Efficient Method for Periodic Task Scheduling with
Storage Requirement Minimization

Karine DESCHINKEL, Sid-Ahmed-Ali TOUATI

University of Versailles Saint-Quentin-en-Yvelines, fica

Abstract. In this paper, we study the general problem of one-dimemsipe-

riodic task scheduling under storage requirement, iresmeof machine con-
straints. We have already presented in [9] a theoreticaddreork that allows an
optimal optimization of periodic storage requirement ireai@dic schedule. This
problem is used to optimize processor register usage in @deloesystems. Our
storage optimization problem being NP-complete [8], sajvan exact integer
linear programming formulation is too expensive in pragtim this article, we
propose an efficient two-steps heuristic using model’s @rtigs that allows fast
resolution times while providing nearly optimal resulthigmethod includes the
resolution of a integer linear program with a totally unimtad constraints ma-
trix in first step, then the resolution of a linear assignnmoblem. Our solution
has been implemented and included inside a compiler for dddzeprocessors.

1 Introduction

This article addresses the problem of storage optimizatiayclic data dependence
graphs (DDG), which is for instance applied in the practirablem of periodic register
allocation for innermost loops on modern Instruction LeRatallelism (ILP) proces-
sors[10]. The massive introduction of ILP processors sthedast two decades makes
us re-think new ways of optimizing register/storage reguient in assembly codes be-
fore starting the instruction scheduling process undenne constraints. In such pro-
cessors, instructions are executed in parallel thankset@xistence of multiple small
computation units (adders, multipliers, load-store yréts.). The exploitation of this
new fine grain parallelism (at the assembly code level) askinpletely revisit the
old classical problem of register allocation initially égsed for sequential processors.
Nowadays, register allocation has not only to minimize tttgagje requirement, but
has also to take care of parallelism and total schedule timtbis research article, we
do not assume any resource constraints (except storageammgunt); Our aim is to an-
alyze the trade-off between memory (register pressure)panallelism in a periodic
task scheduling problem. Note that this problem is abst&aotigh to be considered in
other scheduling disciplines that worry about conjointage and time optimization in
repetitive tasks (manufacturing, transport, networkatg,).

Existing techniques in this field usually apply a periodistinction scheduling un-
der resource constraints that is sensitive to registeageorequirement. Therefore a
great amount of work tries to schedule the instructions afag I(under resource and
time constraints) such that the resulting code does not ase thank values simulta-
neously alive. Usually they look for a schedule that miniesithe storage requirement



under a fixed scheduling period while considering resoutcestraints [3,4, 6,1]. In
this paper, we satisfy register/storage constraints dmfgre instruction scheduling
under resource constraints: we directly handle and mod#&DG in order to fix the
storage requirement of any further subsequent periodiedsding pass while taking
care of not altering parallelism exploitation if possiblénis idea uses the concept of
reuse vector used for multi-dimensional scheduling [11, 12

This article is on continuation on our previous work on régiigllocation [10]. In
that paper, we showed that register allocation implies a lmorolling. However, the
general problem of storage optimization does not requich $oop unrolling. So the
current paper is an abstraction of our previous results gistex optimization. Further-
more, it extends it with a new heuristic and experimentallies

Our article is organized as follows. Section 2 recalls osk taodel and notations al-
ready presented in [9]. Section 3 recalls the exact probfesptimal periodic schedul-
ing under storage constraints with integer linear programgnour detailed results on
the optimal resolution of this problem have been presemtf]i Since the exact model
is not practical (too expensive in terms of resolution tinwer current article provides
a new look by writing an efficient approximate method in Smc#, that we calBR-
ALINA. Before concluding, Section 5 presents the results of queemental evaluation
of SIRALINA, providing practical evidence of its efficiency

2 Tasks Model

Our task model is similar to [2]. We consider a set géneric tasks (instructions inside
a program loopYy, . .., 17;—1. Each taskl’; should be executedtimes, where: is the
number of loop iterations: is an unknown, unbounded, but finite integer. This means
that each tasK; hasn instances. Thé!” occurrence of task; is noted (i, k), which
corresponds to taskexecuted at th&" iteration of the loop, witt) < k < n.

The tasks (instructions) may be executed in parallel. Easkray produce a result
that is read/consumed by other tasks. The considered lomjaios some data depen-
dences represented with a gragtsuch that:

— Vis the set of the generic tasks of the loop bddy- {To,...,T;-1}.

— F is the set of edges representing precedence constraints d8pendences or
other serialization constraints). Any edge- (7;,7;) € E has alatency(e) € N
in terms of processor clock cycles and a distak@e € N in terms of number of
loop iterations. The distancde) means that the edge= (7}, T;) is a dependence
between the task (i, k) andT'(j, k + A(e)) foranyk = 0,...,n — 1 — A(e).

We make a difference between tasks and precedence cotstlaipending whether
they refer to data to be stored into registers or not

1. Vg is the set of tasks producing data to be stored into registers
2. Ep is the set of flow dependence edges through registers. Aneedg€l;, 7)) €
Er means thatthe task(i, k) produces a result stored into a register and read/consumed
by T'(j,k 4+ A(e)). The set of consumers (readers) of a generic #§sk then the
set:
COTLS(TZ') = {Tj eV | e = (Ti,Tj) € ER}



Figure 1 is an example of a data dependence graph (DDG) widdeiocles rep-
resentl’r the set of generic tasks producing data to be stored intetergi Bold edges
represent flow dependences (each sink of such edge reasisfices the data produced
by the source and stored in a register). Tasks that are noldncircles are instructions
that do not write into registers (write the data into memangioply do not produce
any data). Non-bold edges are other data or precedenceaotstifferent from flow
dependences. Every edgé the DDG is labeled by the pait(¢), A(e)).

(22 (L0) ; ;(1,0) @1)
g o

Each edgee s labeled with(§ (e), A(e))

iteration 0 iteration 1 iteraton2

(a) Example of a DDG with Generic Taks (b) Loop iterations and instruction/task instances

Fig. 1. Example of Data Dependence Graphs with Recurrent Tasks

In our generic processor model, we assume that the readthwating from/into
registers may be delayed from the starting time of task ei@tiLet assume (7'(i, k)) €
N as the starting execution time of ta®Ki, k). We thus define two delay functiods
andd,, in which

5w : VR — N
Ty 6,(T3)| 0 < 6, (T))
the writing time of data produced By(i, k) is o (T'(i, k)) + 6., (T})
0r: V—=N
the reading time of the data consumedby, k) is o(T{(i, k)) + 6, (T3)

These two delays functions depend on the target procesdonadel almost all regular
hardware architectures (VLIW, EPIC/IA64 and superscalac@ssors).

3 Exact Problem Formulation

This section recalls the exact integer linear model forisglthe problem of Periodic
Scheduling with Storage Minimisation (PSSM). It is built fa fixed desired period
p € N. For more details on this problem, please refer to [9].



3.1 Basic Variables

— a schedule variable; > 0 for each taskl; € V, includingog, for each killing
node K;. We assume a finite upper boudfor such schedule variables suffi-
ciently large,L = )~ . d(e)); The schedule variables are integer. As our schedul-
ing is periodic, we only consider the integer execution ddtihe first task occur-
rences; = T'(i,0) and the execution date of any other occurrefi¢e k) becomes
equal too (T (i, k)) = o; + k * p.

— a binary variable$; ; for each(T;,T;) € V3. Itis set to 1 iff (T}, T;) is a reuse
edge;

- a rgeuse distance; ; for all (73,7;) € V3; The reuse distance are nonnegative
integer variables.

3.2 Linear Constraints

— Data dependences
The schedule must at least satisfy the precedence cortstigifined by the DDG.
Ve = (T;,T;) € E:0j—0; > d(e) —p x A(e) 1)

— Flow dependences
Each flow dependence= (1;,T;) € Er means that the task occurreriéj, k +

A(e)) reads the data producedByi, k) attimeo; +0,(7;) + (A(e) + k) x p. Then,
we should schedule the killing nod€; of the task7; after all'T;'s consumers.

VT; € Vg, VT; € Cons(T;)|e = (13,1;) € Er: ok, > 0j + 6,(T;) +p x Ae)
2)
— Storage dependences
There is a storage dependence betwseandT; if (1;,7}) is a reuse edge.

V(T;,T}) € V]% : 91-_4- =1= OK; — 5w(Tj> < 0j +pX i j
This involvement can result in the following inequality :
T, Tj) € Vi i 0j — ok, +p X pij + Mi(1—0;5) > —6,(T;)  (3)

where); is an arbitrarily large constant.
If there is no register reuse between two tagksind 7}, thend; ; = 0 and the
storage dependence distangg must be set to 0.

V(T;,T5) € VE : piy < Mabi (4)

wherel, is an arbitrarily large constant.
— Reuse Relations

The reuse relation must be a bijection frdfm to V. A register can be reused by
one task and a task can reuse one released register:

VT; € Vi : Z Hi,j =1 (5)
T;€VRr
VTJ‘ e Vg: Z 91',]‘ =1 (6)

T;€EVR



3.3 Objective Function

As proved in [10], the storage requirementis equalie; ;. In our periodic scheduling
problem, we want to minimize the storage requirement: Mingm = Z(Tinj)evs ti g
Using the above integer linear program to solve an NP-prolgieoblem as PSSM
is not efficient in practice. With a classical Branch and Biburethod, we are only able
to solve small instances (DDG sizes), in practice arroundddes. For this reason, we
suggest to make use of the problem structure to propose aieeffheuristic as follows.

4 SIRALINA : A Two Steps Approximate Resolution Method

Our resolution strategy is based on the analysis of the ntmhaitraints. As the problem
involves scheduling constraints and assignment consiraind the reuse distances are
the link between these two sets of constraints, we attemgétompose the problem
into two subproblems :

— A scheduling problem : to find a scheduling for which the pts#meuse distances
are as small as possible.
— An assignment problem : to select which pairs of tasks walrstthe same register.

4.1 Preliminaries

If edgee = (1;,T;) € V3 is areuse edge, its reuse distance should satisfy the iliyqua
given by 3, wherd,; = 1. This inequality gives a lower bound for each reuse distance
If (T;,T;) € V# is areuse edge, denotes the set of reuse edge) then :

1
v(anj) €k, : i, 5 > _(UKq-, - 6u7(Tj) - Uj) (7)

3

If (T;,T;) € V7 is not a reuse edge then; = 0 according to the inequality 4.
V(T3,T5) ¢ Ep 2 iy =0

The aggregation of constraint 7 for each reuse edge proddewer bound of the
objective function valuez = >_ 7, 1 )cy2 pi; = %(Z(Ti_’Tj)GET ok, — 0uw(Tj) —0j)
As the reuse relation is a bijection frovix to Vg, the left sum of the inequality can be
separated into two parts.

Yo ok —6u(T) —0o5= > ox,— Y (6u(Ty) +0y)

(T:,T;)EE, i€EVR JEVR
=Y o= 0= Y 6Ty
i€VRr JEVR JEVR

We deduce from this inequality a lower bound for the numbeeqgfiired registers. In
this context, it may be useful to find an appropriate scheduidr which this value is
minimal. As .y, 6.,(7}) is a constant for the problem, we could ignore it in the



following optimization problem.
We considethe scheduling problem (P):

mind ey, OK; = 2jevy O

subject to :

oj —o; > d(e) —p x Ne), Ve = (1;,T;) € E

OK; —0j > 5 ( )+p X )\( ) VT; € VR, VTj S COTLS(Tl)|€ = (Ti,Tj) € FEgr

(8)

As the constraints matrix of the integer linear program a$t€m 8 is totally unimodu-
lar, i.e., the determinant of each square sub-matrix is equal to O &r towe can use
polynomial algorithms to solve this problem [7]. This woualtbw us to consider huge
DDG. The resolution of problem (P) by a simplex method wilbyide optimal values
o; for each taskl; € Vi and the optimal valuesy for each killing nodex’;.

Once the scheduling variables have been fixed, the mininhaé\af each potential

reuse distance would be equalzig = (M] according to 7 . Knowing
the reuse distance valugg if 7} reuses the reglster freed By, the storage allocation
which consists of choosing WhICh task reuses which releesgidter can be modeled
as a linear assignment problem.

We considethe linear assignment problem (A):

min - 32 p, 1yevz Higlij

Subject to

Yoreve i =1, VT; € Vg (9)
ZTiGVR eiaj = 17 VT] (S VR

0;; €{0,1}

wherer; ; is a fixed value for each edge= (7}, 7}) € V3.

4.2 Heuristic
We suggest to solve the problem with the following heuristic

— Solve the problem (P) to deduce the optimal valagdor each taskl; € Vx and
the optimal values,, for each killing nodek;,

— Compute the cogl;; = max ((%
V2,

— Solve the linear assignment problem (A) with the Hungarigoe@hm [5] which
solves assignment problems in polynomial tirt&3)) to deduce the optimal val-
uest; ;,

— If 67, = 1 for the edge: = (T}, T;) € V3, then(T;,Ty) is a reuse edge and the
reuse distance is equal ;.

]) for each edge = (7;,7;) €



5 Experiments

We now present the results obtained on several DDG extréaiedmany well known
benchmarks (Spec95, whetstone, livermore, lin-ddot, D8] etc.). The data depen-
dence graphs of all these loops are present in [8]. The sestlinstances have 2 nodes
and 2 edges, the large instances have multiples hundredsletrand edges. We use
the ILOG CPLEX 10.2 to solve the integer linear program. Theegiment was run
on PC under linux, equipped with a Pentium 1V 2.13 Ghz pramessd 2 Giga bytes
of memory. In practice, the optimal method [9] can solve $nmstances, around 10
nodes. As far as we know about our problem, it is still NP-ctatgeven for DDG
chains and trees [8]: we do not have simple DDG instancegiddahgn 10 nodes. We
are able to check the efficiency of our heuristic on small DB&ances by comparing
its results against the optimal ones. The theoretical cdatiom of the approximation
ratio constitutes an additional problem which is not stddiere.

Table 1 presents the results of SIRALINA against optimallrodtusing common
benchmarks. This table presents the results for the mireradd of each benchmark.
Note that every benchmark has its own minimal period, defamethe critical circuit
of the DDG, which is inherent to the data dependences [2] fifstecolumn represents
the name of the benchmark. The second and third column Emrédse instance size
(numbers of DDG nodes and edges). Columns number 4 and Shgiwtdrage require-
ment (objective function values) computed by the optimal SHRALINA methods
(some instances could not be solved). The two lasts columesliye resolution times
in seconds. As can be seen in this table, SIRALINA is fast agafly optimal. Some-
times SIRALINA is slightly longer than the optimal methodr fiovo reasons: 1) the
timer is too precise (milliseconds) and the interactionthwipperating system disturbs
our timing measurements, and 2) SIRALINA performs in twgstehile the optimal
method performs in one step (resolving a unigue integeatipeogram). In our con-
text, we consider that a time difference which is less thdnsgconds is negligible.
Another interesting remark is that the processing time 8AIINA is relatively con-
stant compared to the processing time of the optimal methidther improvement of
SIRALINA compared to the optimal method is that SIRALINA fenms in relatively
a constant resolution time (irrespective of the consideetbdp). Figure 2 illustrates
some examples, where we can see that the optimal methodmperiio a high variable
processing time in function of the perigdwhile SIRALINA is more stable. Figure 3
shows that SIRALINA is still nearly optimal with various ped values. This remark
has been checked for all other benchmarks and periods: imsalii benchmarks, SIR-
ALINA computes nearly optimal results for all periods in éis@ctory (fast) processing
time.

For large instances we compare our results against the ttesed by two heuris-
tics (f3 and 5) proposed in [10]. Results are reported itet@bwhereS;s; andSy, de-
sign the storage requirement (objective function values)puted by heuristics f3 and
f5 and the last column gives the resolution time in secondls ®IRALINA. Bench-
marks presented in table 2 correspond to instances whepdluties are duplicated ten
times (number of DDG nodes mutliplied by 10) and for whichutesswith heuristic f3
and f5 have been presented in [10].



|BenChmark ||V|||E|||Sopt|S.si7'alina||Topt |Tsi7'alz’na|

lin-ddot 4 14 |7 |7 0.007 |0.066
liv-loopl 9 |11|5 |5 0.364 |0.067
liv-loop5 515 |I3 |3 0.005 |0.066
liv-loop23 20 (26 |[10 |12 605.5480.069
spec-dod-loopl (13 |15||5 |6 198.4720.067
spec-dod-loop2 (10 |10 ||3 |3 0.084 |0.067
spec-dod-loop3 (11 |11 ||3 |4 0.257 |0.067
spec-dod-loop7 |4 |4 ||35 |35 0.004 |0.066
spec-fp-loopl |5 |6 ||2 |2 0.006 |0.067
spec-spice-loopl2 |2 ||3 |3 0.004 |0.067
spec-spice-loop29 |10 |15 |15 2.757 |0.067
spec-spice-loop34 |5 |2 |2 0.005 |0.067
spec-spice-loop412 |51 (|8 |8 0.088 |0.068
spec-spice-loopg2 |2 ||1 |1 0.003 |0.067
spec-spice-loopg6 |7 |14 |14 0.016 |0.067
spec-spice-loop15 |5 |40 |40 0.005 |0.067
spec-spice-loop84 |4 ||7 |7 0.005 |0.067
spec-spice-loop911 |17 ||7 |7 26.242 (0.067
spec-spice-loopl@ (4 (12 |2 0.005 |0.069
spec-tom-loopl (15 |18 ||5 |7 604.2780.068
test-christine 18 |17 ||230|230 600.8470.068
Elliptic 36 |59 [|[NA |10 NA 0.074
whet-cycle4-1 |4 |4 ||[1 |1 0.005 |0.066
whet-cycle4-2 |4 |4 |2 |2 0.006 |0.067
whet-cycle4-4 (4 |4 ||4 |4 0.01 |0.067
whet-cycle4-8 (4 |4 ||I8 |8 0.013 |0.069
whet-loopl 16 |28 |5 |6 0.2 0.068
whet-loop2 7 (105 |5 0.006 [0.067
whet-loop3 5 |16|4 |4 0.006 [0.067

Table 1. SIRALINA and optimal Results

[Benchmark |S¢3]Sts|Ssiratina]| Tsiratina)
lin-ddot-10 40 |27 |7 0.072
liv-loop1-10 80 (60 |5 0.094
spec-dod-loop3-1010075 |4 0.107
spec-spice-loop1-120 |19 |3 0.069
spec-spice-loop3-180 |29 |2 0.071
spec-spice-loop6-160 |48 |14 0.081

Table 2. SIRALINA and other heuristics

6 Conclusion

This article presents an efficient heuristic for the peddsk scheduling problem un-
der storage constraints. Our model is based on the thearaiproach of reuse graphs



Spec-spice-loop2 Spec-spice-loop9

[} [}
o 10000 T T T T T © 100000
2 spec-spice-loop2 (optimah—— 2
2 spec-spice-loop2 (siralina)——— 2
" " 10000 ¢
€ 1000 £ €
£ £
] ]
£ £ 1000 ¢
= =
2 100¢ g
7 7 100 ¢
Q Q
o [
<) <
o o
10 . . . . . 10 . . . . . .
o 2 4 6 8 10 12 2 4 6 8 10 12 14 16
Period Period
Fig. 2. Processing Times of some Benchmarks vs. Period
Spec-spice-loop2 Spec-spice-loop9
100 10

‘Spec-‘spice-‘loopQ‘ (optir‘nal-)‘—
spec-spice-loop9 (siralina)---

sbec-spibe-loobz (opt‘imal-)‘—
spec-spice-loop2 (siralina)----

1 . . . . . 1 . . . . . .
0 2 4 6 8 10 12 2 4 6 8 10 12 14 16

Period Period

Periodic Storage Requirement
Periodic Storage Requirement

Fig. 3. Storage Requirement of some Benchmarks vs. Period

studied in [9]. Storage allocation is expressed in termsabe edges and reuse dis-
tances to model the fact that two tasks use the same storeaf®lo.

Since computing an optimal periodic storage allocatiomigactable in large data
dependence graphs (larger than 12 nodes for instance), weeidentified a two steps
resolution method. We call this simplified method as SIRAAIM first optimal step
provides scheduling variables and allows to compute theriatl reuse distances if
the corresponding reuse edge is added. Then a second step adinear assignment
problem using the Hungarian method in order to select theogpjate reuse edges.

Our practical experiments on many DDGs show that SIRALINAviiles satisfac-
tory solutions with fast resolution times. Consequentlis method is included inside
a compiler for embedded systems (in collaboration with SFaglectronics).

Finally our future work will concentrate on the particultnugture of the model con-
straints to consider the application of lagrangean relarab produce a bound stronger
than the bound obtained by continuous relaxation and/ontb&nother heuristic. Fur-
thermore it will be interesting to investigate how some kack specificities could be
take into account. For instance, the use of a rotating mgi#e (implemented inside
some processors) implies the presence of a Hamiltoniae regde. The handling of
these kind of specificities is an additional challenge.



Acknowledgement

This work has been partially supported by the ANR MOPUCE geb{ANR number
05-JCJC-0039).

References

1.

10.

11.

12.

Benoit Dupont de Dinechin. Parametric Computation of dites and of Minimum Cumu-
lative Register Lifetime Dates. In David C. Sehr and Utpah®&gee and David Gelernter
and Alexandru Nicolau and David A. Padua, editdPC, volume 1239 of_ecture Notesin
Computer Science, pages 231-245. Springer, 1996.

. Claire Hanen and Alix Munier. A Study of the Cyclic Schedgl Problem on Parallel

ProcessorsDiscrete Applied Mathematics, 57(2-3):167—-192, 1995.

. A. E. Eichenberger, E. S. Davidson, and S. G. Abraham. iizing Register Requirements

of a Modulo Schedule via Optimum Stage Schedulingternational Journal of Parallel
Programming, 24(2):103-132, Apr. 1996.

. D. Fimmel and J. Muller. Optimal Software Pipelining Unéesource Constraint$nter-

national Journal of Foundations of Computer Science (1JFCS), 12(6):697—718, 2001.

. Harold W. Kuhn. The Hungarian Method for the assignmeoblam. Naval Research

Logistics Quarterly, 2:83-97, 1955.

. J. JanssenCompilers Strategies for Transport Triggered Architectures. PhD thesis, Delft

University, Netherlands, 2001.

. A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York,

1987.

. Sid-Ahmed-Ali Touati. Register Pressure in Instruction Level Parallelisme. PhD thesis,

Université de Versailles, France, June 2002. ftp.infidNRIA/Projects/a3/touati/thesis.

. Sid-Ahmed-Ali Touati. Periodic Task Scheduling undeor&ge Constraints. |Rroceed-

ings of the Multidisciplinary International Scheduling Conference: Theory and Applications
(MISTA?07), Aug. 2007.

Sid-Ahmed-Ali Touati and Christine Eisenbeis. Earlyi®dic Register Allocation on ILP
ProcessorsParallel Processing Letters, 14(2), June 2004. World Scientific.

M. M. Strout, L. Carter, J. Ferrante, and B. Simon. Sclethdependent Storage Mapping
for Loops. ACM S G-PLAN Notices, 33(11):24-33, Nov. 1998.

W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe. AfieliFramework for Schedule
and Storage OptimizatiolACM SIGPLAN Notices, 36(5):232—242, May 2001.



