
Efficient Method for Periodic Task Scheduling with
Storage Requirement Minimization

Karine DESCHINKEL, Sid-Ahmed-Ali TOUATI

University of Versailles Saint-Quentin-en-Yvelines, France

Abstract. In this paper, we study the general problem of one-dimensional pe-
riodic task scheduling under storage requirement, irrespective of machine con-
straints. We have already presented in [9] a theoretical framework that allows an
optimal optimization of periodic storage requirement in a periodic schedule. This
problem is used to optimize processor register usage in embedded systems. Our
storage optimization problem being NP-complete [8], solving an exact integer
linear programming formulation is too expensive in practice. In this article, we
propose an efficient two-steps heuristic using model’s properties that allows fast
resolution times while providing nearly optimal results. This method includes the
resolution of a integer linear program with a totally unimodular constraints ma-
trix in first step, then the resolution of a linear assignmentproblem. Our solution
has been implemented and included inside a compiler for embedded processors.

1 Introduction

This article addresses the problem of storage optimizationin cyclic data dependence
graphs (DDG), which is for instance applied in the practicalproblem of periodic register
allocation for innermost loops on modern Instruction LevelParallelism (ILP) proces-
sors[10]. The massive introduction of ILP processors sincethe last two decades makes
us re-think new ways of optimizing register/storage requirement in assembly codes be-
fore starting the instruction scheduling process under resource constraints. In such pro-
cessors, instructions are executed in parallel thanks to the existence of multiple small
computation units (adders, multipliers, load-store units, etc.). The exploitation of this
new fine grain parallelism (at the assembly code level) asks to completely revisit the
old classical problem of register allocation initially designed for sequential processors.
Nowadays, register allocation has not only to minimize the storage requirement, but
has also to take care of parallelism and total schedule time.In this research article, we
do not assume any resource constraints (except storage requirement); Our aim is to an-
alyze the trade-off between memory (register pressure) andparallelism in a periodic
task scheduling problem. Note that this problem is abstractenough to be considered in
other scheduling disciplines that worry about conjoint storage and time optimization in
repetitive tasks (manufacturing, transport, networking,etc.).

Existing techniques in this field usually apply a periodic instruction scheduling un-
der resource constraints that is sensitive to register/storage requirement. Therefore a
great amount of work tries to schedule the instructions of a loop (under resource and
time constraints) such that the resulting code does not use more thanR values simulta-
neously alive. Usually they look for a schedule that minimizes the storage requirement

under a fixed scheduling period while considering resource constraints [3, 4, 6, 1]. In
this paper, we satisfy register/storage constraints earlybefore instruction scheduling
under resource constraints: we directly handle and modify the DDG in order to fix the
storage requirement of any further subsequent periodic scheduling pass while taking
care of not altering parallelism exploitation if possible.This idea uses the concept of
reuse vector used for multi-dimensional scheduling [11, 12].

This article is on continuation on our previous work on register allocation [10]. In
that paper, we showed that register allocation implies a loop unrolling. However, the
general problem of storage optimization does not require such loop unrolling. So the
current paper is an abstraction of our previous results on register optimization. Further-
more, it extends it with a new heuristic and experimental results.

Our article is organized as follows. Section 2 recalls our task model and notations al-
ready presented in [9]. Section 3 recalls the exact problem of optimal periodic schedul-
ing under storage constraints with integer linear programming: our detailed results on
the optimal resolution of this problem have been presented in [9]. Since the exact model
is not practical (too expensive in terms of resolution time), our current article provides
a new look by writing an efficient approximate method in Section 4, that we callSIR-
ALINA. Before concluding, Section 5 presents the results of our experimental evaluation
of SIRALINA, providing practical evidence of its efficiency.

2 Tasks Model

Our task model is similar to [2]. We consider a set ofl generic tasks (instructions inside
a program loop)T0, . . . , Tl−1. Each taskTi should be executedn times, wheren is the
number of loop iterations.n is an unknown, unbounded, but finite integer. This means
that each taskTi hasn instances. Thekth occurrence of taskTi is notedT 〈i, k〉, which
corresponds to taski executed at thekth iteration of the loop, with0 ≤ k < n.

The tasks (instructions) may be executed in parallel. Each task may produce a result
that is read/consumed by other tasks. The considered loop contains some data depen-
dences represented with a graphG such that:

– V is the set of the generic tasks of the loop body,V = {T0, . . . , Tl−1}.
– E is the set of edges representing precedence constraints (flow dependences or

other serialization constraints). Any edgee = (Ti, Tj) ∈ E has a latencyδ(e) ∈ N

in terms of processor clock cycles and a distanceλ(e) ∈ N in terms of number of
loop iterations. The distanceλ(e) means that the edgee = (Ti, Tj) is a dependence
between the taskT 〈i, k〉 andT 〈j, k + λ(e)〉 for anyk = 0, . . . , n − 1 − λ(e).

We make a difference between tasks and precedence constraints depending whether
they refer to data to be stored into registers or not

1. VR is the set of tasks producing data to be stored into registers.
2. ER is the set of flow dependence edges through registers. An edgee = (Ti, Tj) ∈

ER means that the taskT 〈i, k〉produces a result stored into a register and read/consumed
by T 〈j, k + λ(e)〉. The set of consumers (readers) of a generic taskTi is then the
set:

Cons(Ti) = {Tj ∈ V | e = (Ti, Tj) ∈ ER}

Figure 1 is an example of a data dependence graph (DDG) where bold circles rep-
resentVR the set of generic tasks producing data to be stored into registers. Bold edges
represent flow dependences (each sink of such edge reads/consumes the data produced
by the source and stored in a register). Tasks that are not in bold circles are instructions
that do not write into registers (write the data into memory or simply do not produce
any data). Non-bold edges are other data or precedence constraints different from flow
dependences. Every edgee in the DDG is labeled by the pair(δ(e), λ(e)).

(2,2)
(2,1)(1,0) (1,0)

(5,0)

iteration 0 iteration 1 iteration 2

(b) Loop iterations and instruction/task instances(a) Example of a DDG with Generic Taks

is labeled withEach edgee

T3

T1

T 〈4, 0〉

T 〈3, 0〉T2

T4

T 〈1, 0〉

T 〈2, 0〉

T 〈4, 1〉 T 〈4, 2〉

T 〈2, 2〉 T 〈3, 2〉

T 〈1, 2〉T 〈1, 1〉

T 〈2, 1〉 T 〈3, 1〉

(δ(e), λ(e))

Fig. 1. Example of Data Dependence Graphs with Recurrent Tasks

In our generic processor model, we assume that the reading and writing from/into
registers may be delayed from the starting time of task execution. Let assumeσ(T 〈i, k〉) ∈
N as the starting execution time of taskT 〈i, k〉. We thus define two delay functionsδr

andδw in which

δw : VR → N

Ti 7→ δw(Ti)| 0 ≤ δw(Ti)
the writing time of data produced byT 〈i, k〉 is σ(T 〈i, k〉) + δw(Ti)

δr : V → N

Ti 7→ δr(Ti)| 0 ≤ δr(Ti)
the reading time of the data consumed byT 〈i, k〉 is σ(T 〈i, k〉) + δr(Ti)

These two delays functions depend on the target processor and model almost all regular
hardware architectures (VLIW, EPIC/IA64 and superscalar processors).

3 Exact Problem Formulation

This section recalls the exact integer linear model for solving the problem of Periodic
Scheduling with Storage Minimisation (PSSM). It is built for a fixed desired period
p ∈ N. For more details on this problem, please refer to [9].

3.1 Basic Variables

– a schedule variableσi ≥ 0 for each taskTi ∈ V , includingσKi
for each killing

nodeKi. We assume a finite upper boundL for such schedule variables (L suffi-
ciently large,L =

∑

e∈E δ(e)); The schedule variables are integer. As our schedul-
ing is periodic, we only consider the integer execution dateof the first task occur-
renceσi = T 〈i, 0〉 and the execution date of any other occurrenceT 〈i, k〉 becomes
equal toσ(T 〈i, k〉) = σi + k ∗ p.

– a binary variablesθi,j for each(Ti, Tj) ∈ V 2
R. It is set to 1 iff(Ti, Tj) is a reuse

edge;
– a reuse distanceµi,j for all (Ti, Tj) ∈ V 2

R; The reuse distance are nonnegative
integer variables.

3.2 Linear Constraints

– Data dependences
The schedule must at least satisfy the precedence constraints defined by the DDG.

∀e = (Ti, Tj) ∈ E : σj − σi ≥ δ(e) − p × λ(e) (1)

– Flow dependences
Each flow dependencee = (Ti, Tj) ∈ ER means that the task occurrenceT 〈j, k +
λ(e)〉 reads the data produced byT 〈i, k〉 at timeσj +δr(Tj)+(λ(e)+k)×p. Then,
we should schedule the killing nodeKi of the taskTi after allTi’s consumers.

∀Ti ∈ VR, ∀Tj ∈ Cons(Ti)|e = (Ti, Tj) ∈ ER : σKi
≥ σj + δr(Tj) + p × λ(e)

(2)
– Storage dependences

There is a storage dependence betweenKi andTj if (Ti, Tj) is a reuse edge.

∀(Ti, Tj) ∈ V 2
R : θi,j = 1 =⇒ σKi

− δw(Tj) ≤ σj + p × µi,j

This involvement can result in the following inequality :

∀(Ti, Tj) ∈ V 2
R : σj − σKi

+ p × µi,j + M1(1 − θij) ≥ −δw(Tj) (3)

whereM1 is an arbitrarily large constant.
If there is no register reuse between two tasksTi andTj, thenθi,j = 0 and the
storage dependence distanceµi,j must be set to 0.

∀(Ti, Tj) ∈ V 2
R : µi,j ≤ M2θi,j (4)

whereM2 is an arbitrarily large constant.

– Reuse Relations
The reuse relation must be a bijection fromVR to VR. A register can be reused by
one task and a task can reuse one released register:

∀Ti ∈ VR :
∑

Tj∈VR

θi,j = 1 (5)

∀Tj ∈ VR :
∑

Ti∈VR

θi,j = 1 (6)

3.3 Objective Function

As proved in [10], the storage requirement is equal to
∑

µi,j . In our periodic scheduling
problem, we want to minimize the storage requirement: Minimizez =

∑

(Ti,Tj)∈V 2

R
µi,j

Using the above integer linear program to solve an NP-problem problem as PSSM
is not efficient in practice. With a classical Branch and Bound method, we are only able
to solve small instances (DDG sizes), in practice arround 12nodes. For this reason, we
suggest to make use of the problem structure to propose an efficient heuristic as follows.

4 SIRALINA : A Two Steps Approximate Resolution Method

Our resolution strategy is based on the analysis of the modelconstraints. As the problem
involves scheduling constraints and assignment constraints, and the reuse distances are
the link between these two sets of constraints, we attempt todecompose the problem
into two subproblems :

– A scheduling problem : to find a scheduling for which the potential reuse distances
are as small as possible.

– An assignment problem : to select which pairs of tasks will share the same register.

4.1 Preliminaries

If edgee = (Ti, Tj) ∈ V 2
R is a reuse edge, its reuse distance should satisfy the inequality

given by 3, whereθij = 1. This inequality gives a lower bound for each reuse distance.
If (Ti, Tj) ∈ V 2

R is a reuse edge (Er denotes the set of reuse edge) then :

∀(Ti, Tj) ∈ Er : µi,j ≥
1

p
(σKi

− δw(Tj) − σj) (7)

If (Ti, Tj) ∈ V 2
R is not a reuse edge thenµij = 0 according to the inequality 4.

∀(Ti, Tj) /∈ Er : µi,j = 0

The aggregation of constraint 7 for each reuse edge providesa lower bound of the
objective function value.z =

∑

(Ti,Tj)∈V 2

R
µi,j ≥ 1

p
(
∑

(Ti,Tj)∈Er
σKi

− δw(Tj)− σj)

As the reuse relation is a bijection fromVR to VR, the left sum of the inequality can be
separated into two parts.

∑

(Ti,Tj)∈Er

σKi
− δw(Tj) − σj =

∑

i∈VR

σKi
−

∑

j∈VR

(δw(Tj) + σj)

=
∑

i∈VR

σKi
−

∑

j∈VR

σj −
∑

j∈VR

δw(Tj)

We deduce from this inequality a lower bound for the number ofrequired registers. In
this context, it may be useful to find an appropriate scheduling for which this value is
minimal. As

∑

j∈VR
δw(Tj) is a constant for the problem, we could ignore it in the

following optimization problem.
We considerthe scheduling problem (P):















min
∑

i∈VR
σKi

−
∑

j∈VR
σj

subject to :
σj − σi ≥ δ(e) − p × λ(e), ∀e = (Ti, Tj) ∈ E
σKi

− σj ≥ δr(Tj) + p × λ(e), ∀Ti ∈ VR, ∀Tj ∈ Cons(Ti)|e = (Ti, Tj) ∈ ER

(8)
As the constraints matrix of the integer linear program of System 8 is totally unimodu-
lar, i.e., the determinant of each square sub-matrix is equal to 0 or to± 1, we can use
polynomial algorithms to solve this problem [7]. This wouldallow us to consider huge
DDG. The resolution of problem (P) by a simplex method will provide optimal values
σ∗

i for each taskTi ∈ VR and the optimal valuesσ∗
Ki

for each killing nodeKi.
Once the scheduling variables have been fixed, the minimal value of each potential

reuse distance would be equal toµij = ⌈
σ∗

Ki
−δw(Tj)−σ∗

j

p
⌉ according to 7 . Knowing

the reuse distance valuesµij if Tj reuses the register freed byTi, the storage allocation
which consists of choosing which task reuses which releasedregister can be modeled
as a linear assignment problem.

We considerthe linear assignment problem (A):























min
∑

(Ti,Tj)∈V 2

R
µi,jθij

Subject to
∑

Tj∈VR
θi,j = 1, ∀Ti ∈ VR

∑

Ti∈VR
θi,j = 1, ∀Tj ∈ VR

θij ∈ {0, 1}

(9)

whereµi,j is a fixed value for each edgee = (Ti, Tj) ∈ V 2
R.

4.2 Heuristic

We suggest to solve the problem with the following heuristic:

– Solve the problem (P) to deduce the optimal valuesσ∗
i for each taskTi ∈ VR and

the optimal valuesσ∗
Ki

for each killing nodeKi,

– Compute the costµij = max
(

⌈
σ∗

Ki
−δw(Tj)−σ∗

j

p
⌉
)

for each edgee = (Ti, Tj) ∈

V 2
R,

– Solve the linear assignment problem (A) with the Hungarian algorithm [5] which
solves assignment problems in polynomial time (O(n3)) to deduce the optimal val-
uesθ∗i,j ,

– If θ∗i,j = 1 for the edgee = (Ti, Tj) ∈ V 2
R, then(Ti, Tj) is a reuse edge and the

reuse distance is equal toµij .

5 Experiments

We now present the results obtained on several DDG extractedfrom many well known
benchmarks (Spec95, whetstone, livermore, lin-ddot, DSP filters, etc.). The data depen-
dence graphs of all these loops are present in [8]. The small test instances have 2 nodes
and 2 edges, the large instances have multiples hundreds of nodes and edges. We use
the ILOG CPLEX 10.2 to solve the integer linear program. The experiment was run
on PC under linux, equipped with a Pentium IV 2.13 Ghz processor, and 2 Giga bytes
of memory. In practice, the optimal method [9] can solve small instances, around 10
nodes. As far as we know about our problem, it is still NP-complete even for DDG
chains and trees [8]: we do not have simple DDG instances larger than 10 nodes. We
are able to check the efficiency of our heuristic on small DDG instances by comparing
its results against the optimal ones. The theoretical computation of the approximation
ratio constitutes an additional problem which is not studied here.

Table 1 presents the results of SIRALINA against optimal method using common
benchmarks. This table presents the results for the minimalperiod of each benchmark.
Note that every benchmark has its own minimal period, definedas the critical circuit
of the DDG, which is inherent to the data dependences [2]. Thefirst column represents
the name of the benchmark. The second and third column represent the instance size
(numbers of DDG nodes and edges). Columns number 4 and 5 give the storage require-
ment (objective function values) computed by the optimal and SIRALINA methods
(some instances could not be solved). The two lasts columns give the resolution times
in seconds. As can be seen in this table, SIRALINA is fast and nearly optimal. Some-
times SIRALINA is slightly longer than the optimal method for two reasons: 1) the
timer is too precise (milliseconds) and the interactions with operating system disturbs
our timing measurements, and 2) SIRALINA performs in two steps while the optimal
method performs in one step (resolving a unique integer linear program). In our con-
text, we consider that a time difference which is less than 0.1 seconds is negligible.
Another interesting remark is that the processing time of SIRALINA is relatively con-
stant compared to the processing time of the optimal method.Another improvement of
SIRALINA compared to the optimal method is that SIRALINA performs in relatively
a constant resolution time (irrespective of the consideredperiodp). Figure 2 illustrates
some examples, where we can see that the optimal method performs in a high variable
processing time in function of the periodp while SIRALINA is more stable. Figure 3
shows that SIRALINA is still nearly optimal with various period values. This remark
has been checked for all other benchmarks and periods: in almost all benchmarks, SIR-
ALINA computes nearly optimal results for all periods in a satisfactory (fast) processing
time.

For large instances we compare our results against the ones obtained by two heuris-
tics (f3 and f5) proposed in [10]. Results are reported in table 2, whereSf3 andSf5

de-
sign the storage requirement (objective function values) computed by heuristics f3 and
f5 and the last column gives the resolution time in seconds with SIRALINA. Bench-
marks presented in table 2 correspond to instances where loop bodies are duplicated ten
times (number of DDG nodes mutliplied by 10) and for which results with heuristic f3
and f5 have been presented in [10].

Benchmark |V | |E| Sopt Ssiralina Topt Tsiralina

lin-ddot 4 4 7 7 0.007 0.066
liv-loop1 9 11 5 5 0.364 0.067
liv-loop5 5 5 3 3 0.005 0.066
liv-loop23 20 26 10 12 605.5480.069
spec-dod-loop1 13 15 5 6 198.4720.067
spec-dod-loop2 10 10 3 3 0.084 0.067
spec-dod-loop3 11 11 3 4 0.257 0.067
spec-dod-loop7 4 4 35 35 0.004 0.066
spec-fp-loop1 5 6 2 2 0.006 0.067
spec-spice-loop12 2 3 3 0.004 0.067
spec-spice-loop29 10 15 15 2.757 0.067
spec-spice-loop34 5 2 2 0.005 0.067
spec-spice-loop412 51 8 8 0.088 0.068
spec-spice-loop52 2 1 1 0.003 0.067
spec-spice-loop66 7 14 14 0.016 0.067
spec-spice-loop75 5 40 40 0.005 0.067
spec-spice-loop84 4 7 7 0.005 0.067
spec-spice-loop911 17 7 7 26.242 0.067
spec-spice-loop104 4 2 2 0.005 0.069
spec-tom-loop1 15 18 5 7 604.2780.068
test-christine 18 17 230 230 600.8470.068
Elliptic 36 59 NA 10 NA 0.074
whet-cycle4-1 4 4 1 1 0.005 0.066
whet-cycle4-2 4 4 2 2 0.006 0.067
whet-cycle4-4 4 4 4 4 0.01 0.067
whet-cycle4-8 4 4 8 8 0.013 0.069
whet-loop1 16 28 5 6 0.2 0.068
whet-loop2 7 10 5 5 0.006 0.067
whet-loop3 5 16 4 4 0.006 0.067

Table 1.SIRALINA and optimal Results

Benchmark Sf3 Sf5
Ssiralina Tsiralina

lin-ddot-10 40 27 7 0.072
liv-loop1-10 80 60 5 0.094
spec-dod-loop3-10100 75 4 0.107
spec-spice-loop1-1020 19 3 0.069
spec-spice-loop3-1030 29 2 0.071
spec-spice-loop6-1060 48 14 0.081

Table 2.SIRALINA and other heuristics

6 Conclusion

This article presents an efficient heuristic for the periodic task scheduling problem un-
der storage constraints. Our model is based on the theoretical approach of reuse graphs

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

P
ro

ce
ss

in
g

T
im

es
 in

 m
s

-
lo

g
sc

al
e

Period

Spec-spice-loop2

spec-spice-loop2 (optimal)
spec-spice-loop2 (siralina)

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16

P
ro

ce
ss

in
g

T
im

es
 in

 m
s

-
lo

g
sc

al
e

Period

Spec-spice-loop9

spec-spice-loop9 (optimal)
spec-spice-loop9 (siralina)

Fig. 2.Processing Times of some Benchmarks vs. Period

 1

 10

 100

 0 2 4 6 8 10 12

P
er

io
di

c
S

to
ra

ge
 R

eq
ui

re
m

en
t

Period

Spec-spice-loop2

spec-spice-loop2 (optimal)
spec-spice-loop2 (siralina)

 1

 10

 2 4 6 8 10 12 14 16

P
er

io
di

c
S

to
ra

ge
 R

eq
ui

re
m

en
t

Period

Spec-spice-loop9

spec-spice-loop9 (optimal)
spec-spice-loop9 (siralina)

Fig. 3.Storage Requirement of some Benchmarks vs. Period

studied in [9]. Storage allocation is expressed in terms of reuse edges and reuse dis-
tances to model the fact that two tasks use the same storage location.

Since computing an optimal periodic storage allocation is intractable in large data
dependence graphs (larger than 12 nodes for instance), we have identified a two steps
resolution method. We call this simplified method as SIRALINA. A first optimal step
provides scheduling variables and allows to compute the potential reuse distances if
the corresponding reuse edge is added. Then a second step solves a linear assignment
problem using the Hungarian method in order to select the appropriate reuse edges.

Our practical experiments on many DDGs show that SIRALINA provides satisfac-
tory solutions with fast resolution times. Consequently, this method is included inside
a compiler for embedded systems (in collaboration with STmicroelectronics).

Finally our future work will concentrate on the particular structure of the model con-
straints to consider the application of lagrangean relaxation to produce a bound stronger
than the bound obtained by continuous relaxation and/or to find another heuristic. Fur-
thermore it will be interesting to investigate how some hardware specificities could be
take into account. For instance, the use of a rotating register file (implemented inside
some processors) implies the presence of a Hamiltonian reuse cycle. The handling of
these kind of specificities is an additional challenge.

Acknowledgement

This work has been partially supported by the ANR MOPUCE project (ANR number
05-JCJC-0039).

References

1. Benoit Dupont de Dinechin. Parametric Computation of Margins and of Minimum Cumu-
lative Register Lifetime Dates. In David C. Sehr and Utpal Banerjee and David Gelernter
and Alexandru Nicolau and David A. Padua, editor,LCPC, volume 1239 ofLecture Notes in
Computer Science, pages 231–245. Springer, 1996.

2. Claire Hanen and Alix Munier. A Study of the Cyclic Scheduling Problem on Parallel
Processors.Discrete Applied Mathematics, 57(2-3):167–192, 1995.

3. A. E. Eichenberger, E. S. Davidson, and S. G. Abraham. Minimizing Register Requirements
of a Modulo Schedule via Optimum Stage Scheduling.International Journal of Parallel
Programming, 24(2):103–132, Apr. 1996.

4. D. Fimmel and J. Muller. Optimal Software Pipelining Under Resource Constraints.Inter-
national Journal of Foundations of Computer Science (IJFCS), 12(6):697–718, 2001.

5. Harold W. Kuhn. The Hungarian Method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

6. J. Janssen.Compilers Strategies for Transport Triggered Architectures. PhD thesis, Delft
University, Netherlands, 2001.

7. A. Schrijver.Theory of Linear and Integer Programming. John Wiley and Sons, New York,
1987.

8. Sid-Ahmed-Ali Touati. Register Pressure in Instruction Level Parallelisme. PhD thesis,
Université de Versailles, France, June 2002. ftp.inria.fr/INRIA/Projects/a3/touati/thesis.

9. Sid-Ahmed-Ali Touati. Periodic Task Scheduling under Storage Constraints. InProceed-
ings of the Multidisciplinary International Scheduling Conference: Theory and Applications
(MISTA?07), Aug. 2007.

10. Sid-Ahmed-Ali Touati and Christine Eisenbeis. Early Periodic Register Allocation on ILP
Processors.Parallel Processing Letters, 14(2), June 2004. World Scientific.

11. M. M. Strout, L. Carter, J. Ferrante, and B. Simon. Schedule-Independent Storage Mapping
for Loops.ACM SIG-PLAN Notices, 33(11):24–33, Nov. 1998.

12. W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe. A Unified Framework for Schedule
and Storage Optimization.ACM SIGPLAN Notices, 36(5):232–242, May 2001.

