊆ PID . This constraint is
always satisfied.

3. waiting ⊆ PID becomes {PP3} ⊆ PID . This con-
straint is written as PP3 ∈ PID which entails PP3 ∈
{PP1,PP2}, PP1 ∈ PID and PP2 ∈ PID (rule T3).

4. ready ∩waiting = {} becomes {}∩{PP3} = {}. This
constraint is always satisfied.

5. active ∩ (ready ∪ waiting) = {} becomes {RR1} ∩
{PP3} = {}. {RR1} ∩ {PP3} computes to {} and is
satisfied.

6. card(active) ≤ 1 becomes card({RR1}) ≤ 1 and 1 ≤
1. This constraint is always satisfied.

7. (active = {}) ⇒ (ready = {}) becomes ({RR1} =
{}) ⇒ ({} = {}). The constraint {RR1} ̸= {} is
satisfied because the two sets have different sizes. So
({RR1} ̸= {}) ∨ ({} = {}) is satisfied.

All the invariant constraints are satisfied or are en-
tailed by the constrained state. Thus, no generation stage
is needed to ensure the satisfiability of the constrained
state.

Constrained evaluation makes it possible to animate
B abstract machine by preserving non-determinism and
without using concrete arguments. For the creation of
a new process, a variable defined on set PID is used
instead of a specific one of the set PID : the new process
does not need to be valued.

In the example, we can apply activation to any of
the processes without specifying it. Moreover, for each
computed state, the invariant properties of the system
can be verified by entailment (without enumeration).
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Operation CLPS–B constraint store

B Variables Other constraints

waiting = {} waiting = {}
INIT SUB ready = {} ready = {}

active = {} active = {}
PP1 ∈ PID waiting ′ = {PP1}

NEW(PP1) PRE PP1 ̸∈ {} ready = {} PP1 ∈ PID

PP1 ̸∈ {} active = {}
SUB waiting ′ = {} ∪ {PP1}

PP2 ∈ PID

PRE PP2 ̸∈ {} waiting ′′ = {PP1,PP2} PP1 ∈ PID

NEW(PP2) PP2 ̸∈ {PP1} ready = {} PP2 ∈ PID

SUB waiting
′′
={PP1} ∪ {PP2}

active = {} PP1 ̸= PP2

PRE RR1 ∈ {PP1,PP2}
PP1 ∈ PID

waiting(3) = {PP3} PP2 ∈ PID

READY(RR1) ready = {} PP1 ̸= PP2

active′ = {RR1} RR1 ∈ {PP1,PP2}

SUB

PP3 ∈ {PP1,PP2}
waiting(3) = {PP1,PP2} \ {RR1} RR1 ̸= PP3

active′ = {RR1}

Table 4. Constrained evaluation

[][][]

e1

[a][][]

e2

new

[b][][]

new

del

[ab][][]

e4

new

[][][a]

e3

ready

del

new

[][][b]

ready

del

del

[a][][b]

e5

ready

[b][][a]

ready

swap

new

swap

new

swap

del

[][a][b]

e6

ready
swap

del

[][b][a]

ready

swap

swap

Fig. 4. Reachability concrete graph with max = 2

4.2 Experimental Results

The whole reachability graph of the process scheduler B
machine was built. The number of processes was bound
tomax by adding the following precondition in theNEW
operation: card(waiting ∪ ready ∪ active) < max . Fig. 4
and Fig. 5 respectively present the constrained reach-
ability graph and the concrete one for max = 2 and
PID = {a, b}.

Fig. 5 shows the advantage of the constrained eva-
luation to build the reachable graph of a system. The
number of states is dramatically reduced because one
constrained state represents several concrete states. The
table of Fig. 5 summarizes, according to themax number
of parameters, the evolution of the state number in the
reachability graph of the process scheduler example.

5 Test generation

The CLPS–B constraint solver is used for test genera-
tion [LPU02a,LPU02b]. In [LPU02b], we presented a
new approach for formal-specification-based test gene-
ration called B-Testing-Tools (B-TT). This method is
based on the CLPS–B solver, and makes intensive use
of a set-oriented constraint technology. Its goal is to test
every operation of the system at every boundary state
using all input boundary values of that operation. The
unique features of the B-TT method are the following:

– takes a B abstract machine as input;
– avoids the construction of a complete finite state au-

tomaton (FSA) for the system;
– produces boundary-value test cases (both boundary

states and boundary input values);
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e1 e2
new

del
e3

new

e4ready

del

e5
ready

swap

del

e6
ready

swap

new

swap
number of states

max constrained concrete

1 3 3
2 6 10
3 10 35
4 15 124
5 21 437
6 28 1522
7 36 5231

n n2+3n+2
2 > 3n

Fig. 5. Constrained reachability graph with max = 2

– produces both negative and positive test cases;
– is fully supported by tools.

5.1 Overview of the B-TT test generation method

Our goal is to test some implementation, which is not de-
rived via refinement from the formal model. The imple-
mentation is usually a state machine with hidden state.
We specify this state machine by a B formal specifica-
tion, which has a state space (consisting of several state
variables) and a number of operations that modify this
state.

A behavior of such a system can be described in
terms of a sequence of operations (a trace) where the
first is activated from the initial state of the machine.
However, if the precondition of an operation is false, the
effect of the operation is unknown, and any subsequent
operations are of no interest, since it is impossible to
determine the state of the machine. Thus, we define a
positive test case to be any legal trace, i.e. any trace
where all preconditions are true. A positive test case
corresponds to a sequence of system states representing
the value of each state variable after each operation in-
vocation. The submission of a legal trace is a success if
all the output values returned by the concrete implemen-
tation during the trace are equivalent (through a func-
tion of abstraction) to the output values returned by its
specification during the simulation of the same trace (or
included in the set of possible values if the specification
is non-deterministic). A negative test case is defined as
a legal trace plus a final operation whose precondition is
false. The generation of negative test cases is useful for
robustness testing.

The B-TTmethod consists of testing the system when
it is in a boundary state, which is a state where at least
one state variable has a value at an extremum – mini-
mum or maximum – of its sub-domains. At this bound-
ary state, we want to test all the possible behaviors of
the specification. That is, the goal is to invoke each up-
date operation with extremum values of the sub-domains
of the input parameters. The test engineer partitions the
operations into update operations, which may modify the
system state, and observation operations, which may not.

We divide the trace constituting the test case into
four subsequences:1

Preamble: this takes the system from its initial state to
a boundary state.

Body: this invokes one update operation with input bound-
ary values.

Identification: this is a sequence of observation opera-
tions to enable a pass/fail verdict to be assigned.

Postamble: this takes the system back to the boundary
state, or to an initial state. This enables test cases to
be concatenated.

The body part is the critical test invocation of the
test case. Update operations are used in the preamble,
body and postamble, and observation operations in the
identification part.

The B-TT generation method is defined by the fol-
lowing algorithm, where {bound1, bound2, ..., boundn} and
{op1, op2, ..., opm} respectively define the set of all boun-
dary states and the set of all the update operations of
the specification:

for i←1 to n % for each boundary state
preamble(boundi); % reach the boundary state
for j←1 to m % for each update operation

body(opj); % test opj
identification;% observe the state
postamble(boundi); % return to the

endfor % boundary state
postamble(init); % return to the initial state

endfor

This algorithm computes positive test cases with valid
boundary input values at body invocations. A set of
one or more test cases, concatenated together, defines
a test sequence. For negative test cases, the body part
is generated with invalid input boundary values, and no
identification or postamble parts are generated, because
the system arrives at an indeterminate state from the
formal model point of view. Instead, the test engineer
must manually define an oracle for negative test cases
(typically something like the system terminates without
crashing).

1 The vocabulary follows the ISO9646 standard [ISO].
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After positive and negative test cases are generated
by this procedure, they are automatically translated into
executable test scripts, using a test script pattern and
a reification relation between the abstract and concrete
operation names, inputs and outputs.

6 The Test Generation Modules

The test generation method is performed in two main
stages. Firstly, we compute a set of boundary goals from
the Disjunctive Normal Form (DNF) of the operations of
the B abstract machine. Secondly, the preamble is com-
puted to reach, from the initial state, a state verifying
the boundary goal that is called boundary state. Finally,
the boundary states of the specification are used as a
basis to generate test cases.

6.1 Boundary Goals Generation

For test generation purposes, the postcondition of each
operation is transformed into DNF,

∨
j Postj (op). The

DNF transformation is not making in all specification,
but only computes each condition described in operation
one by one. Then we project each of these disjuncts into
the input state, using the formula [LPU02b]:

(∃ inputs, state ′, outputs • Pre ∧ Postj )

We call these state subsets precondition sub-domains.
The aim of boundary goal generation is to find bounda-
ries within each of these precondition sub-domains.

In practice, the CLPS–B solver reduces each sub-
domain to a set of constraints. We compute boundary
goals on the basis of the partition analysis by minimiza-
tion and maximization using a suitable metric function
chosen by the test engineer. (e.g., minimize or maximize
the sum of the cardinalities of the sets). According to
the optimization function, this results in one or several
minimal and maximal boundary goals for each predicate.

Given the invariant properties Inv , a precondition
subdomain predicate PSi , a vector of variables Vi which
comprises all the free state variables within PSi , and f an
optimization function, the boundary goals are computed
as follows:

– BGmin
i = minimize(f (Vi), Inv ∧ PSi)

– BGmax
i = maximize(f (Vi), Inv ∧ PSi)

The optimization function f (Vi), where Vi is a vector
of variables v1 . . . vm , is defined as g1(v1)+g2(v2)+ . . .+
gm(vm), where each function gi is chosen according to
the type of the variable vi .

For example, from the predicate PS of the process
scheduler example, boundary goals BGmin and BGmax

are computed with the optimization function f (Vi) =∑
v∈Vi

#v2. The result of constraint solving is a set
of constraints on the cardinalities of the set variables

Fig. 6. IHM of the test generation for the PID.

waiting , ready and active such that: BGmin = {waiting =
{} ∧ ready = {} ∧ active = {}}, and BGmax = {waiting =
{X1} ∧ ready = {X2} ∧ active = {X3}} where (∀ i ·Xi ∈
{p1, p2, p3, p4}) and (∀ i · i ̸= j ⇒ Xi ̸= Xj ). It should be
noted that other optimization functions could be used
(
∑

v∈Vi
#v ,

∑
v∈Vi

√
v ,...).

6.2 Test Case Generation

This section describes the generation process of each test
case, which is comprised of a preamble, a body, an iden-
tification and a postamble part [LP01]. Fig. 6 shows a
window of the interface used to drive test generation.

6.2.1 Preamble Computation

Each boundary goal is instantiated to one or more rea-
chable boundary states by exploring the reachable states
of the system, starting from the initial state. The CLPS–
B solver is used to simulate the execution of the system,
recording the set of possible solutions after each opera-
tion. A best-first search [Pre01] is used to try to reach
a boundary state that satisfies a given boundary goal.
Preamble computation can thus be viewed as a traversal
of the reachability graph, whose nodes represent the con-
strained states built during the simulation, and whose
transitions represent an operation invocation. A conse-
quence of this path computation is that state variables,
which are not already assigned a value by the boundary
goal, are assigned a reachable value of their domain.

Some boundary goals may not be reachable via the
available operations (this happens when the invariant is
weaker than it could be). By construction, every bound-
ary goal satisfies the invariant, which is a partial reach-
ability check. In addition to this, we bind the search for
the boundary state during the preamble computation,
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so that unreachable boundary goals (and perhaps some
reachable goals) are reported to the test engineer as be-
ing unreachable. If all boundary goals in a precondition
sub-domain PS are unreachable, we relax our bounda-
ry testing criterion and search for any preamble that
reaches a state satisfying PS .

6.2.2 Input Variable Boundary and Body Computation

The purpose of the body computation is to test, for a
given boundary state, all the update operations, with all
boundary values of their input variables. For the bounda-
ry values which satisfy the precondition, we get a positive
test case, otherwise we get a negative test case. Note
that, from the same preamble and boundary state, seve-
ral bodies are usually obtained for each operation, with
differing input values.

The process of boundary analysis for input variables
is similar to that for state variables, except that invalid
input values are kept, which is not the case for unreacha-
ble boundary states. Given an operation Op with a set of
input variables Ii and a precondition Pre, let BGi be a
boundary goal. Note that BGi is a set of constraints over
the state variables, typically giving a value to each state
variable. Then, given f an optimization function chosen
by the test engineer, the input variable boundaries are
computed as follows:

– for positive test cases:
minimize(f (Ii),Pre ∧ BGi)
maximize(f (Ii),Pre ∧ BGi)

– for negative test cases:
minimize(f (Ii),¬Pre ∧ BGi)
maximize(f (Ii),¬Pre ∧ BGi)

6.2.3 Identification and Postamble

The identification part of a test case is simply a sequence
of all observation operations whose preconditions are
true after the body. The postamble part is computed
similarly to the preamble, using a best-first search.

6.3 Industrial Case-study results

The B-TT method has been validated in several industry
case studies. Each study contributes to validate a part of
test generation process. To evaluate the case-study spe-
cification complexity, some elements are now introduced:

– GSM 11-11 smart card software [LPV01]: 12 pages
of B specifications with 11 operations and 10 state
variables with an average domain size of 5 elements.
38 boundary goals and about 1000 test cases were
automatically generated from the B model [LP01].
This study shown that the B-TT generated test cases
covered 85% of high quality manually-designed test
cases. 15% of manually-designed test cases were not

generated with the automatic procedure: it is mainly
because only one preamble is computed to reach the
boundary state from the initial state. Using several
preambles with specific operations would make it pos-
sible to automatically cover all the manually-designed
test cases.

– Metro/RER ticket validation algorithm [CGLP01]:
11 pages of B specifications with only 1 operation
and 46 states variables with an average domain size
of 6 elements. About 100 boundary goals and then
100 test cases were generated.

– Java Card Virtual Machine (JCVM) Transaction me-
chanism [BJLP02]: 14 pages of B specifications with
21 operations and 10 variables with an average do-
main size of 12 elements. 45 boundary goals and
about 6000 test cases were generated. An automatic
process to translate abstract test cases into executable
test scripts were used.

– Automobile windscreen wiper controller: 12 pages of
B specifications with 25 operations and 15 variables
with an average domain size of 7 elements. About 500
boundary goals and 10 000 test cases were generated.

The method is currently being used in two other in-
dustrial projects: a process to validate payment transac-
tion for card terminal in an urban parking system and
a process to manage the key security in novel 3G smart
card application.

7 Related work

This study is part of the research field of using CLP tech-
niques for software verification. Over the last few years,
constraint technology has been used for various pur-
poses, such as model checking [DP99], formal model ani-
mation [Gri00] and automated test generation that is ei-
ther code-based [GBR00] or specification-based [MA00,
ABlM97]. A common interest of all these approaches of
using CLP techniques for software verification is to have
available a resolution engine to symbolically execute the
formal model.Others works carry on with the same goal,
but with different techniques. For example, [Jac00] use
relational logic and a SAT solver to symbolically execute
formal specification such as Z, OCL or Alloy.

Mostly, all these techniques use existing constraint
solvers (Boolean and finite domains in general). Due to
the specificity of set-oriented B notation, we developed
the original CLPS–B solver able to treat constraints over
sets, relations and mappings (CLPS–B co-operates with
the integer finite domain solver).

On the other hand, the B-Testing-Tools approach is
related to the emerging model-based testing techniques
like [FHNS02,EFW01]. The research on model-based au-
tomated test generation tools is currently very active.
These tools use as input a formal model of the system
under test and allow the validation engineer to drive
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the test generation automated process. More particu-
larly, set-oriented formal specification notations, such as
Z [Spi92], VDM [Jon90] and B [Abr96] have been reco-
gnized since the beginning of the 1990s as a suitable ba-
sis for model-based testing [DF93,HP95,Hie97,ABlM97,
Meu99].

In this framework, test cases are generated on the
basis of a partition analysis of the formal model: the
formal model is used as an input in order to validate an
implementation under test.

8 Conclusion and Future Works

This article introduced a constraint resolution system
adapted to the evaluation of B formal specifications. The
objective was to enable the construction of a reachabili-
ty graph or finite state automaton of the specifications,
in particular to animate and check the model. The cons-
trained states, rather than concrete ones, propagate the
non-determinism of the specifications, and dramatically
reduce the number of states of the reachability graph.

The key point of this approach is the expression of do-
mains of constraints by explicit sets where the elements
of the domains can be variables (constrained) as well as
constants. Rules of propagation and consistency reduce
the need of enumeration (using entailment) and consis-
tency tests during the computation of substitutions, the
treatment of the preconditions and the checking of the
invariant properties.

Classic Logic Programming is often used for anima-
tion of formal specifications but it is mostly a valued an-
imation [SCT96,NS99]. The CLPS–B constraint solver
makes it possible to evaluate B abstract machine for con-
strained animation purpose as ZETA used a concurrent
constraint resolution [Gri00] to animate Z schema.

Test generation on the ground of CLP is known to be
a flexible and efficient framework [OJP99], in structural
testing [GBR00,Meu01] and in specification-based test
generation [LP00,MA00]. Our proposal consists of using
the CLPS–B solver to generate functional test cases from
B abstract machines.

The constrained evaluator, based on the CLPS–B
solver, is also embedded in the B-Testing-Tools tool-set
for two main applications:

– animation of B abstract machines for model valida-
tion purpose,

– functional black-box test generation on the basis of
the B abstract machine.

This technology was consolidated using real-life size
industrial applications, and is currently being improving
and consolidated in the following ways for delivery to
the scientific community:

– generalizing the input notations like Z, UML, Sta-
teChart with a common format based on precondi-
tioned before-after predicates. Fig. 7 presents the ge-

Fig. 7. Architecture of System tools for Animation and Tests
Generation

neral architecture, where all tools use an extended
constraint solver based on the CLPS–B concepts ,

– taking into account numerical constraints on conti-
nuous domains,

– consolidating the inference rules to improve propa-
gation.
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