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Abstract

In this paper is proposed a novel steganographic scheme based on chaotic iterations. This re-
search work takes place into the information hiding security fields. We show that the proposed
scheme is stego-secure, which is the highest level of security in a well defined and studied cate-
gory of attack called “watermark-only attack”. Additionally, we prove that this scheme presents
topological properties so that it is one of the firsts able to face, at least partially, an adversary when
considering the others categories of attacks defined in the literature.

1 Introduction

Robustness and security are two major concerns in information hiding [17, 13]. These two concerns
have been defined in [16] as follows. “Robust watermarking isa mechanism to create a communi-
cation channel that is multiplexed into original content [...]. It is required that, firstly, the perceptual
degradation of the marked content [...] is minimal and, secondly, that the capacity of the watermark
channel degrades as a smooth function of the degradation of the marked content. [...]. Watermarking
security refers to the inability by unauthorized users to have access to the raw watermarking channel.
[...] to remove, detect and estimate, write or modify the rawwatermarking bits.” We will focus in
this research work on security.

In the framework of watermarking and steganography, security has seen several important de-
velopments since the last decade [5, 11, 18, 7]. The first fundamental work in security was made
by Cachin in the context of steganography [8]. Cachin interprets the attempts of an attacker to dis-
tinguish between an innocent image and a stego-content as a hypothesis testing problem. In this
document, the basic properties of a stegosystem are defined using the notions of entropy, mutual
information, and relative entropy. Mittelholzer, inspired by the work of Cachin, proposed the first
theoretical framework for analyzing the security of a watermarking scheme [19].

These efforts to bring a theoretical framework for securityin steganography and watermarking
have been followed up by Kalker, who tries to clarify the concepts (robustnessvs.security), and the
classifications of watermarking attacks [16]. This work hasbeen deepened by Furonet al., who have
translated Kerckhoffs’ principle (Alice and Bob shall onlyrely on some previously shared secret
for privacy), from cryptography to data hiding [14]. They used Diffie and Hellman methodology,
and Shannon’s cryptographic framework [21], to classify the watermarking attacks into categories,
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according to the type of information Eve has access to [11, 20], namely: Watermarked Only Attack
(WOA), Known Message Attack (KMA), Known Original Attack (KOA), and Constant-Message
Attack (CMA). Levels of security have been recently defined in these setups. The highest level of
security in WOA is called stego-security [10], whereas topological-security tends to improve the
ability to withstand attacks in KMA, KOA, and CMA setups [15].

To the best of our knowledge, there exist only two information hiding schemes that are both
stego-secure and topologically-secure [15]. The first one is based on a spread spectrum technique
called Natural Watermarking. It is stego-secure when its parameterη is equal to 1 [10]. Unfortu-
nately, this scheme is neither robust, nor able to face an attacker in KOA and KMA setups, due to its
lack of a topological property called expansivity [15]. Thesecond scheme both topologically-secure
and stego-secure is based on chaotic iterations [2]. However, it allows to embed securely only one bit
per embedding parameters. The objective of this research work is to improve the scheme presented
by authors of [2], in such a way that more than one bit can be embedded.

The remainder of this document is organized as follows. In Section 2, some basic recalls con-
cerning both chaotic iterations and Devaney’s chaos are given. In Section 3 are presented results and
information hiding scheme on which our work is based. Classes of attacks considered in this paper
are detailed in Section 4. Stego-security and topological-security are recalled too in this section. The
new information hiding scheme is given in Section 5. Its stego-security is studied in the next sec-
tion. The topological framework making it possible to evaluate topological-security is introduced in
Section 7. Then the topological properties of our scheme areinvestigated in the next section, leading
to the evaluation of its topological-security. This research work ends by a conclusion section where
our contribution is summarized and intended future researches are presented.

2 Basic Recalls

2.1 Chaotic Iterations

In the sequelSn denotes thenth term of a sequenceSandVi is for theith component of a vectorV.
Finally, the following notation is used:J0;NK = {0,1, . . . ,N}.

Let us consider asystemof a finite numberN of elements (orcells), so that each cell has a
booleanstate. A sequence of lengthN of boolean states of the cells corresponds to a particularstate
of the system. A sequence that elements belong intoJ0;N−1K is called astrategy. The set of all
strategies is denoted byS.

Definition 1. The setB denoting{0,1}, let f : BN −→ B
N be a function and S∈ S be a strategy.

The so-calledchaotic iterationsare defined by x0 ∈B
N and∀(n, i) ∈N

∗× J0;N−1K:

xn
i =

{
xn−1

i if Sn 6= i,(
f (xn−1)

)
Sn if Sn = i.

2.2 Devaney’s Chaotic Dynamical Systems

Some topological definitions and properties taken from the mathematical theory of chaos are recalled
in this section.

Let (X ,d) be a metric space andf a continuous function on(X ,d).

Definition 2. f is said to betopologically transitiveif, for any pair of open sets U,V ⊂ X , there
exists k> 0 such that fk(U)∩V 6=∅.

Definition 3. (X , f ) is said to beregularif the set of periodic points is dense inX .

Definition 4. f hassensitive dependence on initial conditionsif there existsδ > 0 such that, for any
x∈ X and any neighborhood V of x, there exist y∈V and n> 0 such that d( f n(x), f n(y))> δ.

δ is called theconstant of sensitivityof f .

It is now possible to introduce the well-established mathematical definition of chaos [12],

Definition 5. A function f : X −→ X is said to bechaoticonX if:
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1. f is regular,

2. f is topologically transitive,

3. f has sensitive dependence on initial conditions.

When f is chaotic, then the system(X , f ) is chaotic and quoting Devaney: “it is unpredictable
because of the sensitive dependence on initial conditions.It cannot be broken down or simplified
into two subsystems which do not interact because of topological transitivity. And in the midst
of this random behavior, we nevertheless have an element of regularity”. Fundamentally different
behaviors are consequently possible and occur in an unpredictable way.

Let us finally remark that,

Theorem 1 ([4]). If a function is regular and topologicaly transitive on a metric space, then the
function is sensitive on initial conditions.

3 Information hiding based on chaotic iterations

3.1 Topology of Chaotic Iterations

In this section, we give the outline proofs establishing thetopological properties of chaotic iterations.
As our scheme is inspired by the work of Guyeuxet al. [15, 2, 1], the proofs detailed at the end of
this document will follow a same canvas.

Let us firstly introduce some notations and terminologies.

Definition 6. Let k ∈ N
∗. A strategy adapteris a sequence which elements belong intoJ0,k−1K.

The set of all strategies with terms inJ0,k−1K is denoted bySk.

Definition 7. Thediscrete boolean metricis the applicationδ : B −→ B defined byδ(x,y) = 0⇔
x= y.

Definition 8. Let k∈N
∗. Theinitial function is the map ik defined by:

ik : Sk −→ J0,k−1K
(Sn)n∈N 7−→ S0

Definition 9. Let k∈N
∗. Theshift functionis the mapσk defined by:

σk : Sk −→ Sk

(Sn)n∈N 7−→ (Sn+1)n∈N

Definition 10. Given a function f: BN →B
N, the function Ff is defined by:

Ff : J0;N−1K×B
N −→B

N

(k,E) 7−→
(

E j .δ(k, j)+ f (E)k.δ(k, j)
)

j∈J0;N−1K

Definition 11. The phase space used for chaotic iterations is denoted byX1 and defined byX1 =
SN×B

N.

Definition 12. Given a function f: BN →B
N, the map Gf is defined by:

Gf : X1 −→ X1

(S,E) 7−→ (σN(S),Ff (iN(S),E))

With these definitions, chaotic iterations can be describedby the following iterations of the
discret dynamical system:

{
X0 ∈ X1

∀k∈N
∗,Xk+1 = Gf (Xk)

Finally, a new distanced1 between two points has been defined by:
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Definition 13 (Distanced1 onX1). ∀(S,E),(Š, Ě) ∈ X1, d1((S,E);(Š, Ě)) = d
BN(E, Ě)+dSN(S, Š),

where:

• d
BN(E, Ě) =

N−1

∑
k=0

δ(Ek, Ěk) ∈ J0;NK

• dSN(S, Š) =
9
N

∞

∑
k=1

|Sk− Šk|

10k ∈ [0;1].

are respectively two distances onBN andSN (∀N ∈N
∗).

Remark 1. This new distance has been introduced by authors of [1] to satisfy the following require-
ments. When the number of different cells between two systems is increasing, then their distance
should increase too. In addition, if two systems present thesame cells and their respective strategies
start with the same terms, then the distance between these two points must be small, because the
evolution of the two systems will be the same for a while. The distance presented above follows
these recommendations.

It is then proven that,

Proposition 1. Gf is a continuous function on(X1,d1), for all f : BN →B
N.

Let us now recall the iteration function used by authors of [2].

Definition 14. Thevectorial negationis the function defined by:

f0 : B
N −→ B

N

(b0, · · · ,bN−1) 7−→ (b0, · · · ,bN−1)

In the metric space(X1,d1), Gf0 satisfies the three conditions for Devaney’s chaos: regularity,
transitivity, and sensitivity. So,

Theorem 2. Gf0 is a chaotic map on(X1,d1) according to Devaney.

Finally, it has been stated in [1] that,

Proposition 2. The phase spaceX1 has, at least, the cardinality of the continuum.

3.2 Chaotic Iterations for Data Hiding

To explain how to use chaotic iterations for information hiding, we must firstly define the significance
of a given coefficient.

3.2.1 Most and Least Significant Coefficients

We first notice that terms of the original contentx that may be replaced by terms issued from the
watermarky are less important than other: they could be changed withoutbe perceived as such.
More generally, asignification functionattaches a weight to each term defining a digital media,
depending on its positiont.

Definition 15. A signification functionis a real sequence(uk)k∈N.

Example 1. Let us consider a set of grayscale images stored into portable graymap format (P3-
PGM): each pixel ranges between 256 gray levels, i.e., is memorized with eight bits. In that context,
we consider uk = 8− (k mod 8) to be the k-th term of a signification function(uk)k∈N. Intuitively,
in each group of eight bits (i.e., for each pixel) the first bithas an importance equal to 8, whereas
the last bit has an importance equal to 1. This is compliant with the idea that changing the first bit
affects more the image than changing the last one.

Definition 16. Let (uk)k∈N be a signification function, m and M be two reals s.t. m< M.

• Themost significant coefficients (MSCs)of x is the finite vector

uM =
(

k
∣∣ k∈N and uk

> M and k≤| x |
)

;
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• Theleast significant coefficients (LSCs)of x is the finite vector

um =
(

k
∣∣ k∈N and uk ≤ m and k≤| x |

)
;

• Thepassive coefficientsof x is the finite vector

up =
(

k
∣∣ k∈N and uk ∈]m;M[ and k≤| x |

)
.

For a given host contentx, MSCs are then ranks ofx that describe the relevant part of the image,
whereas LSCs translate its less significant parts. These twodefinitions are illustrated on Figure 1,
where the significance function(uk) is defined as in Example 1,M = 5, andm= 6.

(a) Original Lena. (b) MSCs of Lena. (c) LSCs of Lena (×17).

Figure 1: Most and least significant coefficients of Lena.

3.2.2 Presentation of the Scheme

Authors of [2] have proposed to use chaotic iterations as an information hiding scheme, as follows.
Let:

• (K,N) ∈ [0;1]×N be an embedding key,

• X ∈ B
N be theN LSCs of a coverC,

• (Sn)n∈N ∈ J0,N−1KN be a strategy, which depends on the message to hideM ∈ [0;1] andK,

• f0 : BN → B
N be the vectorial logical negation.

So the watermarked media isC whose LSCs are replaced byYK = XN, where:
{

X0 = X
∀n< N,Xn+1 = Gf0 (X

n) .

Two ways to generate(Sn)n∈N are given by these authors, namely Chaotic Iterations with In-
dependent Strategy (CIIS) and Chaotic Iterations with Dependent Strategy (CIDS). In CIIS, the
strategy is independent from the cover mediaC, whereas in CIDS the strategy will be dependent on
C. As we will use the CIIS strategy in this document, we recall it below. Finally, MSCs are not used
here, as we do not consider the case of authenticated watermarking.

3.2.3 CIIS Strategy

Let us firstly give the definition of the Piecewise Linear Chaotic Map (PLCM, see [22]):

F(x, p) =





x/p if x∈ [0;p],
(x− p)/(1

2 − p) if x∈
[
p; 1

2

]
,

F(1−x, p) else,

wherep∈
]
0; 1

2

[
is a “control parameter”.

Then, the general term of the strategy(Sn)n in CIIS setup is defined by the following expression:
Sn = ⌊N×Kn⌋+1, where:
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



p∈
[
0; 1

2

]

K0 = M⊗K
Kn+1 = F(Kn, p),∀n≤ N0

in which⊗ denotes the bitwise exclusive or (XOR) between two floating part numbers (i.e., between
their binary digits representation).

4 Data hiding security

4.1 Classification of Attacks

In the steganography framework, attacks have been classified in [10] as follows.

Definition 17. Watermark-Only Attack (WOA) occurs when an attacker has only access to several
watermarked contents.

Definition 18. Known-Message Attack (KMA) occurs when an attacker has access to several pairs
of watermarked contents and corresponding hidden messages.

Definition 19. Known-Original Attack (KOA) is when an attacker has access to several pairs of
watermarked contents and their corresponding original versions.

Definition 20. Constant-Message Attack (CMA) occurs when the attacker observes several water-
marked contents and only knows that the unknown hidden message is the same in all contents.

4.2 Stego-Security

In the prisoner problem of Simmons [23, 6], Alice and Bob are in jail, and they want to, possibly,
devise an escape plan by exchanging hidden messages in innocent-looking cover contents. These
messages are to be conveyed to one another by a common warden,Eve, who over-drops all contents
and can choose to interrupt the communication if they appearto be stego-contents.

The stego-security, defined in this framework, is the highest security level in WOA setup [10].
To recall it, we need the following notations:

• K is the set of embedding keys,

• p(X) is the probabilistic model ofN0 initial host contents,

• p(Y|K1) is the probabilistic model ofN0 watermarked contents.

Furthermore, it is supposed in this context that each host content has been watermarked with the
same secret keyK1 and the same embedding functione.

It is now possible to define the notion of stego-security:

Definition 21 (Stego-Security). The embedding function e isstego-secureif and only if:

∀K1 ∈K, p(Y|K1) = p(X).

To the best of our knowledge, until now, only two schemes havebeen proven to be stego-secure.
On the one hand, the authors of [10] have established that thespread spectrum technique called
Natural Watermarking is stego-secure when its distortion parameterη is equal to 1. On the other
hand, it has been proven in [15] that:

Proposition 3. Chaotic Iterations with Independent Strategy (CIIS) are stego-secure.

4.3 Topological-Security

To check whether an information hiding schemeS is topologically-secure or not,Smust be written
as an iterate processxn+1 = f (xn) on a metric space(X ,d). This formulation is always possible [3].
So,
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Definition 22 (Topological-Security). An information hiding scheme S is said to be topologically-
secure on(X ,d) if its iterative process has a chaotic behavior according toDevaney.

In the approach presented by Guyeuxet al., a data hiding scheme is secure if it is unpredictable.
Its iterative process must satisfy the Devaney’s chaos property and its level of topological-security
increases with the number of chaotic properties satisfied byit.

This new concept of security for data hiding schemes has beenproposed in [3] as a comple-
mentary approach to the existing framework. It contributesto the reinforcement of confidence into
existing secure data hiding schemes. Additionally, the study of security in KMA, KOA, and CMA
setups is realizable in this context. Finally, this framework can replace stego-security in situations
that are not encompassed by it. In particular, this framework is more relevant to give evaluation of
data hiding schemes claimed as chaotic.

5 The improved algorithm

In this section is introduced a new algorithm that generalize the scheme presented by authors of [2].
Let us firstly introduce the following notations:

• x0 ∈ B
N is theN least significant coefficients of a given cover mediaC.

• m0 ∈ B
P is the watermark to embed intox0.

• Sp ∈ SN is a strategy calledplace strategy.

• Sc ∈ SP is a strategy calledchoice strategy.

• Lastly,Sm ∈ SP is a strategy calledmixing strategy.

Our information hiding scheme called Steganography by Chaotic Iterations and Substitution with
Mixing Message (SCISMM) is defined by∀(n, i, j) ∈N

∗× J0;N−1K× J0;P−1K:




xn
i =

{
xn−1

i if Sn
p 6= i

mSn
c

if Sn
p = i.

mn
j =





mn−1
j if Sn

m 6= j

mn−1
j if Sn

m = j.

wheremn−1
j is the boolean negation ofmn−1

j .
The stego-content is the boolean vectory= xP ∈ B

N.

6 Study of stego-security

Let us prove that,

Proposition 4. SCISMM is stego-secure.

Proof. Let us suppose thatx0 ∼ U
(
B

N
)

andm0 ∼ U
(
B

P
)

in a SCISMM setup. We will prove by a
mathematical induction that∀n∈N,xn ∼U

(
B

N
)
. The base case is obvious according to the uniform

repartition hypothesis.
Let us now suppose that the statementxn ∼ U

(
B

N
)

holds for somen. For a givenk ∈ B
N, we

denote byk̃i ∈ B
N the vector defined by:∀i ∈ J0;N−1K, if k= (k0,k1, . . . ,ki , . . . ,kN−2,kN−1),

thenk̃i =
(
k0,k1, . . . ,ki , . . . ,kN−2,kN−1

)
.

Let Ei, j be the following events:

∀(i, j) ∈ J0;N−1K× J0;P−1K,Ei, j =

Sn+1
p = i ∧Sn+1

c = j ∧mn+1
j = ki ∧

(
xn = k∨xn = k̃i

)
,
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andp= P
(
xn+1 = k

)
. So,

p= P


 ∨

i∈J0;N−1K, j∈J0;P−1K

Ei, j


 .

We now introduce the following notation:P1(i) = P
(
Sn+1

p = i
)
, P2( j) = P

(
Sn+1

c = j
)
, P3(i, j) =

P
(

mn+1
j = ki

)
, andP4(i) = P

(
xn = k∨xn = k̃i

)
.

These four events are independent in SCISMM setup, thus:

p= ∑
i∈J0;N−1K, j∈J0;P−1K

P1(i)P2(i)P3(i, j)P4(i).

According to Proposition 3,P
(

mn+1
j = ki

)
= 1

2. As the two events are incompatible:

P
(
xn = k∨xn = k̃i

)
= P(xn = k)+P

(
xn = k̃i

)
.

Then, by using the inductive hypothesis:P(xn = k) = 1
2N , andP

(
xn = k̃i

)
= 1

2N .
Let Sbe defined by

S= ∑
i∈J0;N−1K, j∈J0;P−1K

P1(i)P2( j).

Thenp= 2× 1
2 ×

1
2N ×S= 1

2N ×S.
Scan now be evaluated:

S = ∑i∈J0;N−1K, j∈J0;P−1K P1(i)P2( j)
= ∑i∈J0;N−1K P1(i)×∑ j∈J0;P−1K P2( j).

The set of events
{

Sn+1
p = i

}
for i ∈ J0;N−1K and the set of events

{
Sn+1

c = j
}

for j ∈ J0;P−1K
are both a partition of the universe of possible, soS= 1.

Finally, P
(
xn+1 = k

)
= 1

2N , which leads toxn+1 ∼ U
(
B

N
)
. This result is true∀n ∈ N, we

thus have proven that the stego-contenty is uniform in the set of possible stego-content, soy ∼
U
(
B

N
)

whenx∼ U
(
B

N
)
.

7 Topological model

In this section, we prove that SCISMM can be modeled as a discret dynamical system in a topological
space. We will show in the next section that SCISMM is a case oftopological chaos in the sense of
Devaney.

7.1 Iteration Function and Phase Space

Let
F : J0;N−1K×B

N× J0;P−1K×B
P −→B

N

(k,x,λ,m) 7−→
(

δ(k, j).x j +δ(k, j).mλ

)
j∈J0;N−1K

where + and . are the boolean addition and product operations.
Consider the phase spaceX2 defined as follow:

X2 = SN ×B
N×SP×B

P×SP,

whereSN andSP are the sets introduced in Section 5.
We define the mapG f0 : X2 −→ X2 by:

G f0 (Sp,x,Sc,m,Sm) =

(σN(Sp),F(iN(Sp),x, iP(Sc),m),σP(Sc),Gf0(m,Sm),σP(Sm))

Then SCISMM can be described by the iterations of the following discret dynamical system:
{

X0 ∈ X2

Xk+1 = G f0(X
k).
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7.2 Cardinality of X2

By comparingX2 andX1, we have the following result.

Proposition 5. The phase spaceX2 has, at least, the cardinality of the continuum.

Proof. Let ϕ be the map defined as follow:

ϕ : X1 −→ X2

(S,x) 7−→ (S,x,0,0,0)

ϕ is injective. So the cardinality ofX2 is greater than or equal to the cardinality ofX1. And conse-
quentlyX2 has at least the cardinality of the continuum.

Remark 2. This result is independent on the number of cells of the system.

7.3 A New Distance onX2

We define a new distance onX2 as follow:∀X, X̌ ∈X2, if X =(Sp,x,Sc,m,Sm) andX̌ =(Šp, x̌, Šc,m̌, Šm),
then:

d2(X, X̌) = d
BN(x, x̌)+d

BP(m,m̌)

+ dSN(Sp, Šp)+dSP(Sc, Šc)+dSP(Sm, Šm),

whered
BN , d

BP , dSN , anddSP are the same distances than in Definition 13.

7.4 Continuity of SCISMM

To prove that SCISMM is another example of topological chaosin the sense of Devaney,G f0 must
be continuous on the metric space(X2,d2).

Proposition 6. G f0 is a continuous function on(X2,d2).

Proof. We use the sequential continuity.
Let ((Sp)

n,xn,(Sc)
n,mn,(Sm)

n)n∈N be a sequence of the phase spaceX2, which converges to
(Sp,x,Sc,m,Sm). We will prove that(G f0((Sp)

n,xn,(Sc)
n,mn,(Sm)

n))n∈N converges toG f0(Sp,x,Sc,m,Sm).
Let us recall that for alln, (Sp)

n, (Sc)
n and (Sm)

n are strategies, thus we consider a sequence of
strategies (i.e., a sequence of sequences).

As d2(((Sp)
n,xn,(Sc)

n,mn,(Sm)
n),(Sp,x,Sc,m,Sm)) converges to 0, each distanced

BN(xn,x),
d
BP(mn,m), dSN((Sp)

n,Sp), dSP((Sc)
n,Sc), anddSP((Sm)

n,Sm) converges to 0. Butd
BN(xn,x) and

d
BP(mn,m) are integers, so∃n0 ∈N,∀n> n0,dBN(xn,x) = 0 and∃n1 ∈N,∀n> n1,dBP(mn,m) = 0.

Let n3 = Max(n0,n1). In other words, there exists a thresholdn3 ∈ N after which no cell will
change its state:∃n3 ∈N,n> n3 =⇒ (xn = x)∧ (mn = m).

In addition,dSN((Sp)
n,Sp)−→ 0,dSP((Sc)

n,Sc)−→ 0, anddSP((Sm)
n,Sm)−→ 0, so∃n4,n5,n6 ∈

N,

• ∀n> n4,dSN((Sp)
n,Sp)< 10−1,

• ∀n> n5,dSP((Sc)
n,Sc)< 10−1,

• ∀n> n6,dSP((Sm)
n,Sm)< 10−1.

Let n7 = Max(n4,n5,n6). For n > n7, all the strategies(Sp)
n, (Sc)

n, and(Sm)
n have the same

first term, which are respectively(Sp)0,(Sc)0 and(Sm)0 :∀n> n7,

((Sp)
n
0 = (Sp)0)∧ ((Sc)

n
0 = (Sc)0)∧ ((Sm)

n
0 = (Sm)0).

Let n8 = Max(n3,n7). After then8−th term, states ofxn andx on the one hand, andmn andm
on the other hand, are identical. Additionally, strategies(Sp)

n andSp, (Sc)
n andSc, and(Sm)

n and
Sm start with the same first term.

Consequently, states ofG f0((Sp)
n,xn,(Sc)

n,mn,(Sm)
n) andG f0(Sp,x,Sc,m,Sm) are equal, so,

after the(n8)
th term, the distanced2 between these two points is strictly smaller than 3.10−1, so

strictly smaller than 1.
We now prove that the distance between(G f0((Sp)

n,xn,(Sc)
n,mn,(Sm)

n)) and(G f0(Sp,x,Sc,m,Sm))
is convergent to 0. Letε > 0.
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• If ε> 1, we have seen that distance betweenG f0((Sp)
n,xn,(Sc)

n,mn,(Sm)
n) andG f0(Sp,x,Sc,m,Sm)

is strictly less than 1 after the(n8)
th term (same state).

• If ε< 1, then∃k∈N,10−k > ε
3 > 10−(k+1). AsdSN((Sp)

n,Sp), dSP((Sc)
n,Sc) anddSP((Sm)

n,Sm)
converges to 0, we have:

– ∃n9 ∈N,∀n> n9,dSN((Sp)
n,Sp)< 10−(k+2),

– ∃n10 ∈N,∀n> n10,dSP((Sc)
n,Sc)< 10−(k+2),

– ∃n11 ∈N,∀n> n11,dSP((Sm)
n,Sm)< 10−(k+2).

Let n12 = Max(n9,n10,n11) thus aftern12, thek+2 first terms of(Sp)
n andSp, (Sc)

n andSc,
and(Sm)

n andSm, are equal.

As a consequence, thek+ 1 first entries of the strategies ofG f0((Sp)
n,xn,(Sc)

n,mn,(Sm)
n) and

G f0(Sp,x,Sc,m,Sm) are the same (due to the shift of strategies) and following the definition ofdSN

anddSP:
d2 (G f0((Sp)

n,xn,(Sc)
n,mn,(Sm)

n);G f0(Sp,x,Sc,m,Sm))

is equal to :
dSN((Sp)

n,Sp)+dSP((Sc)
n,Sc)+dSP((Sm)

n,Sm)

which is smaller than 3.10−(k+1) 6 3. ε
3 = ε.

Let N0 = max(n8,n12). We can claim that

∀ε > 0,∃N0 ∈N,∀n> N0,

d2 (G f0((Sp)
n,xn,(Sc)

n,mn,(Sm)
n);G f0(Sp,x,Sc,m,Sm))6 ε.

G f0 is consequently continuous on(X2,d2).

8 SCISMM is chaotic

To prove that we are in the framework of Devaney’s topological chaos, we have to check the regu-
larity, transitivity, and sensitivity conditions.

8.1 Regularity

Proposition 7. Periodic points ofG f0 are dense inX2.

Proof. Let (Šp, x̌, Šc,m̌, Šm) ∈ X2 andε > 0. We are looking for a periodic point(S̃p, x̃, S̃c,m̃, S̃m)

satisfyingd2((Šp, x̌, Šc,m̌, Šm);(S̃p, x̃, S̃c,m̃, S̃m))< ε.
As ε can be strictly lesser than 1, we must choosex̃ = x̌ and m̃= m̌. Let us definek0(ε) =

⌊−log10(
ε
3)⌋+1 and consider the set:SŠp,Šc,Šm,k0(ε)=

{
S∈ SN ×SP×SP/((Sp)

k = Šp
k
)∧ ((Sc)

k = Šc
k
))

∧((Sm)
k = Šm

k
)),∀k6 k0(ε)

}
.

Then,∀(Sp,Sc,Sm) ∈ SŠp,Šc,Šm,k0(ε), d2((Sp, x̌,Sc,m̌,Sm);(Šp, x̌, Šc,m̌, Šm)) < 3. ε
3 = ε. It remains

to choose(S̃p, S̃p, S̃p)∈ SŠp,Šc,Šm,k0(ε) such that(S̃p, x̃, S̃c,m̃, S̃m) = (S̃p, x̌, S̃c,m̌, S̃m) is a periodic point
for G f0.

Let J = {i ∈ J0;N−1K/xi 6= x̌i , where (Sp,x,Sc,m,Sm) = Gk0
f0
(Šp, x̌, Šc,m̌, Šm)

}
, λ = card(J ),

and j0 < j1 < ... < jλ−1 the elements ofJ .

1. Let us firstly build three strategies:S∗p, S∗c, andS∗m, as follows.

(a) (S∗p)
k = Šp

k
, (S∗c)

k = Šc
k
, and(S∗m)

k = Šm
k
, if k6 k0(ε).

(b) Let us now explain how to replace ˇx jq, ∀q∈ J0;λ−1K:
First of all, we must replace ˇx j0:

i. If ∃λ0 ∈ J0;P−1K/x̌ j0 = mλ0
, then we can choose(S∗p)

k0+1 = j0, (S∗c)
k0+1 = λ0,

(S∗m)
k0+1 = λ0, and soI j0 will be equal to 1.
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ii. If such aλ0 does not exist, we choose:
(S∗p)

k0+1 = j0, (S∗c)
k0+1 = 0, (S∗m)

k0+1 = 0,
(S∗p)

k0+2 = j0, (S∗c)
k0+2 = 0, (S∗m)

k0+2 = 0,
andI j0 = 2.

All of the x̌ jq are replaced similarly. The other terms ofS∗p, S∗c, andS∗m are constructed
identically, and the values ofI jq are defined in the same way.

Let γ = ∑λ−1
q=0 I jq.

(c) Finally, let(S∗p)
k = (S∗p)

j , (S∗c)
k = (S∗c)

j , and(S∗m)
k = (S∗m)

j , where j 6 k0(ε)+ γ is satis-
fying j ≡ k [mod(k0(ε)+ γ)], if k> k0(ε)+ γ.

So,Gk0(ε)+γ
f0

(S∗p, x̌,S
∗
c,m̌,S∗m) = (S∗p, x̌,S

∗
c,m,S∗m). LetK = {i ∈ J0;P−1K/mi 6= m̌i , where

G
k0(ε)+γ
f0

(S∗p, x̌,S
∗
c,m̌,S∗m) = (S∗p, x̌,S

∗
c,m,S∗m)

}
,

µ= card(K ), andr0 < r1 < ... < rµ−1 the elements ofK .

2. Let us now build the strategies̃Sp, S̃c, S̃m.

(a) Firstly, letS̃p
k
= (S∗p)

k, S̃c
k
= (S∗c)

k, andS̃m
k
= (S∗m)

k, if k6 k0(ε)+ γ.
(b) How to replace ˇmrq,∀q∈ J0;µ−1K:

First of all, let us explain how to replace ˇmr0:

i. If ∃µ0 ∈ J0;N−1K/x̌µ0 = mr0, then we can choosẽSp
k0+γ+1

= µ0, S̃c
k0+γ+1

= r0,

S̃m
k0+γ+1

= r0.
In that situation, we defineJr0 = 1.

ii. If such aµ0 does not exist, then we can choose:

S̃p
k0+γ+1

= 0, S̃c
k0+γ+1

= r0, S̃m
k0+γ+1

= r0,

S̃p
k0+γ+2

= 0, S̃c
k0+γ+2

= r0, S̃m
k0+γ+2

= 0,

S̃p
k0+γ+3

= 0, S̃c
k0+γ+3

= r0, S̃m
k0+γ+3

= 0.
Let Jr0 = 3.
Then the other ˇmrq are replaced as previously, the other terms ofS̃p, S̃c, andS̃m are
constructed in the same way, and the values ofJrq are defined similarly.

Let α = ∑µ−1
q=0Jrq.

(c) Finally, let S̃p
k
= S̃p

j
, S̃c

k
= S̃c

j
, andS̃m

k
= S̃m

j
where j 6 k0(ε)+ γ+α is satisfying

j ≡ k [mod(k0(ε)+ γ+α)], if k> k0(ε)+ γ+α.

So,Gk0(ε)+γ+α
f0

(S̃p, x̌, S̃c,m̌, S̃m) = (S̃p, x̌, S̃c,m̌, S̃m)

Then,(S̃p, S̃c, S̃m) ∈ SŠp,Šc,Šm,k0(ε) defined as previous is such that(S̃m, x̌, S̃m,m̌, S̃m) is a periodic

point, of periodk0(ε)+ γ+α, which isε−close to(Šp, x̌, Šc,m̌, Šm).
As a conclusion,(X2,G f0) is regular.

8.2 Transitivity

Proposition 8. (X2,G f0) is topologically transitive.

Proof. Let us defineX : X2 → B
N, such thatX (Sp,x,Sc,m,Sm) = x andM : X2 → B

P, such that
M (Sp,x,Sc,m,Sm) = m. Let
BA = B(XA, rA) and BB = B(XB, rB) be two open balls of X2, with
XA = ((Sp)A,xA,(Sc)A,mA,(Sm)A) andXB = ((Sp)B,xB,(Sc)B,mB,(Sm)B). We are looking forX̃ =

(S̃p, x̃, S̃c,m̃, S̃m) in BA such that∃n0 ∈ N,Gn0
f0
(X̃) ∈ BB.

X̃ must be inBA andrA can be strictly lesser than 1, sox̃= xA andm̃= mA. Let k0 = ⌊− log10(
rA
3 )+

1⌋. Let us noticeSXA,k0 =
{
(Sp,Sc,Sm) ∈ SN× (SP)

2/∀k6 k0, (Sk
p = (Sp)

k
A)∧ (Sk

c = (Sc)
k
A)∧ (Sk

m = (Sm)
k
A))

}
.

Then∀(Sp,Sc,Sm) ∈ SXA,k0,(Sp, x̃,Sc,m̃,Sm) ∈ BA.

11



Let J = {i ∈ J0,N−1K/x̌i 6= X (XB)i , where

(Šp, x̌, Šc,m̌, Šm) = Gk0
f0
(XA)

}
, λ = card(J ),

and j0 < j1 < ... < jλ−1 the elements ofJ .

1. Let us firstly build three strategies:S∗p, S∗c, andS∗m as follows.

(a) (S∗p)
k = (Sp)

k
A, (S∗c)

k = (Sc)
k
A, and(S∗m)

k = (Sm)
k
A, if k6 k0.

(b) Let us now explain how to replaceX (XB) jq, ∀q∈ J0;λ−1K:
First of all, we must replaceX (XB) j0:

i. If ∃λ0 ∈ J0;P−1K/X (XB) j0 = m̌λ0
, then we can choose(S∗p)

k0+1 = j0, (S∗c)
k0+1 =

λ0, (S∗m)
k0+1 = λ0, and soI j0 will be equal to 1.

ii. If such aλ0 does not exist, we choose:
(S∗p)

k0+1 = j0, (S∗c)
k0+1 = 0, (S∗m)

k0+1 = 0,
(S∗p)

k0+2 = j0, (S∗c)
k0+2 = 0, (S∗m)

k0+2 = 0
and so let us noticeI j0 = 2.

All of the X (XB) jq are replaced similarly. The other terms ofS∗p, S∗c, andS∗m are
constructed identically, and the values ofI jq are defined on the same way.

Let γ = ∑λ−1
q=0 I jq.

(c) (S∗p)
k = (S∗p)

j , (S∗c)
k = (S∗c)

j and (S∗m)
k = (S∗m)

j where j 6 k0 + γ is satisfying j ≡
k [mod(k0+ γ)], if k> k0+ γ.

So,Gk0+γ
f0

((S∗p,xA,S∗c,mA,S∗m)) = (S∗p,xB,S∗c,m,S∗m)

LetK =
{

i ∈ J0;P−1K/mi 6=M (XB)i , where

(S∗p,xB,S∗c,m,S∗m) = G
k0+γ
f0

((S∗p,xA,S∗c,mA,S∗m))
}
,

µ= card(K ) andr0 < r1 < ... < rµ−1 the elements ofK .

2. Let us secondly build three other strategies:S̃p, S̃c, S̃m as follows.

(a) S̃p
k
= (S∗p)

k, S̃c
k
= (S∗c)

k, andS̃m
k
= (S∗m)

k, if k6 k0+ γ.
(b) Let us now explain how to replaceM (XB)rq,∀q∈ J0;µ−1K:

First of all, we must replaceM (XB)r0:

i. If ∃µ0∈ J0;N−1K/M (XB)r0 =(xB)µ0, then we can choosẽSp
k0+γ+1

=µ0, S̃c
k0+γ+1

=

r0, S̃m
k0+γ+1

= r0, andJr0 will be equal to 1.

ii. If such aµ0 does not exist, we choose:̃Sp
k0+γ+1

= 0, S̃c
k0+γ+1

= r0, S̃m
k0+γ+1

= r0,

S̃p
k0+γ+2

= 0, S̃c
k0+γ+2

= r0, S̃m
k0+γ+2

= 0,

S̃p
k0+γ+3

= 0, S̃c
k0+γ+3

= r0, S̃m
k0+γ+3

= 0,
and so let us noticeJr0 = 3.

All the M (XB)rq are replaced similarly. The other terms ofS̃p, S̃c, andS̃m are con-
structed identically, and the values ofJrq are defined on the same way.

Let α = ∑µ−1
q=0Jrq.

(c) ∀k∈ N
∗, S̃p

k0+γ+α+k
= (Sp)

k
B, S̃c

k0+γ+α+k
= (Sc)

k
B, andS̃m

k0+γ+α+k
= (Sm)

k
B.

So,Gk0+γ+α
f0

(S̃p,xA, S̃c,mA, S̃m) = XB, with (S̃p, S̃c, S̃m) ∈ SXA,k0. ThenX̃ = (S̃p,xA, S̃c,mA, S̃m) ∈

X2 is such that̃X ∈ BA andGk0+γ+α
f0

(X̃) ∈ BB. Finally we have proven the result.

8.3 Sensitivity on Initial Conditions

Proposition 9. (X2,G f0) has sensitive dependence on initial conditions.

Proof. G f0 is regular and transitive. Due to Theorem 1,G f0 is sensitive.
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8.4 Devaney’s topological chaos

In conclusion,(X2,G f0) is topologically transitive, regular, and has sensitive dependence on initial
conditions. Then we have the result.

Theorem 3. G f0 is a chaotic map on(X2,d2) in the sense of Devaney.

So we can claim that:

Theorem 4. SCISMM is topologically-secure.

9 Conclusion

In this research work, a new information hiding scheme has been introduced. It is topologically-
secure and stego-secure, and thus is able to withstand attacks in Watermark-Only Attack (WOA)
and Constant-Message Attack (CMA) setups. These results have been obtained after having studied
the topological behavior of this data hiding scheme. To the best of our knowledge, this algorithm
is the third scheme that has been proven to be secure, according to the information hiding security
field.

In future work, we intend to study the robustness of this scheme, and to compare it with the two
other secure algorithms. Additionally, we will investigate the topological properties of our scheme,
to see whether it is secure in KOA and KMA setups.
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