
J Supercomput
DOI 10.1007/s11227-011-0563-y

Solving large sparse linear systems in a grid
environment: the GREMLINS code versus the PETSc
library

Fabienne Jezequel · Raphaël Couturier ·
Christophe Denis

© Springer Science+Business Media, LLC 2011

Abstract Solving large sparse linear systems is essential in numerous scientific do-
mains. Several algorithms, based on direct or iterative methods, have been developed
for parallel architectures. On distributed grids consisting of processors located in dis-
tant geographical sites, their performance may be unsatisfactory because they suffer
from too many synchronizations and communications. The GREMLINS code has
been developed for solving large sparse linear systems on distributed grids. It imple-
ments the multisplitting method that consists in splitting the original linear system
into several subsystems that can be solved independently. In this paper, the perfor-
mance of the GREMLINS code obtained with several libraries for solving the linear
subsystems is analyzed. Its performance is also compared with that of the widely
used PETSc library that enables one to develop portable parallel applications. Nu-
merical experiments have been carried out both on local clusters and on distributed
grids.

Keywords Asynchronous iterations · Grid computing · Iterative method ·
Multisplitting method · Sparse linear solver

F. Jezequel
UPMC Univ Paris 06, UMR 7606, Laboratoire d’Informatique de Paris 6, 4 place Jussieu,
75252 Paris CEDEX 05, France

R. Couturier (�)
LIFC, University of Franche Comte, IUT Belfort-Montbéliard, BP 527, 90016 Belfort Cedex, France
e-mail: raphael.couturier@univ-fcomte.fr

C. Denis
EDF Research and Development, SINETICS Department, 1 avenue du Général de Gaulle,
92141 Clamart CEDEX, France

mailto:raphael.couturier@univ-fcomte.fr

F. Jezequel et al.

1 Introduction

Numerous scientific applications must solve large sparse linear systems. Because of
considerable requirements in terms of memory allocation and execution time, it may
happen that these computations cannot be carried out on a single-processor computer.
Several multiprocessor environments exist, such as parallel machines or clusters of
computers. A grid may be defined as a set of interconnected local clusters. The large
number of processors it offers may be a relatively inexpensive answer to growing
computational needs. Because of the variety of machines and interconnection net-
works it is usually composed of, a grid is a heterogeneous environment. Since the
performance of numerical algorithms, designed to run on parallel homogeneous com-
puters, may be unsatisfactory on such a grid, new coarse-grained and asynchronous
efficient parallel algorithms must be proposed.

The GREMLINS1 code has been developed to solve efficiently large sparse lin-
ear systems on a grid [13]. It implements the multisplitting method [26, 29] which is
based on a decomposition of the matrix into rectangular submatrices. Each processor
belonging to the grid solves linear subsystems using either a direct or an iterative
method. Successive approximations to the global solution are computed. These iter-
ations can be performed in a synchronous or in an asynchronous mode. With the first
version of the GREMLINS code, the linear subsystems could be solved using direct
methods from the MUMPS2 library [1] or the SuperLU3 library [15] or using itera-
tive methods from the SparseLib4 library [16]. The PETSc5 library [6] is a popular
suite of data structures and routines for scientific computing. Applications developed
with PETSc are portable: a common code can be run on a sequential machine or on
various parallel architectures. PETSc employs the MPI6 standard for all message-
passing communication. By paying particular attention to memory allocation, PETSc
takes full advantage of parallel machines. For solving linear systems with PETSc,
various iterative methods and also direct methods from external libraries can be used.

The originality of this paper lies in the two different types of work it describes.
First, the GREMLINS code has been improved to allow each processor in a grid to
use PETSc for solving its linear subsystems. Second, the performance of the PETSc
library for solving large linear systems has been compared with that of the GREM-
LINS code, both on a local cluster and on a grid consisting of processors from several
geographical sites.

In [13], the initial version of this work is described. In particular, the complete
multisplitting algorithm with many implementation details is presented. The CRAC
environment which enabled the implementation of asynchronous iterative algorithms
is described. However, as this work was less advanced, the systems solved in [13]

1GREMLINS (GRid Efficient Methods for LINear Systems): http://info.iut-bm.univ-fcomte.fr/gremlins.
2MUMPS (MUltifrontal Massively Parallel Sparse direct Solver): http://graal.ens-lyon.fr/MUMPS.
3SuperLU: http://crd.lbl.gov/ xiaoye/SuperLU.
4SparseLib: http://math.nist.gov/sparselib++.
5PETSc (Portable, Extensible Toolkit for Scientific computation): http://www-unix.mcs.anl.gov/petsc.
6MPI (Message Passing Interface): http://www-unix.mcs.anl.gov/mpi.

http://info.iut-bm.univ-fcomte.fr/gremlins
http://graal.ens-lyon.fr/MUMPS
http://crd.lbl.gov/~xiaoye/SuperLU
http://math.nist.gov/sparselib++
http://www-unix.mcs.anl.gov/petsc
http://www-unix.mcs.anl.gov/mpi

Solving large sparse linear systems in a grid environment

could not be as large as now. In the present paper, important features of this pre-
vious work are reminded, so that it can be self-contained. The focus is put on ex-
periments showing the relevancy of this present work. In particular, the GMRES
method implemented in PETSc is compared, as an inner solver, to other solvers
(SparseLib, MUMPS and SuperLU). Furthermore the GREMLINS code is compared
with PETSc, the standard sparse matrix solver. This comparison highlights that with
geographically distant sites, this standard solver is not so efficient.

This paper is organized as follows. In Sect. 2 some related works are presented
and discussed. The principles of the multisplitting method and the architecture of the
GREMLINS code are presented in Sect. 3. Numerical experiments are described in
Sect. 4. First, the performance of the GREMLINS code has been analyzed, several
possible libraries being used to solve serially the linear subsystems generated by the
multisplitting method. Then the performance of the PETSc library and that of the
GREMLINS code have been compared. Both numerical experiments have been car-
ried out in a local and in a distant context. Section 5 presents concluding remarks and
planed perspectives.

2 Related works

Many scientists are interested in solving large sparse linear systems. Solvers can be
classified into direct or iterative methods. Concerning direct methods, the most effi-
cient ones are based on the LU decomposition [18, 22]. Because of the complexity
of the elimination process in direct methods, iterative methods are usually preferred
for very large systems. A wide range of iterative methods is available [28]: for ex-
ample, Jacobi, Gauss-Seidel and Krylov subspace methods (such as conjugate gradi-
ent, GMRES, BICGSTAB) can be cited. The convergence of iterative methods can
be improved by preconditioners such as the Successive Over Relaxation (SOR) pre-
conditioner [23] and sparse approximate inverse preconditioners that are based on
factorized sparse approximate inverses or on the minimization of some convenient
norm [12, 21]. Recently, explicit approximate inverse preconditioners have been in-
troduced for solving sparse linear systems [17, 19, 20]. In [7], interested readers will
find issues for implementing iterative methods in a sequential manner. Most solvers
have also been designed in parallel to leverage computation power of clusters. Nev-
ertheless, few methods have been adapted in the context of grid computing with geo-
graphically distant clusters.

One concern in the parallelization of solvers is the identification of synchroniza-
tion points. In Krylov methods, which are based on projections into Krylov sub-
spaces, the computation of a vector (by a matrix-vector product) is usually followed
by its orthogonalization against a set of vectors. Inner products in the orthogonal-
ization act as synchronization points. Designed to obtain more parallelism and data
locality, the s-step variants [10, 11] consist in generating a basis for the Krylov sub-
space first, and to orthogonalize this set afterward. They showed satisfactory per-
formances on homogeneous multiprocessor machines. However in a heterogeneous
environment, algorithms must be both asynchronous and coarse-grained.

A hybrid version of GMRES is presented in [30]. This method combines a par-
allel GMRES method with the least square method that requires some eigenvalues

F. Jezequel et al.

obtained from a parallel Arnoldi algorithm. In the paper, only small matrices are con-
sidered: the largest one has only 3,600 unknowns.

The implementation of a parallel 3D solver based on Navier–Stokes system is
described in [24]. The solver is built with Globus. Experiments are also quite small
since the number of unknowns is less than 20,000.

In [13], large sparse linear systems are solved in a grid computing context using
GREMLINS. In this work, only direct solvers are experimented inside the multisplit-
ting method.

A parallel hybrid solver based on both direct methods and iterative methods is
presented in [25]. It allows one to solve large matrices but it is only dedicated to
homogeneous clusters, not to grid environments.

Except previous works described in [13], all the solvers cited in this section are
based on synchronous iterative methods. One of the originality of the GREMLINS
solver is to be able to run either in synchronous or asynchronous iteration mode.

3 The multisplitting method

3.1 Principles of the multisplitting method

For solving a linear system, the multisplitting method generalizes the block Jacobi
method. Moreover, the multisplitting method supports the asynchronous iteration
model; it can be used with direct and/or iterative inner solvers (even simultaneously)
and it allows processors to compute common components by mixing freely over-
lapped components between processors. Its main principles are described here.

Let us consider the n × n nonsymmetric sparse linear system

AX = B (1)

and let us assume it has a unique solution. The multisplitting method consists in
splitting the matrix into horizontal rectangle matrices. For the sake of simplicity, let
us consider the decomposition generates as many rectangle matrices as processors.
Thus, each processor is in charge of managing one submatrix, denoted by ASub. The
part of the rectangle matrix before the submatrix represents the left dependencies,
called DepLeft, and the part after the submatrix represents the right dependencies,
called DepRight. Let us denote by XSub the part of the solution vector and BSub the
part of the right-hand side vector involved in the computation. Figure 1 describes the
decomposition of A, X, and B into several parts (DepLeft, ASub, DepRight, Xleft,
XSub, XRight, BSub) required locally by a processor.

At each step, each assigned processor computes XSub by solving the following
subsystem

ASub × XSub = BSub − DepLeft × XLeft − DepRight × XRight. (2)

Then the solution XSub must be sent to each processor depending on it.
Solving a linear system using the multisplitting method requires several steps de-

scribed below.

Solving large sparse linear systems in a grid environment

Fig. 1 Decomposition of the
matrix A, the solution vector X

and the right-hand side vector B

into several parts required
locally by a processor

1. Initialization:
The matrix can be loaded from a data file or generated at run time. Each processor
manages the load of the rectangle matrix DepLeft +ASub + DepRight. Then until
convergence, each processor iterates on:

2. Computation:
At each iteration, each processor computes BLoc = BSub − DepLeft × XLeft −
DepRight × XRight. Then it solves the linear system ASub × XSub = BLoc.

3. Data exchange:
Each processor sends XSub, the part of the solution vector it has computed, to
the other processors. When a processor receives a part of the solution vector from
another processor, it should update the appropriate part of XLeft or XRight ac-
cording to the rank of the sending processor.

4. Convergence detection:
Convergence can be detected using a centralized algorithm described in [2] or a
decentralized one, that is a more general version, as described in [3].

In the multisplitting method, the model of asynchronous iterations may reduce the
run time. In this case, receptions are nonblocking, computations are dissociated from
communications using threads, and an appropriate convergence algorithm is used.
Additional references on theoretical aspects of asynchronous iterative algorithms can
be found in [8].

The serial solver used for the linear subsystems can be a direct one or an iterative
one. With a direct solver, the most consuming part is the factorization of the submatrix
that is performed at the first iteration only. Then other iterations are faster, because
only the right-hand side changes. With an iterative solver, all the iterations require
approximatively the same time.

The number of iterations required to solve the system is related to the spectral ra-
dius of the iteration matrix: the closer the spectral radius is to 1, the more iterations
are required, as for all iterative methods. The convergence condition in the asyn-
chronous version is more restrictive than in the synchronous one. In the synchronous
version, the spectral radius of the iteration matrix associated with each submatrix
must be strictly less than 1; in the asynchronous version, the spectral radius of the
absolute value of each iteration matrix must be strictly less than 1 [4]. In some rare

F. Jezequel et al.

practical cases, the synchronous version would converge whereas the asynchronous
one would not.

As a remark, some elements of the solution vector may be computed by several
processors. This overlapping may reduce the number of iterations required to obtain
the convergence. The impact of overlapping over the speed of convergence is exem-
plified in [4].

3.2 Comparison of the multisplitting and the GMRES method

The multisplitting method is compared with the GMRES method, which is widely
used for solving sparse nonsymmetric linear systems. This comparison is exemplified
in Sect. 4.3 by numerical experiments performed using the GREMLINS code and the
GMRES solver from the PETSc library.

There is a fundamental difference between the multisplitting and the GMRES
method. The former can be executed with the asynchronous model which may over-
lap communications by computation. In this case, the number of iterations to reach
the convergence is often larger, but there is no more synchronization between proces-
sors. In the latter, at each iteration, there are commonly three synchronizations. There
is a huge synchronization step that allows processors to exchange their dependencies
with all their neighbors before computing the sparse matrix vector product. Then
there is another synchronization which allows processors to reduce their scalar prod-
ucts. Finally, there is a last synchronization for computing the norm and deciding
whether the convergence criterion is reached or not.

Comparing data transfers involved in each method, the multisplitting algorithm
only requires data transfer for the matrix vector product. But the main feature of
this method, in the asynchronous mode, is that even if some neighbors cannot send
their data dependencies because they are not ready to transfer them, then a proces-
sor can compute its local matrix vector product even if some entries have not been
updated. In opposition, the GMRES method requires that all processors send their
data dependencies before computing the matrix vector product. Moreover, there are
two other synchronizations. So, in a grid environment context with geographically
distant sites and variable network parameters, synchronizations are really penalizing
and occur by definition simultaneously. In opposition, asynchronous iterative algo-
rithms offer the advantage of better scheduled communications. Moreover, the over-
lap of communications by computation allows the overall system to converge faster
even if some communications links are slower than other ones or processors quite
heterogeneous.

In fact, the previous explanation is also true for other iterative methods which
cannot be executed in asynchronous mode. All synchronous methods require to have
a synchronization step before computing the matrix vector product. Then depending
on the method, the number of reductions is variable but at least one is required to
compute the convergence test.

Solving large sparse linear systems in a grid environment

3.3 The GREMLINS code

The GREMLINS code implements in C++ the multisplitting method for solving
nonsymmetric sparse linear systems. It uses the CRAC7 library [14] for communica-
tion. Depending on a flag set by the user in the GREMLINS code, communications
with CRAC can be synchronous or asynchronous. Although the internals of CRAC
are based on multithreading, the CRAC programming interface uses the message
passing paradigm. CRAC basically has three functionalities: sending a message, re-
ceiving a message, and detecting the convergence. The emission of a message is never
blocking. The message is copied into the outgoing queue when the sending method is
called. The receiving method is blocking in the synchronous mode, whereas it is not
in the asynchronous mode. In the latter case, if one or several versions of a message
arrived, the method returns its last version, otherwise it returns nothing. The conver-
gence method requires a boolean argument indicating if local convergence has been
achieved and determines if global convergence has been reached using a centralized
algorithm.

With the multisplitting method, the initial linear system is split into subsystems.
Each subsystem is solved on its assigned processor. In the previous version of the
GREMLINS code [13], three scientific libraries could be chosen for solving the sub-
systems: MUMPS [1], SparseLib [16], and SuperLU [15]. The GREMLINS code has
been improved to also allow the use of the PETSc library [6].

The GREMLINS code consists of:

• C++ methods that first ensure the distribution of the matrix and then, in an itera-
tive process, compute the right-hand sides, send them to the different processors,
receive the solutions from the different processors and detect the convergence.
These methods implement an iterative so-called outer solver and use the CRAC
library to communicate.

• C++ methods using a scientific library that solve the subsystems in a serial way.
These methods implement a sequential so-called inner solver, that can be direct or
iterative, depending on the library chosen. For each library, the inner solver consists
of at most two methods: a constructor (that classically performs initializations in
object oriented programming models and is not necessarily present) and a method
called solve that actually computes the solution of the linear system.

With the outer solver, the initial matrix and the submatrices are represented in
a Compressed Sparse Row (CSR) format that consists of three arrays: one for the
column indices, one for the numerical values, and one for the positions in the previous
arrays of the first entry in each row. The right-hand side and the solution of each
subsystem are represented by classical numerical arrays.

With the inner solver, the representation for the matrix, the right-hand side and
the solution depends on the library used. If necessary, the matrix is converted from
the CSR format, previously described, into another format required by the library.
This conversion is performed once, in the constructor of the inner solver. In the solve
method, the right-hand side and the solution may also be converted if particular types
are required for these two arrays.

7CRAC (Communication Routines for Asynchronous Computations).

F. Jezequel et al.

Fig. 2 A generated matrix with
7 nonempty diagonals and a
bandwidth equal to half the
matrix size

4 Numerical experiments

4.1 Context of the experiments

The multisplitting method has been used with processors located in the same cluster
or in different sites to solve linear systems arising from real life problems [4]. In this
case, a file is stored on a processor which is in charge of distributing the data to the
others. Therefore, the memory size of this processor limits the size of the file to be
processed. In [4], the size of the largest matrix assigned from a file is 130,228. The
associated linear system is solved on at most 20 processors. In order to solve larger
problems without long data file transfers, the linear systems studied in this paper are
generated at run time.

Each processor computes specific matrix rows, so that each matrix is automatically
distributed on the processors. Each generated matrix consists of several nonempty di-
agonals: the main diagonal, the two nearest neighbor diagonals and other diagonals
are equally scattered between the main diagonal and the desired bandwidth. As an
example, a matrix with 7 non-empty diagonals and a bandwidth equals to half the
matrix size is represented in Fig. 2. Off-diagonal entries are random values between
−1 and 0. Each diagonal entry is the inverse of the sum of the entries of the same
row plus a fixed value and a random value from an interval specified by the user (in
practice the fixed value equals 1.1 and the random value lies between 0 and 1.2). Such
generated matrices are M-matrices [5] (defined as Z-matrices with eigenvalues whose
real parts are positive). Z-matrices, i.e., matrices whose diagonal entries are strictly
positive and off-diagonal entries nonpositive, and also diagonally dominant matri-
ces satisfy the convergence condition of both the synchronous and the asynchronous
version of the multisplitting method [4].

Solving large sparse linear systems in a grid environment

Numerical experiments have been carried out on GRID’5000,8 an experimental
grid platform featuring 5,000 processors which are geographically distributed across
nine sites in France [9]. Recently, this network has been augmented to include one
site in Brazil. Most of those sites have a Gigabit Ethernet network for local machines.
Links between the different sites range from 2.5 Gb/s to 10 Gb/s. Processors in the
platform are mostly AMD Opteron, but also Intel Xeon and Intel Itanium.

To run a code on the GRID’5000 platform, processors have to be reserved. The
choice of the sites and the number of processors used depend on the resources avail-
able in the grid. Because clusters in the GRID’5000 architecture use different oper-
ating systems and libraries, a common Linux image has been deployed on the nodes
reserved for the experiments described in this section. Thus, the same operating sys-
tem, libraries, and compilers could be available on any site.

Two types of experiments are described. First, the performance obtained using
different libraries to solve the subsystems in the multisplitting method is analyzed.
Second, the multisplitting method is compared with the restarted version of the GM-
RES (General Minimal RESidual) method [28] implemented in the PETSc library.
This second point provides a comparison of the GREMLINS solver with a standard
parallel one.

4.2 Comparison of different inner solvers in the GREMLINS code

Different inner solvers for the subsystems in the multisplitting method have been
compared: direct solvers from the MUMPS or the SuperLU library and iterative
solvers from the PETSc or the SparseLib library. With the latter libraries, the GMRES
method has been used with an ILU preconditioner [28].

Table 1 presents results measured in a local context: 100 processors with a fre-
quency of 2.4 GHz in Orsay. The results presented in Table 2 have been measured
with 155 processors in a distant context: 59 processors in Rennes, 50 processors in
Sophia, and 46 processors in Toulouse, having a frequency of respectively 2.0 GHz,
2.0 GHz, and 2.6 GHz. With multicore processors, one core per processor has been
used, because inner solvers are not thread safe except SparseLib. That means that if
several instances of the same solvers are run, a nonthread-safe program will crash.

The matrices involved in Tables 1 and 2 have the same size (2 × 107), the same
bandwidth (2 × 106) and the same number of diagonals (13, 23, or 33) but their ele-
ments have different values. These values result from a combination of random values
and parameters that are set by the user and have an impact on the convergence speed
of the multisplitting method. Indeed the number of iterations required to achieve con-
vergence and, therefore, the execution time of the GREMLINS code is related to the
spectral radius of the iteration matrix in the multisplitting method. Although they
have the same pattern, the matrices from Tables 1 and 2 have been generated using
different parameters. In the synchronous mode, a matrix from Table 2 would require
fewer iterations and, therefore, lead to a faster convergence than the corresponding
one from Table 1 in the same context (local or distant processors).

8GRID’5000: http://www.grid5000.fr.

http://www.grid5000.fr

F. Jezequel et al.

Table 1 Execution times with the four solvers for generated matrices of size 2 × 107 and bandwidth 2 ×
106 on 100 processors in a local cluster in Orsay

Solver Synchronous Asynchronous

Time (s) Stand. dev. Nb. iter. Time (s) Stand. dev. Nb. iter.

13 diagonals

MUMPS 98.79 0.31 83 93.79 0.51 [240-249]

SuperLU 84.09 0.24 83 98.07 0.50 [417-441]

SparseLib 87.21 0.26 83 91.68 0.48 [388-426]

PETSc 84.14 0.29 83 95.70 0.43 [424-457]

23 diagonals

MUMPS 278.43 0.23 148 258.98 0.37 [421-439]

SuperLU 253.71 0.24 148 248.57 0.49 [506-532]

SparseLib 272.39 0.28 148 259.32 0.41 [441-451]

PETSc 270.04 0.36 148 255.46 0.48 [411-414]

33 diagonals

MUMPS 407.06 0.29 205 376.94 0.41 [556-574]

SuperLU 367.49 0.31 205 351.04 0.37 [714-747]

SparseLib 394.02 0.27 205 364.86 0.34 [604-608]

PETSc 398.23 0.32 205 369.91 0.45 [527-566]

The run time and the number of iterations performed by the outer solver in the
multisplitting method, in both the synchronous and the asynchronous mode, are re-
ported in Tables 1 and 2. In each case, the computation has been performed ten times
with the time reported being the mean value. As the run time varies from one execu-
tion to another, the standard deviation from the mean execution time is also reported.
In the synchronous mode, the number of iterations is constant from one execution
to another. It is not the case in the asynchronous mode, for which the number of it-
erations performed depends on the network traffic; the minimum and the maximum
number of iterations measured have been reported into square brackets. In the asyn-
chronous mode, within one execution, the number of iterations also varies from one
processor to another. At each execution, it is the number of iterations performed by
the supermaster, a processor that has a specific function for communications with the
CRAC library [14] that has been measured.

With the matrices considered, both in a local context and in a distant context,
no inner solver performs clearly better than the others. In the synchronous mode,
the number of iterations performed by the outer solver is the same whatever the in-
ner solver is. As the number of diagonals increases, so do the computational vol-
ume, the number of iterations in the synchronous mode and the run time both in
the synchronous mode and in the asynchronous one. Run times in the asynchronous
mode are slightly better than in the synchronous one from a certain number of diag-
onals.

Solving large sparse linear systems in a grid environment

Table 2 Execution times with the four solvers for generated matrices of size 2 × 107 and bandwidth 2 ×
106 on 155 processors: 59 in Rennes, 50 in Sophia, and 46 in Toulouse

Solver Synchronous Asynchronous

Time (s) Stand. dev. Nb. iter. Time (s) Stand. dev. Nb. iter.

13 diagonals

MUMPS 25.15 0.68 12 42.09 1.01 [199-215]

SuperLU 23.42 0.81 12 44.15 1.29 [510-526]

SparseLib 23.00 0.77 12 32.67 1.12 [272-310]

PETSc 23.57 0.82 12 40.89 0.91 [322-453]

23 diagonals

MUMPS 57.00 0.92 17 54.35 1.01 [170-188]

SuperLU 55.45 0.67 17 51.40 1.27 [333-389]

SparseLib 54.88 0.98 17 54.82 0.99 [302-330]

PETSc 55.33 0.85 17 53.87 1.16 [322-369]

33 diagonals

MUMPS 83.88 1.01 21 75.16 1.06 [191-199]

SuperLU 78.54 0.89 21 66.58 0.95 [344-359]

SparseLib 79.83 0.96 21 70.44 1.59 [230-255]

PETSc 79.12 0.78 21 71.70 1.27 [203-218]

4.3 Comparison of the GREMLINS code and the PETSc library

The multisplitting method implemented in the GREMLINS code has been compared
with the GMRES method implemented in the PETSc library, both in a local and in
a distant context. The inner solver used in the multisplitting method is a direct one
from the MUMPS library. As already mentioned, no inner solver performs clearly
better in the experiments reported in Sect. 4.2. The MUMPS library has been chosen
since it consumes less memory than SuperLU. Because no preconditioner has been
implemented yet in the GREMLINS code, the GMRES method has also been used
without any preconditioner. The run time and the number of iterations of the outer
solver in the GREMLINS code have been compared with those of the restarted GM-
RES method. Although the run time required by the generation of the matrix has not
been reported, particular attention has been paid to memory allocation. Indeed with
PETSc, preallocation of memory is critical to achieve good performances during ma-
trix assembly. By specifying the number of nonzeros per row (before actually setting
the matrix values), the total execution time has been significantly reduced.

Table 3 presents results measured in a local context (100 processors with a fre-
quency of 2.4 GHz in Orsay) with matrices of size 2 × 107 and bandwidth 2 × 106.
The matrices studied for Table 3 with 13, 23, or 33 diagonals had also been used
for Table 2. As the number of diagonals increases, the run time logically increases.
It is noticeable that, in this experiment, with the multisplitting method the run time
is slightly higher in the asynchronous mode than in the synchronous one. When the
number of diagonals increases, the relative difference between the synchronous ex-
ecution time and the asynchronous one decreases. This difference depends on the

F. Jezequel et al.

Table 3 Execution times of the GREMLINS code and the PETSc code for generated matrices of size 2 ×
107 and bandwidth 2 × 106 on 100 processors in a local cluster in Orsay

Nb. Multisplitting (MUMPS) PETSc

diagonals Synchronous Asynchronous

Time (s) Stand. dev. Nb. iter. Time (s) Stand. dev. Nb. iter. Time (s) Stand. dev. Nb. iter.

13 15.50 0.21 12 20.59 0.45 [54-56] 17.56 0.25 12

23 32.04 0.24 17 39.56 0.47 [66-72] 24.28 0.28 14

33 42.11 0.34 21 48.90 0.56 [81-82] 27.69 0.19 15

43 54.95 0.27 25 58.65 0.39 [78-81] 30.58 0.22 16

53 62.49 0.18 28 66.48 0.45 [97-100] 34.13 0.27 17

63 73.40 0.27 32 76.33 0.41 [104-110] 37.78 0.32 18

matrix, the processors and the interconnection network involved. Indeed the run time
is lower in the asynchronous mode than in the synchronous one, on the one hand for
the same matrix with 23 or 33 diagonals in a distant context (see Table 2) and on the
other hand in the same context for a matrix with 23 or 33 diagonals having the same
pattern but element values that lead to a slower convergence (see Table 1).

Except with the matrix having 13 diagonals, the number of iterations and the run
time are lower with the GMRES method implemented in PETSc than with the mul-
tisplitting method. The local context of this experiment is favorable to the PETSc
library. As the number of diagonals increases, the ratio of the run time of the GREM-
LINS code over the one of the PETSc code increases. In this experiment, this ratio is
at most 2.

Tables 4 and 5 present run times measured in a distant context, on 198 processors:
68 in Orsay (2.4 GHz), 70 in Rennes (2.0 GHz), and 60 in Sophia (2.0 GHz).

The results reported in Table 4 refer to matrices of size 2 × 107 and bandwidth
2 × 104. As already noticed in Sect. 4.2, the performance of the multisplitting method
is better in the asynchronous mode than in the synchronous one from a certain number
of diagonals. In this experiment, the run time of the PETSc code is higher than the
one of the GREMLINS code. As in Table 3, as the number of diagonals increases,
the ratio of the run time of the GREMLINS code over the one of the PETSc code
also increases. In Table 4, this ratio, that remains less than 1, is at least 0.5 (this value
refers to the matrix with 13 diagonals).

All the matrices studied for Table 5 have 13 diagonals. Their size S varies from
2 × 107 to 7 × 107 and their bandwidth is 10−3S. As their size increases, the com-
munication time also increases and, therefore, the run time increases as well. As their
size varies, the number of iterations both with the GREMLINS code in the synchro-
nous mode and with the PETSc code does not differ much. As usually noticed in
Tables 1 to 4 for matrices with 13 diagonals, the GREMLINS code performance is
better in the synchronous mode than in the asynchronous one, except for the matrix
of size 7 × 107. It is noticeable that the number of iterations with the PETSc code
is slightly higher than the one with the GREMLINS code in the synchronous mode.
The performance of the GREMLINS code is better than that of the PETSc code, ex-
cept when the GREMLINS code is run in the asynchronous mode with the matrix of
size 3 × 107.

Solving large sparse linear systems in a grid environment

Table 4 Execution times of the GREMLINS code and the PETSc code for generated matrices of size 2 ×
107 and bandwidth 2 × 104 on 198 processors: 68 in Orsay, 70 in Rennes, and 60 in Sophia

Nb. Multisplitting (MUMPS) PETSc

diagonals Synchronous Asynchronous

Time (s) Stand. dev. Nb. iter. Time (s) Stand. dev. Nb. iter. Time (s) Stand. dev. Nb. iter.

13 20.76 0.92 37 23.14 1.09 [172-198] 42.10 1.12 47

23 27.56 1.01 46 33.02 1.02 [215-245] 49.09 0.87 54

33 38.71 0.98 57 33.58 1.52 [169-186] 55.41 1.32 60

43 51.48 1.05 68 43.50 0.98 [173-189] 57.75 1.09 68

53 65.03 1.09 78 53.58 1.23 [187-204] 69.20 1.1 71

63 75.04 0.98 91 72.44 1.54 [243-286] 76.92 1.34 80

Table 5 Execution times of the GREMLINS code and the PETSc code for generated matrices having 13
diagonals on 198 processors: 68 in Orsay, 70 in Rennes, and 60 in Sophia

Size Multisplitting (MUMPS) PETSc

Synchronous Asynchronous

Time (s) Stand. dev. Nb. iter. Time (s) Stand. dev. Nb. iter. Time (s) Stand. dev. Nb. iter.

2 × 107 20.76 0.76 37 23.14 0.89 [172-198] 42.10 0.99 47

3 × 107 29.53 1.08 39 56.66 1.02 [281-314] 52.53 0.67 47

4 × 107 36.53 1.01 41 43.17 0.78 [160-179] 59.68 0.87 47

5 × 107 39.16 1.61 36 53.18 1.21 [158-175] 59.10 0.99 46

6 × 107 51.64 0.68 42 77.02 0.19 [195-213] 77.94 0.67 55

7 × 107 98.47 1.23 36 93.71 1.91 [189-215] 120.09 1.87 46

Remark 1 The number of iterations is related to, on the one hand, the spectral ra-
dius of the iteration matrix for the multisplitting method, and on the other hand, the
conditioning of the matrix for the GMRES method. The size of the matrices studied
in this article is too high for their conditioning to be exactly evaluated. However, a
satisfactory conditioning of the matrices can deduced from the convergence observed
with the GMRES method.

5 Conclusion and perspectives

For solving a linear system, the multisplitting method is an iterative method that con-
sists in splitting the matrix into rectangle submatrices. In a distributed environment,
each processor may be in charge of managing a submatrix. The GREMLINS code en-
ables one to use several variants of the multisplitting method in a grid environment.
First, iterations can be performed in a synchronous or in an asynchronous mode. Then
the linear subsystems that arise from the matrix decomposition can be solved using
a direct or an iterative method. Several libraries can be used for solving the subsys-
tems: MUMPS, SparseLib, SuperLU, and also PETSc in the current version of the
GREMLINS code.

F. Jezequel et al.

The GREMLINS code performance has been analyzed in a local context (i.e., on
processors from the same cluster) and also in a distant one (i.e., on processors from
clusters located in different geographical sites). With the matrices studied, the choice
of the solver for the subsystems has no significant impact in terms of performance,
neither in a local nor in a distant context. From a certain number of diagonals in the
matrix, the asynchronous mode may lead to better performances than the synchronous
one. This performance difference, that is slight on GRID’5000, is more marked if the
network bandwidth is degraded [4].

The multisplitting method implemented in the GREMLINS code has been com-
pared with the GMRES method implemented in the PETSc library. Because the
GREMLINS code has been designed to run efficiently in a grid environment, its per-
formance is particularly satisfactory in a distant context. In the numerical experiments
carried out in a distant context, the run time of PETSc is up to twice the one of the
GREMLINS code. On a local cluster, the performance of PETSc is usually better.
Again, a ratio between the run times that is at most 2 has been noticed.

Several perspectives to this work are planed. Each matrix involved in the numerical
experiments is not entirely managed by one processor. A part of the matrix is gener-
ated by each processor belonging to the grid. Matrices arising from real life problems
have also been studied [4]. In this case, a file is stored on one processor that sends
parts of the matrix to the others. But this limits the size of the matrix. In order to solve
large real life problems without long data file transfers, the GREMLINS code may be
linked with a finite element method software, such as the ParaFEM free library [27].
After the finite element computation, the large sparse linear system resulting from
the modeling would be solved using the GREMLINS code, without being explicitly
built. Each processor would build and solve a local sparse linear system.

The GREMLINS code can be run in a synchronous or in an asynchronous mode,
thanks to the CRAC library. But CRAC does not make any difference between proces-
sors belonging to the grid, even if some processors are on the same local parallel
cluster. The GREMLINS code could be improved to make a better use of the local
parallel clusters in a grid. Because the PETSc library is designed to fully take ad-
vantage of parallel computers and local clusters, it could be used over local clusters
to solve parallel linear systems generated by the multisplitting method. Communica-
tions would be performed, on the one hand, by the MPI library used by PETSc on
local clusters and, on the other hand, by the CRAC library on distant clusters. This
implies adaptations in the CRAC library that should become compatible with MPI.

Acknowledgements The authors sincerely wish to thank the reviewers for their constructive comments.
The GREMLINS project is supported by the French National Research Agency (ANR) under grant

ANR-JC05-41999.
Experiments presented in this paper have been carried out using the Grid’5000 experimental testbed,

an initiative from the French Ministry of Research through the ACI GRID incentive action, INRIA, CNRS,
and RENATER and other contributing partners (see http://www.grid5000.fr).

References

1. Amestoy PR, Guermouche A, L’Excellent J-Y, Pralet S (2006) Hybrid scheduling for the parallel
solution of linear systems. Parallel Comput 32(2):136–156

http://www.grid5000.fr

Solving large sparse linear systems in a grid environment

2. Bahi JM, Contassot-Vivier S, Couturier R (2005) Evaluation of the asynchronous iterative algorithms
in the context of distant heterogeneous clusters. Parallel Comput 31(5):439–461

3. Bahi JM, Contassot-Vivier S, Couturier R, Vernier F (2005) A decentralized convergence detection
algorithm for asynchronous parallel iterative algorithms. IEEE Trans Parallel Distrib Syst 1:4–13

4. Bahi JM, Couturier R (2005) Parallelization of direct algorithms using multisplitting methods in grid
environments. In: IPDPS’2005, 19th international parallel and distributed processing symposium,
Denver, Colorado, USA, April 2005. IEEE Comput Soc, Los Alamitos, pp. 254b, 8 pages

5. Bahi JM, Miellou J-C, Rhofir K (1997) Asynchronous multisplitting methods for nonlinear fixed point
problems. Numer Algorithms 15(3–4):315–345

6. Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, Curfman McInnes L,
Smith BF, Zhang H (2004) PETSc users manual. Technical report ANL-95/11, Revision 2.1.5, Ar-
gonne National Laboratory

7. Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C,
Van der Vorst H (1994) Templates for the solution of linear systems: building blocks for iterative
methods, 2nd edn. SIAM, Philadelphia

8. Bertsekas DP, Tsitsiklis JN (1989) Parallel and distributed computation: numerical methods. Prentice-
Hall, Englewood Cliffs

9. Bolze R, Cappello F, Caron E, Daydé M, Desprez F, Jeannot E, Jégou Y, Lanteri S, Leduc J, Melab
N, Mornet G, Namyst R, Primet P, Quetier B, Richard O, Talbi E-G, Touche I (2006) Grid’5000:
a large scale and highly reconfigurable experimental grid testbed. Int J High Perform Comput Appl
20(4):481–494

10. Chronopoulos AT (1991) s-step iterative methods for (non)symmetric (in)definite linear systems.
SIAM J Numer Anal 28(6):1776–1789

11. Chronopoulos AT, Gear CW (1989) s-step iterative methods for symmetric linear systems. J Comput
Appl Math 25(2):153–168

12. Cosgrove JDF, Dias JC, Griewank A (1992) Approximate inverse preconditioning for sparse linear
systems. Int J Comput Math 44:91–110

13. Couturier R, Denis C, Jézéquel F (2008) GREMLINS: a large sparse linear solver for grid environ-
ment. Parallel Comput 34(6–8):380–391

14. Couturier R, Domas S (2007) CRAC: a grid environment to solve scientific applications with asyn-
chronous iterative algorithms. In: IPDPS’2007, 21st international parallel and distributed processing
symposium, Long Beach, California, USA, March 2007. IEEE Comput Soc, Los Alamitos, pp 289–
296

15. Demmel JW, Eisenstat SC, Gilbert JR, Li XS, Liu JWH (1999) A supernodal approach to sparse
partial pivoting. SIAM J Matrix Anal Appl 20(3):720–755

16. Dongarra J, Lumsdaine A, Pozo R, Remington K (1994) A sparse matrix library in C++ for high
performance architectures. In: Second object oriented numerics conference, pp 214–218

17. Gravvanis GA, Giannoutakis KM (2006) On the performance of parallel normalized explicit precondi-
tioned conjugate gradient—type methods. In: IPDPS’2006, 20th international parallel and distributed
processing symposium, Rhodes Island, Greece, April 2006. IEEE Comput Soc, Los Alamitos

18. Golub GH, van Loan C (1996) Matrix computations. The Johns Hopkins University Press, Baltimore
19. Gravvanis GA (2002) Explicit approximate inverse preconditioning techniques. Arch Comput Meth-

ods Eng 9(4):371–402
20. Gravvanis GA (2009) High performance inverse preconditioning. Arch Comput Methods Eng

16(1):77–108
21. Grote MJ, Huckle T (1997) Parallel preconditioning with sparse approximate inverses. SIAM J Sci

Comput 18:838–853
22. Duff I, Erisman M, Reid J (1986) Direct methods for sparse matrices. Oxford University Press, Lon-

don
23. Hageman LA, Young DM (1981) Applied iterative methods. Academic Press, San Diego
24. Langer U, Zulehner W, Yang H, Baumgartner M (2007) GStokes: a grid-enabled solver for the 3D

Stokes/Navier–Stokes system on hybrid meshes. In: ISPDC’2007, 6th international symposium on
parallel and distributed computing, Hagenberg, Austria, July 2007. IEEE Comput Soc, Los Alamitos,
pp 377–382

25. Manguoglu M, Sameh AH, Schenk O (2009) PSPIKE: a parallel hybrid sparse linear system solver.
In: Sips HJ, Epema D, Lin H-X (eds) Euro-par. Lecture notes in computer science, vol 5704. Springer,
Berlin, pp 797–808

26. O’Leary DP, White RE (1985) Multi-splittings of matrices and parallel solution of linear systems.
SIAM J Algebr Discrete Methods 6:630–640

F. Jezequel et al.

27. ParaFEM: A general parallel finite element message passing library. The University of Manchester.
http://www.rcs.manchester.ac.uk/research/parafem

28. Saad Y (1996) Iterative methods for sparse linear systems. PWS Publishing, New York
29. White RE (1990) Multisplitting of a symmetric positive definite matrix. SIAM J Matrix Anal Appl

11:69–82
30. Zhang Y, Bergère G, Petiton S (2008) Large scale parallel hybrid GMRES method for the linear

system on grid system. In: ISPDC’2008, 7th international symposium on parallel and distributed
computing, Krakow, Poland, July 2008. IEEE Computer Society, Los Alamitos, pp 244–249

http://www.rcs.manchester.ac.uk/research/parafem

	Solving large sparse linear systems in a grid environment: the GREMLINS code versus the PETSc library
	Abstract
	Introduction
	Related works
	The multisplitting method
	Principles of the multisplitting method
	Comparison of the multisplitting and the GMRES method
	The GREMLINS code

	Numerical experiments
	Context of the experiments
	Comparison of different inner solvers in the GREMLINS code
	Comparison of the GREMLINS code and the PETSc library

	Conclusion and perspectives
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

