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Abstract. bz-testing-tools (bz-tt) is a tool-set for automated model-
based test case generation from B abstract machines and Z specifications.
bz-tt uses boundary testing as well as cause-effect testing on the basis
of the formal model. It has been used and validated on several industrial
case studies in the domain of critical software: in particular for smart
card applications and automotive embedded systems. The main idea of
bz-tt is to compute a boundary goal for each effect of the operations
of the model and then to compute a preamble sequence of operations to
place the system under test in a such a state that satisfies the goal.
In this paper, the preamble computation search strategies used in bz-tt
are presented. More precisely, two algorithms based respectively on for-
ward chaining and backward chaining are compared. These algorithms
all use a customized set constraint solver, which is able to animate the
formal model. These algorithms differ, however, in their capacity to ef-
ficiently reach the boundary goals. The results of applying the tools to
an industrial windscreen wiper controller application are presented.
Keywords: model-based testing, preamble computation, set constraint
solving, B notation, forward chaining, backward chaining.

1 Introduction

Set-oriented formal specification notations, such as Z [1], VDM [2] and B [3]
have been recognized since the beginning of the 1990s as a suitable basis for
model-based testing (see for example [4, 5, 6, 7, 8]). In this framework, the
formal model is used as an input for test case generation in order to validate an
implementation under test. Test cases are generated on the basis of a partition
analysis of the formal model. For example, Dick and Faivre [4] derive a partition
based on the disjunctive normal form of the invariant and the operations. A key
issue, however, to fully automating the test generation process is the sequencing
of operation invocations. Some authors [4, 5, 6] have used partition analysis to
build an underlying Finite State Automaton (FSA) and have then computed
test sequences as paths in this FSA. Unfortunately, this method is not easily
automated, because it is difficult to choose an appropriate abstraction of the state
space to generate the FSA. Other authors [9] have used hybrid specifications,
such as Statecharts with Z. This approach allows the production of an extended
finite state machine to model operation sequences. In this case, it is impossible
to use set-oriented formal specification notations as they are.
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In [10], a novel approach to automate test generation from B abstract ma-
chines or Z specifications, based on a customized set constraint solver [11], was
introduced. This method, called bz-testing-tools (bz-tt), also uses partition
analysis, and computes effect predicates as partitions for each operation of the
model. The basic idea of the bz-tt method is to cover all effect predicates at
boundary state variable values with boundary input values. Some effect predi-
cates might not apply to the model’s initial state. If so, it is necessary to carry
out a sequence of preliminary operations (generally referred to as a preamble
computation) to place the model in a state where such an effect predicate can
be invoked. Determining appropriate preambles is widely recognised as a chal-
lenging task. The method described in this paper avoids the construction of a
complete FSA from the formal model and provides also a strong boundary-value
testing orientation. This test generation method is embedded in the bz-tt en-
vironment [12], which has been used on several industrial applications in two
domains: smart card software (the GSM 11-11 standard [13, 14], the Java Card
transaction mechanism [15]), and automobile embedded control-command soft-
ware (a windscreen wiper controller and a heating and ventilation controller [16]).
These industrial applications showed that the efficiency of the preamble compu-
tation procedure is of major importance to the scalability of the bz-tt approach.

This paper focuses on how to sequence operation invocations in model-based
test generation with set-oriented formal specification notations. More precisely,
it is a study of how various algorithms traverse the reachability graph which
underlies the formal model in order to reach particular target states, i.e. the
boundary states. Two main search procedures have been compared on the basis
of an industrial case-study: forward chaining and backward chaining. This paper
shows that backward chaining is better suited for reaching some boundary states
than forward chaining. This study extends the work by Pretschner [17], which
uses classical search strategies to explore the space of reachable states in order
to generate tests.

This paper is structured as follows. Section 2 introduces the bz-tt test gen-
eration method in greater detail. Section 3 defines the preamble computation.
Sections 4 and 5 respectively present the two preamble computation algorithms:
forward and backward chaining. Section 6 gives the results based on the wind-
screen wiper controller application. Finally, Section 7 presents conclusions.

2 Overview of the BZ-TT Test Generation Method

The implementation of the system under test is usually a state machine with hid-
den states. This state machine is specified by a B abstract machine or Z schema,
which has a state space (consisting of several state variables) and several oper-
ations that are specified via pre-conditions and post-conditions. The operations
are characterized by a name and possible input and output parameters. If an
operation modifies the system state it is called an update operation; if not, it is
called an observation operation.

The B specifications, inputs of our test generation method, form abstract
models of the requirements. That means that only the machine level is used (no
refinement or implementation level). Moreover, abstract sets must be replaced
by finite enumerated sets for the purposes of test generation. This enables our
CLP-based tools to perform much stronger reasoning about the specification,
and this is usually necessary for the test-generation process to be tractable.
These two restrictions were never a problem for the industrial case-studies.

Before presenting the main stages of the bz-tt test generation method, the
next subsection introduces the B abstract machine of the simplified windscreen
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wiper controller example, which will be used throughout this paper as a working
example.

Then, the set constraint solver, called clps-b [11, 18] is briefly introduced.
This solver constitutes the basis of our test generation method presented in the
last part of this section.

2.1 Simplified Windscreen Wiper Controller Example

The WIPER SPEED B abstract machine, shown in Figure 1, is a highly sim-
plified version of a windscreen wiper speed controller formal model.

The user can turn the windscreen wiper on or off by using the control lever.
The windscreen wiper has three states: stopped, intermittent or continuous. If
the control lever is off, the wiper state is stopped; otherwise it is intermittent
or continuous. These two last states directly depend on the car speed. In fact,
the wiper is always continuous, except when the car first exceeds 10 km/h and
then drops to under 10 km/h (in this case the wiper becomes intermittent).
Afterward, the wiper can be continuous if the car again exceeds 10 km/h. To
know if the car has exceeded 10 km/h when the control lever was on, the variable
flag is introduced.

This abstract machine has two update operations (speed and action lever)
and one observation operation (alert). Speed and action lever modify the car
speed and the control lever value respectively. The alert operation is a very ab-
stract operation that has been introduced to illustrate local minimum problems.
It can be triggered when the wiper is intermittent and the car speed equals zero.

Finally, in the initial state, the car speed is 0, the control lever is off, the flag
is false and the wiper is stopped.

2.2 Test Case Definition using CLPS-B

The behaviour of such a system can be described in terms of a sequence of
operations – a trace – where the first is activated from the initial state of the
system.

If the pre-condition of an operation is false, its post-condition cannot be
guaranteed to hold after invocation. Any subsequent operations are of no inter-
est since it is impossible to predict the eventual state of the machine. Thus, a
test case can be defined as any legal trace, i.e. any trace where all pre-conditions
are true. The submission of a legal trace is successful if all the output values re-
turned by the concrete implementation during the trace are equivalent (through
a function of abstraction) to the output values returned by the formal model of
the implementation during the simulation of the same trace (or included in the
set of possible values if the formal model is non-deterministic).

The bz-tt method is fully supported by the BZ-Testing-Tools tool-set. This
environment is a set of tools dedicated to animation and test case generation from
B or Z formal specifications. It is based on a constraint solver, called clps-b, able
to evaluate and perform execution of B and Z formal models. By execution, we
mean that the solver computes a so-called constrained state by applying the pre-
and post-condition of operations. A constrained state is a constraint store where
each state variable, input variable and output variable supports constraints. The
solver can also verify the invariant properties on any constrained state. Because
of the set oriented feature of B and Z notations, clps-b is mainly a set constraints
solver. Its constraints domain is hereditary finite sets with nested pairs in order
to reason about relations and mappings. To compute the post-condition the con-
straint solving makes use set interval propagation [19] and specific propagation
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MACHINE
WIPER SPEED

SETS
CONTROL LEVER = {on, off };
BOOLEAN = {false, true}
WIPER STATE = {stopped ,

intermittent , continuous}
DEFINITIONS

SPEED == 0..100
VARIABLES

lever ,
car speed ,
wiper ,
flag

INVARIANT
lever ∈ CONTROL LEVER ∧
car speed ∈ SPEED ∧
wiper ∈ WIPER STATE ∧
flag ∈ BOOLEAN

INITIALISATION
lever := off ∥
car speed := 0 ∥
wiper := stopped ∥
flag := false

OPERATIONS
alert =

PRE
wiper = intermittent ∧
car speed = 0

THEN
skip

END;

speed(sp) =
PRE

sp ∈ SPEED
THEN

car speed := sp ∥
IF (sp > 10 ∧ lever = on)
THEN wiper := continuous ∥

flag := true
ELSE

IF (sp ≤ 10 ∧ flag = true)
THEN wiper := intermittent
END

END
END;

action lever(action) =
PRE

action ∈ CONTROL LEVER ∧
action ̸= lever

THEN
lever := action ∥
IF action = off
THEN wiper := stopped ∥

flag := false
ELSE

wiper := continuous ∥
IF car speed > 10
THEN flag := true
END

END
END

END

Fig. 1. Simplified Windscreen Wiper Speed Controller B Abstract Machine

rules. For basic arithmetic operations and constraints solving on set cardinality,
there is a cooperation between set constraints propagation and the integer finite
domains solver CLP(FD) of Sicstus-Prolog [20]. clps-b uses partial consistency
techniques [21] during constraint propagation; the completeness is ensured by
classical labelling using AC3 algorithm [22] thanks to the finiteness of abstract
model data structure. The correctness is ensured by the translation rules from
abstract model into the system of constraints.

The bz-tt method tests operations when the system is in its various bound-
ary states. A boundary state is a state where at least one variable has a value at
an extremum – minimum or maximum – of its sub-domains. The method works
by computing a set of boundary goals from the Disjunctive Normal Form (DNF)
of the specification. The clps-b solver is also used to compute the boundary
goals, and to generate, by simulating the execution of operations, the test cases.
A major feature of the clps-b solver is that it avoids the construction of a com-
plete finite state automaton (FSA) for the system: test cases are generated by
traversal of the state space defined by the specification.
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The computation of the DNF form (via effect predicates) is presented and
illustrated with the windscreen wiper speed controller example in the next sub-
section. Subsection 2.4 presents the computation of the boundary goals.

2.3 Effect Predicate Computation

The bz-tt environment supports both B abstract machines and Z specifications
by translating them into a common notation, called BZP [12]. This notation is
the input of the clps-b solver.

The BZP format is an equivalent before-after predicate form of the input
formal model. For Z, the translation is obvious, using the prime variables. For B,
the translation scheme from B generalized substitution to before-after predicates
is precisely defined in the B-Book [3]. For example, the operation PRE P THEN S
END (where P and S respectively define the preconditions and the substitutions
of the operation) is interpreted as:

Context ∧ Inv ∧ P ∧ ∃ x · prdx (S )

where the context (Context) and invariant (Inv) are predicates given in the ab-
stract machine and prd is the transformer function in the before-after predicates
(the substitution S is always feasible with termination) and x is the set of all
the state variables updated by the substitution.

The BZP format makes it possible to partition each operation of the speci-
fication by determining the different effects of the operations using before-after
predicates. These predicates are called effect predicates. Basically, effect predi-
cates are computed by traversing the control flow-graph of each model operation
(see [23] for more details). The or operators give rise to two edges into the con-
trol flow graph. The A ∨ B formula gives a first edge with A and the second
with ¬A ∧ B .

sp ∈ SPEED

car speed := sp

∧ flag := true
wiper:=continuous

sp>10 ∧ lever=on
sp ≤10

wiper:=intermittent

lever=off ∧ sp>10

flag=false ∧ sp≤10

sp>10

sp≤10 ∧ flag=true

(a) speed operation

lever:=action

action ∈ CONTROL LEVER ∧
action ̸= lever

wiper:=stopped
∧ flag:=false

wiper:=continuous

flag:=true

action=off

car speed>10

action=on

car speed≤10

(b) action lever operation

Fig. 2. BZP flow-graph of the simplified windscreen wiper speed controller example

In the simplified windscreen wiper speed controller B model, the BZP format
reveals one effect predicate for the alert operation, four for the speed operation
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(Figure 2(a)), and three for the action lever operation (Figure 2(b)). Effect
predicates are separately given in Table 1. Context and Inv are not written but
they must be considered for each effect predicate such as:

– Context is CONTROL LEVER = {on, off } ∧ BOOLEAN = {false, true} ∧
SPEED == 0..100 ∧ WIPER STATE = {stopped , intermittent , continuous}

– Inv is lever ∈ CONTROL LEVER ∧ car speed ∈ SPEED ∧
wiper ∈ WIPER STATE ∧ flag ∈ BOOLEAN

Operations No Effect Predicates

alert E1 wiper = intermittent ∧ car speed = 0

E2 sp ∈ SPEED ∧ sp > 10 ∧ lever = on ∧
car speed’ = sp ∧ wiper’ = continuous ∧ flag’ = true

E3 sp ∈ SPEED ∧ sp ≤ 10 ∧ flag = true ∧
speed car speed’ = sp ∧ wiper’ = intermittent

E4 sp ∈ SPEED ∧ sp ≤ 10 ∧ flag = false ∧
car speed’ = sp

E5 sp ∈ SPEED ∧ lever = off ∧ sp > 10 ∧
car speed’ = sp

E6 action ∈ CONTROL LEVER ∧ action ̸= lever ∧ action = off ∧
lever’ = action ∧ wiper’ = stopped ∧ flag’ = false

action lever E7 action ∈ CONTROL LEVER ∧ action ̸= lever ∧ action = on ∧
car speed > 10 ∧ lever’ = action ∧ wiper’ = continuous ∧ flag’ = true

E8 action ∈ CONTROL LEVER ∧ action ̸= lever ∧ action = on ∧
car speed ≤ 10 ∧ lever’ = action ∧ wiper’ = continuous

Table 1. Effect predicates of the windscreen wiper speed controller operations

Actually, effect predicates correspond to paths in the control flow graphs
of the operations. To avoid generating tests from inconsistent effect predicates,
the bz-tt environment deletes every effect predicate Ei such that Context ∧
Inv ∧ Ei is unsatisfiable. For example, in the speed operation, the predicate
sp ≤ 10 ∧ sp > 10 is unsatisfiable and is removed.

2.4 Boundary Goal Computation

Boundary goals are computed on the basis of the effect predicates by mini-
mization and maximization using a suitable metric function depending on the
boundary coverage criteria [23] chosen by the tester. This results in one or several
minimum and maximum boundary goals for each effect predicate.

Given the invariant properties Inv , the context properties Context , the ef-
fect predicate Ei , the vector of variables Vi , which comprises all the free-state
variables within Ei , and the optimization function f , the boundary goals are
computed as follows:

BGmin
i = minimize(f (Vi), Inv ∧ Context ∧ Ei) (1)

BGmax
i = maximize(f (Vi), Inv ∧ Context ∧ Ei) (2)

The optimization function f (Vi), where Vi is a vector of variables v1 . . . vm ,
is defined as g1(v1) + g2(v2) + . . . + gm(vm), where each function gi is chosen
according to the type of the variable vi .
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From the effect predicates of the windscreen wiper speed controller oper-
ations, boundary goals BGmin and BGmax are computed with the optimiza-
tion function

∑
v∈Vi

v if Vi is a vector of numeric variables, and the existential
quantifier (∃) if it is not (the variable is arbitrary assigned to one value of its
domain). For example, the result of constraint solving using the effect predi-
cate E8 is a set of constraints on the lever and car speed variables such that:
Inv ∧ Context ∧ Ei ≡ lever = off ∧ 0 ≤ carspeed ≤ 10. Applying mini-
mization and maximization on these two state variables give the two following
boundary goals :

– lever = off ∧ car speed = 0 (minimization)
– lever = off ∧ car speed = 10 (maximization)

All the boundary goal results are shown in Table 2.

Operations Effect Boundary
Predicates goals

alert E1 wiper = intermittent ∧ car speed = 0 BG1

E2 lever = on BG2

E3 flag = true BG3

speed E4 flag = false BG4

E5 lever = off BG5

E6 lever = on BG2

E7 lever = off ∧ car speed = 11 BG6

action lever E7 lever = off ∧ car speed = 100 BG7

E8 lever = off ∧ car speed = 0 BG8

E8 lever = off ∧ car speed = 10 BG9

Table 2. Boundary goals from the windscreen wiper speed controller example

The bz-tt method consists in instantiating each boundary goal into a bound-
ary state using preamble computation. A boundary state is a fully instantiated
state obtained by the traversal - i.e. the preamble computation - of the state
space according to a certain boundary goal.

Note that some effect predicates (and thus boundary goals) may be satisfi-
able, but still not reachable, because the states that satisfy Inv ∧ Context ∧ Ei

are not reachable by any sequence of operations. This can happen when the in-
variant is not the strongest possible invariant. The non-reachability of the effects
cannot be checked locally, since it is a global property of the system. Also, the
boundary goals may be not reachable when the corresponding effect predicate
is. In this case, the preamble is computed to reach the complete effect predicate
(not the boundary instantiation of it).

From this boundary state, all the possible behaviours of the specification must
be tested. That is, the goal is to invoke each update operation with extremum
values of the sub-domains of the input parameters called boundary inputs (Ta-
ble 3). The process of boundary-value analysis for input variables is similar to
that for state variables.

The computation of the boundary states, and more generally of the test cases,
is defined in the next subsection.
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Operations Effect Boundary
Predicates inputs

E2,E5 sp = 11 BI1
speed E2,E5 sp = 100 BI2

E3,E4 sp = 0 BI3
E3,E4 sp = 10 BI4

action lever E6 action ̸= lever ∧ action = off BI5
E7,E8 action ̸= lever ∧ action = on BI6

Table 3. Boundary inputs from the windscreen wiper speed controller example

2.5 Test Case Computation

The trace that constitutes the test case is divided into four sub-sequences1 (see
Figure 3):

Preamble: this takes the system from its initial state to a boundary state.
Body: this invokes one update operation with input boundary values.
Identification: this is a sequence of observation operations to strengthen the

pass/fail verdict of the test case.
Postamble: this takes the system back to the boundary state or an initial state.

This enables test cases to be concatenated for automated execution.

postamble

Preamble invocation

Body invocation

Identification invocation

Postamble invocation

preamble identification

body

Fig. 3. Test case constitution

Update operations are used in the preamble, body and postamble and obser-
vation operations are used in the identification part.

The bz-tt generation method is defined by the following algorithm, where
{bound1, bound2, ..., boundn} and {op1, op2, ..., opm} respectively define the set of
all boundary goals and the set of all the update operations of the specification:

for i=1 to n % for each boundary state
preamble(boundi); % reach the boundary state
for j=1 to m % for each update operation

body(opj); % test opj
identification; % observe the state
postamble(boundi); % return to the boundary state

endfor

postamble(init); % return to the initial state
endfor

1 The vocabulary follows the ISO9646 standard [24].
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This algorithm computes test cases using boundary input values at body in-
vocations. Figure 4 shows how the state space is traversed during the generation
method. A set of one or more test cases, concatenated together, defines a test
suite.

It should be noted that bz-tt uses specific coverage criteria for complex data
structures based on boundary analysis. These criteria allows the test engineers
to control a possible test case explosion [23].

...FINAL STATE
OF BODY 1.2

IDENTIFICATION

FINAL STATE

FINAL STATE OF
IDENTIFICATION

FINAL STATE OF

OF BODY 1.m

preamble invocations

body invocation

identification invocations

postamble invocations

INITIAL STATE

BOUNDARY
STATE n

BOUNDARY
STATE 2

BOUNDARY
STATE 1

FINAL STATE OF
IDENTIFICATION

1.1
FINAL STATE
OF BODY

...

Fig. 4. Traversal of the state space during the test sequence generation.2

The user can choose to generate tests without an identification or without
a postamble. If there is no postamble, we assume that the system is initialised
between each tests. The oracle is computed from the state variable values and/or
the identification.

It is not always possible to return to the boundary state or to the initial state.
The postamble computation can fail to find a path. In these cases, the method
assumes the possibility of a reset to the initial state followed by a preamble again.
Therefore, the success of the preamble computation procedure is fundamental
for the scalability of the bz-tt method and tool-set; the generation of (possibly
many) tests from a goal state depends upon first reaching that state via a suc-
cessful preamble. This procedure using the clps-b solver is based on a symbolic
execution of the formal model, that it, to compute the next constrained state af-
ter invoking a model operation and then to dynamically traverse the reachability
graph underlying the formal model.

If we choose to generate tests without an identification and without a postam-
ble with the simplified windscreen wiper example, we obtain 40 tests (the bound-
ary goal BG5 is not used because it is included in the boundary goal BG6). There
are 5 bodies for each preamble. For example, Table 4 shows the 5 tests generated
from the boundary goal BG3.

There are several search strategies available for computing the preamble. In
the remainder of this paper the preamble will be defined and then two main

2 The final state of the body and the final state of identification are generally the
same, because observation operations may not affect the value of the state variables.
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Operations States after the operation invocations

Preamble

action lever(on) lever = on ∧ car speed = 0 ∧ wiper = continuous ∧ flag = false

speed(11) lever = on ∧ car speed = 11 ∧ wiper = continuous ∧ flag = true

Body

action lever(off) lever = off ∧ car speed = 11 ∧ wiper = stopped ∧ flag = false

speed(0) lever = on ∧ car speed = 0 ∧ wiper = intermittent ∧ flag = true

speed(10) lever = on ∧ car speed = 10 ∧ wiper = intermittent ∧ flag = true

speed(11) lever = on ∧ car speed = 11 ∧ wiper = continuous ∧ flag = true

speed(100) lever = on ∧ car speed = 100 ∧ wiper = continuous ∧ flag = true

Table 4. Generated tests from boundary goal BG3 controller example

search strategies will be presented and compared : forward chaining and back-
ward chaining.

3 Preamble Computation

The preamble computes traces in order to reach the states that satisfy boundary
goals. The goal of the preamble is to compute one trace (the shortest trace is
not required).

In bz-tt, the preamble computation uses a best-first search [17] to find a
trace between the initial state and a boundary state that satisfies a given bound-
ary goal. The best-first search procedure is described in Figure 5.

compute preamble(startstate) → status
begin

frontier := {(startstate)};
evaluatedVertices := {(startstate)};
depthBoundReached := false;
while frontier ̸= ∅ ∧ #evaluatedVertices ≤ maxEvaluatedVertices do

best :∈ minCostTraces(frontier);
others := frontier - {best};
if isSolution(best) then

return found;
endif
if length(best) ≤ maxDepth then

depthBoundReached := true;
frontier := others;

else
children := computeChildren(best);
frontier := children ∪ others;
evaluatedVertices := evaluatedVertices ∪ children

endif
endwhile
if #evaluatedVertices > maxEvaluatedVertices then

return unreachable at this vertex number;
elsif frontier = ∅ ∧ depthBoundReached then

return unreachable at the depth
else return unreachable
endif

end

Fig. 5. Best-first search algorithm

The best-first search can be used both with the forward chaining procedure or
the backward chaining procedure. With forward chaining the search starts at the
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initial state (startstate), whereas with backward chaining it starts at the bound-
ary goal that has to be reached. From the root, a function compute children is
applied in order to compute the children of a vertex. The forward and backward
chaining approaches have different compute children functions. The respective
functions are described Section 4 and 5.

The algorithm succeeds (function is solution) when the current vertex sat-
isfies:

– the boundary goal predicate in forward chaining,
– the initial state in backward chaining.

The algorithm is performed using a boundary depth and a boundary-valuated
vertex number. The variable frontier represents all the vertices which have not
yet been evaluated. The variable evaluatedVertices represents all the computed
vertices. The variable depthBoundReached shows if the boundary depth has been
reached during the search. The function minCostTraces returns the best traces
using a cost function.

The algorithm can end within one of the following four states:

– found , a solution is found,
– unreachable, the boundary goal is unreachable,
– unreachable at this depth, the boundary goal is unreachable at this depth,
– unreachable at this vertex number , the boundary goal is unreachable with

the vertex number limitation.

In the next two sections, the two search procedures (forward and backward
chaining) will be presented and evaluated on the simplified windscreen wiper
controller example.

4 Forward Chaining

Preamble computation in forward chaining can be viewed as a traversal of the
reachability graph, of which vertices represent the constrained states built during
the simulation, and transitions an operation invocation.

Definition 1. A constrained state is a pair θi(V ,Ci) where V is the state vari-
able set of the specification, and Ci is the set of the constraint variables.

A consequence of this preamble computation is that the state variables which
are not already assigned to a value by the boundary goal, are assigned a reachable
value within their domain. Each boundary goal is also instantiated to one or
more reachable boundary states by exploring the reachable states of the system,
starting from the initial state. The clps-b solver simulates the execution of the
system, recording the set of possible solutions after each operation.

Definition 2. Let activEP : constrained state → constrained state be a func-
tion where EP is an effect predicate. activEP is a function of clps-b which
returns the constrained state after the activation of the effect k of the operation
j .

activEP (θi) = θi+1 can fail if θi does not satisfy the pre-condition of EP and
if θi+1 does not satisfy the invariant.

Definition 3. Let compute children : trace → {trace} be a function that com-
putes all children of a constrained state.
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θ0

INIT

θ1 θ2 θn+1

BG

activEP0 activEP1 activEPn

Fig. 6. A trace with forward chaining

compute children(θ0, . . . , θn)
=

{T | T = θ0, . . . , θn , θn+1 ∧ activEP (θn) = θn+1}

The best-first search is run from compute preamble(θ0) with the function
compute children of Definition 3. The cost of T is computed from θn+1.

Recall that some boundary goals may not be reachable via the available
operation (this happens when the invariant is weaker than it should be). By
construction every boundary goal satisfies the invariant, which is, of course, a
prerequisite for reachability. In addition, the search for the boundary state is
bounded during the forward chaining preamble computation, so that the un-
reachable boundary goals (and unfortunately sometimes some reachable ones)
are reported to the test engineer as unreachable. This feedback may suggest ways
to strengthen the invariant with a consequence of eliminating such goals.

The traversal of the reachability graph is guided by a cost function, that
is used to estimate which states are “closest” to a state verifying the current
boundary goal. These numerical measures of closeness are used to decide which
states to consider to apply a next operation. If a vertex is a solution, its cost is
0, otherwise its cost is bigger than 0. Obviously, the efficiency of this kind of cost
function is relative to the problem and, here, to the formal model. This method
is effective if there are no local minima in the reachability graph evaluation
regarding the cost function. But, if there are local minima, the algorithm can
get lost and fail to find any solution. This point will be illustrated in the working
example in the next sub-section.

Simplified Windscreen Wiper Controller Example

The preamble computation is run on the boundary goal BG1 (car speed = 0
∧ wiper = intermittent). The trace length is bounded by 3. The cost function
is very simple – the number of state variables that cannot be unified with the
variables of the boundary goal is counted. The search tree is given in Figure 7.
The labels on the edges give the operation name, the effect and the input used
to compute the child vertices. Possible solution traces are given by the dotted
path. The state cost is in bold in each state.

This animation tree has 40 constrained states. 20 of them have a cost of 1,
18 a cost of 2 and 2 a cost of 0. The algorithm evaluates each constrained state
that has a cost of 1 before reaching the state of 0. Because the cost must go up
to 2 before going down to 0, the search procedure gets lost in a local minimum
(cost 1) before finding the right path.

5 Backward Chaining

The backward chaining procedure is implicitly goal-directed, as one starts with
the desired goal. This significantly reduces the search space. Backward chain-
ing makes better use of the effect predicates that were computed during the



Preamble computation in automated Test Case Generation 13

flag = false
wiper = stopped
car speed = 0

lever = off

1

flag = false
wiper = continuous

car speed = 0
lever = on

1

flag = false
wiper = stopped
car speed = 0..10

lever = off

1

flag = false
wiper = stopped

car speed = 11..100
lever = off

2

flag = false
wiper = stopped
car speed = 0

lever = off

1

flag = false
wiper = continuous
car speed = 0..10

lever = on

1

flag = true
wiper = continuous
car speed = 11..100

lever = on

2

flag = false
wiper = continuous
car speed = 0..10

lever = on

1 flag = false
wiper = stopped
car speed = 0..10

lever = off

1 flag = false
wiper = stopped

car speed = 11..100
lever = off

2

flag = true
wiper = continuous
car speed = 11..100

lever = on

2

flag = false
wiper = stopped
car speed = 0..10

lever = off

1

flag = false
wiper = stopped

car speed = 11..100
lever = off

2

flag = false
wiper = continuous

car speed = 0
lever = on

1

flag = false
wiper = stopped
car speed = 0..10

lever = off

1

flag = false
wiper = stopped

car speed = 11..100
lever = off

2

flag = false
wiper = stopped
car speed = 0..10

lever = off

1

flag = false
wiper = continuous
car speed = 0..10

lever = on

1

flag = true
wiper = continuous
car speed = 11..100

lever = on

2

flag = false
wiper = stopped

car speed = 11..100
lever = off

2

flag = true
wiper=intermittent
car speed = 0..10

lever = on

0

flag = true
wiper = continuous
car speed = 11..100

lever = on

2

flag = false
wiper = stopped
car speed = 0..10

lever = off

1

flag = false
wiper = continuous
car speed = 0..10

lever = on

1

flag = true
wiper = continuous
car speed = 11..100

lever = on

2

flag = false
wiper = continuous
car speed = 0..10

lever = on

1

flag = false
wiper = stopped
car speed = 0..10

lever = off

1

flag = false
wiper = stopped

car speed = 11..100
lever = off

2

flag = true
wiper = continuous
car speed = 11..100

lever = on

2

flag = false
wiper = stopped
car speed = 0..10

lever = off

1

flag = false
wiper = stopped

car speed = 11..100
lever = off

2

flag = false
wiper = stopped

car speed = 11..100
lever = off

2

flag = true
wiper=intermittent
car speed = 0..10

lever = on

0

flag = true
wiper = continuous
car speed = 11..100

lever = on

2

flag = false
wiper = continuous
car speed = 0..10

lever = on

1

flag = false
wiper = continuous
car speed = 0..10

lever = off

1

flag = false
wiper = stopped

car speed = 11..100
lever = off

2

flag = true
wiper = continuous
car speed = 11..100

lever = on

2

flag = false
wiper = stopped
car speed = 0..10

lever = off

1

flag = false
wiper = stopped

car speed = 11..100
lever = off

2

action leverE8(on)

speedE4(0..10)

speedE5(11..100)

action leverE6(off)

speedE4(0..10)
speedE2(11..100)

action leverE8(on)
speedE4(0..10)

speedE5(11..100)

action leverE7(on)

speedE4(0..10)

speedE5(11..100)

action leverE8(on)

speedE4(0..10)

speedE5(11..100)

action leverE6(off)

speedE4(0..10)

speedE2(11..100)

action leverE6(off)

speedE3(0..10)

speedE2(11..100)

action leverE6(off)

speedE4(0..10)
speedE2(11..100)

action leverE8(on)

speedE4(0..10)
speedE5(11..100)

action leverE7(on)

speedE4(0..10)
speedE5(11..100)

action leverE6(off)

speedE3(0..10)

speedE2(11..100)

action leverE8(on)

speedE4(0..10)

speedE5(11..100)

action leverE7(on)

speedE4(0..10)

speedE5(11..100)

Fig. 7. Search tree in forward chaining
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boundary goal generation. Therefore it enables problems with local minima to
be avoided.

Before describing the backward chaining algorithm, some preliminary defini-
tions are now provided.

Definition 4. Let φBG be the constraint store of the boundary goal BG, and
VBG the set of the state variables of BG.

Definition 5. Let θi(φ,V ) be the i th vertex of a trace where φ denotes a con-
straint store that is consistent, and V denotes a set of state variables to be
reached.

The root of the search tree in the backward chaining procedure is represented
by θ0(φBG ,VBG) i.e. by the constraints of the boundary goal that must be
reached. For example, the boundary goal v < 4 ∧ a = 0..3 gives the vertex
θ0(v0 < 4 ∧ a0 = 0..3, {a0, v0}). v0 and a0 are respectively the value representing
variables of v and a in θ0. The variable suffixes allow variables values to be linked
to their corresponding vertex.

An effect predicate is made up of constraints being about variables. The
variables can be state variables, prime state variables, input variables, output
variables or local variables.

For example, in the effect predicate a = 0..1 ∧ v ′ = v+1 with in the invariant
a = 0..10 ∧ v = 0..10 then the variables a and v are state variables and v ′ is a
prime state variable. At the state θi , if the variable v ′ corresponds to vi then at
the state θi+1, v corresponds to vi+1. In fact, during an animation, the vi+1 is
the value of v before the execution of an operation and vi is the value of v after
the execution of the operation.

One needs the function ϕ such as ϕ({ai , bi , ci , ..}) = {ai+1, bi+1, ci+1, ...} in
the next definition.

Definition 6. Let γEP : vertex → vertex ∪ {fail} (where EP is an effect predi-
cate) be the function that returns the child of a vertex defined by:

γEP (θi(φ,V ))
=

θi+1(φ ∧ φEP ∧ φinv ∧ (φVi+1 = φV−V EP
i

),

V EP
i+1 ∪ ϕ(V −V EP

i ))

– φEP is the constraint store of the effect predicate EP,
– φinv is the constraint store of the invariant,
– φV are the constraints on the set of variables V ,
– V EP

i+1 is the set of the state variables of the effect predicate EP,
– V EP

i is the set of the prime state variables of the effect predicate EP,
– Vi+1 is the set of the state variables of the vertex θi+1.

The function γEP adds all the constraint of the effect predicate EP and of
the invariant. The variables which has not been reached (V −V EP

i ) are unified
with their corresponding variables V (i + 1) of the vertex θi+1

The new variables to be reached are VEP(i+1)∪ (V −VEP(i)) i.e. all the state
variables of EP and the variables that have not been reached.

For example, if EP is a = 0..1 ∧ v ′ = v + 1 with the invariant a = 0..10 ∧
v = 0..10 and θ0(v0 < 4 ∧ a0 = 0..3, {a0, v0}) then :

– φ is v0 < 4 ∧ a0 = 0..3
– V = {a0, v0}
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– φEP is a1 = 0..1 ∧ v0 = v1 + 1

– φinv is a1 = 0..10 ∧ v1 = 0..10

– V −V EP
i = {a0, v0} − {v0} = {a0}

– φVi+1 = φV−V EP
i

is φ{a1,v1} = φ{a0} then a0 = a1

– V EP
i+1 = {a1, v1}

– ϕ(V −V EP
i ) = ϕ({a0, v0} − {v0}) = ϕ({a0}) = {a1}

– V EP
i+1 ∪ ϕ(V −V EP

i ) = {a1, v1} ∪ {a1} = {a1, v1}

Finally, the constraint store of θ1 is v0 < 4 ∧ a0 = 0..3 ∧ a1 = 0..1 ∧ v0 =
v1 + 1 ∧ a1 = 0..10 ∧ v1 = 0..10 ∧ a0 = a1 and the new variables to be reached
are a1 and v1. Simplifying the constraints one obtains:

γEP (θ0(v0 < 4 ∧ a0 = 0..3, {a0, v0}))
=

θ1(v1 = 0..2 ∧ a1 = 0..1, {a1, v1})

To reduce the number of children of a vertex, a pre-condition is added into
the function γEP : only the effects that modified the variables to be reached have
to be considered.

Definition 7. Let ΓEP : vertex → vertex ∪ {fail} where EP is an effect predi-
cate, be a function that computes a child of a vertex if EP is applicable:

ΓEP (θi(φ,V ))

=

∃ x .x ∈ V EP
i ∧ x ∈ V |

θi+1(φ ∧ φEP ∧ φinv ∧ (φVi+1 = φV−V EP
i

),

V EP
i+1 ∪ ϕ(V −V EP

i ))

Definition 8. Let compute children : trace → {trace} be a function that com-
putes all children of a vertex.

compute children(θ0, . . . , θn)

=

{T | T = θ0, . . . , θn , θn+1 ∧ ΓEP (θn) = θn+1}

In this case, a trace is a list of vertices. It is straightforward to find the list
of associated operations (see figure 8).

θi+1

INIT

θ2 θ1 θ0

BG

ΓEPn ΓEP1 ΓEP0

Fig. 8. A trace with backward chaining

The best-first search is run from compute preamble(θ0) using the function
compute children of the Definition 8.
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Implementation of the backward chaining

In this part, the Sicstus Prolog implementation of function ΓEP is explained by
example. The predicate name which implements this function is executeEffect-
Backward. Its inputs are a constraint state CS0, the variables to be reached Lvar

and the effect predicate applying EP. Its output are the input values Input of the
effect predicate, the constrained state CSres after the application of EP and the
new variables to be reached LvarRes. The Figure 9 shows the implementation
of executeEffectBackward.

executeEffectBackward(CS0,Lvar,EP,Input,CSres,LvarRes):-

prime(CS0,CS1),

addConstraintInvariant(CS1,CS2),

getPrimeStateVarListFromEffect(EP,EPListPrimeVar),

inclusionIsNotEmpty(Lvar,EPListPrimeVar)*,
addConstraint(CS2,EP,CS3)*,
deletePrimeStateVariable(CS3,EPListPrimeVar,CS4),

unifyPrimeAndStateVariable(CS4,CS5)*,
getInput(CS5,Input),

deleteAllExceptStateVariable(CS5,CSres),

getStateVarListFromEffect(EP,EPListVar),

computeNewVarToBeReach(EPListVar,Lvar,EPListePrimeVar,LvarRes).

Fig. 9. Backward chaining Prolog implementation

A constrained state contains the values of 5 kinds of variables: the state
variables, the prime state variables, the input variables, the output variables
and the local variables. When a constraint C is added to a variable v in a
constrained state CS and v is out of the state, then v is added to the CS .
The predicate addConstraintInvariant allows to store the invariant on the
state variables of a constrained state. The predicate prime allows state vari-
ables to be moved to primed variables. The predicate addConstraint allows
to add constraints to a constrained state. Given a constrained state as input
the predicate deletePrimeStateVariable allows the prime state variables to
be deleted. The predicate deleteAllExceptStateVariable allows to delete
all variables of a constrained state except the state variables. The predicate
unifyPrimeAndStateVariable allows to unify the prime state variables and
their corresponding state variables. The predicate getInput allows to obtain
the input value of a constrained state.

The predicates getPrimeStateVarListFromEffect and getStateVarList-

FromEffect allow respectively to obtain the list of the prime state variables
and the list of the state variables of an effect predicate. Finally, the predicate
computeNewVarToBeReach allows to compute the new variables to be reached
(V EP

i+1∪ϕ(V−V EP
i )) from the state variables of the effect predicate, the variables

to be reached and the prime state variables of the effect predicate.

The predicates with * can fail according to the stored constraints.

The Table 5 shows the evolution of the constrained state during the exe-
cution of executeEffectBackward from the state car speed = 0 ∧ wiper =
intermittent and the effect predicate E4.
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CS1 : car speed=0 ∧ wiper=intermittent
CS2 : car speed’=0 ∧ wiper’=intermittent
CS3 : car speed’=0 ∧ wiper’=intermittent ∧ sp=0 ∧ flag=false
CS4 : wiper’=intermittent ∧ sp=0 ∧ flag=false
CS5 : wiper=intermittent ∧ sp=0 ∧ flag=false
CSres : wiper=intermittent ∧ flag=false

Table 5. Values of the constrained states during execution of the effect predicate E4

Simplified Windscreen Wiper Controller Example

The preamble computation with the backward chaining procedure is run to reach
the boundary goal BG1: car speed = 0 ∧ wiper = intermittent . So the root of
the search tree is: car speed = 0 ∧ wiper = intermittent . As for the forward
chaining procedure, the trace length is bounded by 3 and the cost function is
calculated by counting the number of variables that cannot be unified with the
initial state. Figure 10 shows the search tree of backward chaining. The labels
on the edges give the operation name, the effect and the input used to compute
the child vertices. The state cost is given at the top on the right of each state.
Possible solution traces are given by the dotted path.

car speed = 0
wiper=intermittent

1

flag = true

1

wiper = intermittent
flag = false

1

UNREACHABLE

lever = on

1

lever = off
car speed > 10

1

car speed > 10
lever = off

1

car speed ≤ 10
lever = off

0

lever = off

0

lever = on

1

speedE4(0)

action leverE6(off)speedE5(11...100)
action leverE8(on)

speedE3(0)

speedE2(11..100)

action leverE7(on)

action leverE7(on)

Fig. 10. Search tree in backward chaining

It should be noted that the number of evaluated vertices is dramatically lower
than for forward chaining. There are only 9 constrained states in the search tree.
One constrained state is detected as unreachable because there is no effect that
can be activated from it.

From the root state, only 2 effects (E3 and E4) can be applied. The other
effects that cannot be applied are:

– E1 because it does not modify the variables that one wants to reach: inclu-
sionIsNotEmpty(CSListStateVar, EPListStateVar) fails.

– E2, E6, E7, E8 because,they do not put the variable wiper at the right value
(continuous or stopped instead of intermittent): addConstraint(CS1, EP,

CS2) fails,
– E5 because it puts car speed to sp, sp should be 0 but it is greater than 10:

addConstraint(CS1, EP, CS2) fails.

The other vertices are computed the same way. The main reasons for the
better convergence of the backward chaining procedure are:



18 Séverine Colin et al.

– Effects that do not modify the variables of the vertex are not considered in
the current search.

– The application of an effect can fail on the before and the after part of
the effect whereas with the forward chaining procedure, the application of
an effect can only fail on the before part of the effect. Thus, a state has a
greater chance to produce fewer children.

– The before part of the effects is exploited and guides the search by computing
all effects that allow to reach a constraint state and so on until the initial
state.

6 Experimental Results

The bz-tt technology has been applied to several industrial applications for
smart cards and transport systems. In particular, tests have been automatically
generated from a real windscreen wiper controller application [25] in partnership
with the PSA Peugeot Citroën company. The test generation process started by
formalizing the technical requirements with the B notation. The B abstract ma-
chine ran to 25 pages and contained 25 operations and 15 state variables. This
formal model represents 380 160 000 states. This application showed the limita-
tions of the forward chaining procedure in the presence of many local optima.
The cost function was the one used in the previous example. In the corresponding
search tree, there were a lot of local minima. 526 boundary goals were identified,
of which 254 reachable and 272 were not (confirmed by informal checking). The
experimental results are presented in Table 6 (the preamble computation was
run using a 1500 vertex limit and a trace depth of 10).

Number of BG Average number of
vertices evaluated

Backward chaining 235 found 290
limit : 1500, depth : 10 219 unreachable at this vertex number 1511

70 unreachable at this depth 61
12 unreachable 43

Forward chaining 155 found 324
limit : 1500, depth : 10 371 unreachable at this vertex number 1505

0 unreachable at this depth 0
0 unreachable 0

Table 6. Windscreen wiper speed controller experimental results

Backward chaining reached 92.5% of the reachable boundary goals whereas
forward chaining reached only 61%. Moreover backward chaining found certain
boundary goals to be unreachable where forward chaining did not.

All of the boundary goals reached by forward chaining were also reached by
backward chaining. The 22 missing boundary goals are reached by backward
chaining with a vertex limit around 130 000. Table 7 presents the statistical
results about the number of evaluated vertices for each boundary goal with the
backward chaining procedure.

The average number of vertices evaluated is 3 766.64, but in fact, the mea-
sures of spread show that 75% of boundary goals were found with less than
411 evaluated vertices. Otherwise, the search gets lost on a plateau (the vertices
which have the lower cost are very numerous). This problem should be solved
by improving the cost function.
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Smallest value 0

Largest value 130 640

Mean 3766.64

Median (Q2) 308

Range 130 640

Lower quartile (Q1) 175

Upper quartile (Q3) 411

Interquartile range 236

Variance (S2) 290 416 857

Standard deviation (S) 17 041

Table 7. Statistics relating to the number of vertices evaluated when using backward
chaining

In the industrial case study backward chaining was more effective than for-
ward chaining. More generally, this is the case when the formal model has many
operations with weak pre-conditions that allow their execution from a large num-
ber of reachable states (in particular from the initial state of the machine). When
also these operations modify a restricted number of state variables, this gives a
smaller number of choice points for backward chaining in comparison of forward
chaining.

7 Conclusion

This paper has described the advantages of a backward chaining procedure over
a forward one for the computation of test case preambule sequences. The un-
derlying Finite State Automaton is not built to compute test sequences: the
preamble computation makes it possible to find a trace from the initial state
to a state that satisfies particular constraints (the boundary goal). Moreover,
during the reachability graph traversal, the clps-b solver computes a constraint
store representing a set of valuated concrete states. It corresponds to a symbolic
animation of the formal model and helps to master the combinatorial explosion
of the search.

This study is part of the research field of using CLP techniques for software
verification. Over the last few years, constraint technology has been used for var-
ious purposes, such as model checking e.g. [26], formal model animation e.g. [27]
and automated test generation that is either code-based e.g. [28] or specification-
based e.g. [29, 7]. In particular, in specification-based test generation, the use
of constraint technologies makes it possible to symbolically execute the formal
model without constructing the underlying Finite State Automaton.

Improving the preamble computation provides better scalability of such model-
based test generation tools such as bz-tt. In spite of a very simple cost function,
backward chaining finds 31% more reachable boundary goals than forward chain-
ing.

The bz-tt environment has been used for half a dozen industrial applications
between 1999 and 2003 in the area of smart card software, automotive embedded
systems and bank electronic payment. All these real size formal models have
large combinatorial state spaces. For these applications, between 70% and 90%
effect coverage was achieved using our preamble computation algorithm. The
boundary coverage criteria also helps the validation engineer to efficiently drive
the automated generation process.
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The bz-tt technology is now mature enough to be used in industrial setting
for animation and model-based testing. So, the technology is currently being
transferred to a start-up company, LEIRIOS technologies [30], who will enhance
it to allow its use by commercial users, market it and use it for outsourced
testing projects. The commercial tool, called LEIRIOS Test Generator, will also
be able to handle Statecharts Statemate [31] and UML (class diagrams with
OCL pre/post specifications of methods) in the same uniform manner.
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